![](images/graphics/blank.gif)
Giáo trình kinh tế chất lượng - ôn lại thống kê - 2
lượt xem 7
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
Sự Độc Lập Thống Kê Các biến ngẫu nhiên rời rạc được gọi là sự độc lập thống kê nếu P(X = x và Y = y) = P(X = x) . P(Y = y). Vì vậy trong trường hợp này, xác suất kết hợp là tích của các xác suất riêng lẻ. Đối với trường hợp biến có dạng liên tục, chúng ta sẽ có fXY(x, y) = fX(x). fY(y). Xác Suất Có Điều Kiện Để biết thêm về xác suất của những biến cố xảy ra kết hợp của hai biến ngẫu nhiên X và Y, chúng ta...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình kinh tế chất lượng - ôn lại thống kê - 2
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ Söï Ñoäc Laäp Thoáng Keâ Caùc bieán ngaãu nhieân rôøi raïc ñöôïc goïi laø söï ñoäc laäp thoáng keâ neáu P(X = x vaø Y = y) = P(X = x) . P(Y = y). Vì vaäy trong tröôøng hôïp naøy, xaùc suaát keát hôïp laø tích cuûa caùc xaùc suaát rieâng leû. Ñoái vôùi tröôøng hôïp bieán coù daïng lieân tuïc, chuùng ta seõ coù fXY(x, y) = fX(x). fY(y). Xaùc Suaát Coù Ñieàu Kieän Ñeå bieát theâm veà xaùc suaát cuûa nhöõng bieán coá xaûy ra keát hôïp cuûa hai bieán ngaãu nhieân X vaø Y, chuùng ta cuõng caàn neân bieát veà xaùc suaát xaûy ra cuûa bieán ngaãu nhieân cuï theå (Y) naøo ñoù cho tröôùc söï kieän ñaõ xaûy ra cuûa moät bieán (X) ngaãu nhieân khaùc. Ví duï, chuùng ta coù theå muoán bieát xaùc suaát ñeå giaù mua moät caên nhaø laø 200.000 ñoâ la, neáu cho tröôùc dieän tích sinh hoaït phaûi laø 1.500 thöôùc vuoâng Anh. Yeâu caàu naøy seõ daãn chuùng ta ñeán khaùi nieäm xaùc suaát coù ñieàu kieän, ñöôïc ñònh nghóa trong tröôøng hôïp bieán ngaãu nhieân daïng rôøi raïc nhö sau: P(X = x, Y = y) P(Y = y X = x) = vôùi P(X = x) ≠ 0 P( X = x ) Haøm maät ñoä xaùc suaát coù ñieàu kieän (cho caû khi Kyù hieäu “” coù nghóa laø cho tröôùc. bieán ngaãu nhieân laø rôøi raïc vaø lieân tuïc) ñöôïc ñònh nghóa nhö sau: fXY (x, y) fYX(x, y) = vôùi moïi giaù trò cuûa x sao cho fX(x) > 0 f X ( x) Trong ñoù fXY(x, y) laø haøm maät ñoä xaùc suaát keát hôïp cuûa X vaø Y vaø fX(x) laø haøm maät ñoä xaùc suaát cuûa rieâng bieán X, thöôøng ñöôïc ñeà caäp ñeán nhö laø haøm maät ñoä caän bieân cuûa bieán X. Löu yù raèng xaùc suaát coù ñieàu kieän phuï thuoäc vaøo caû giaù trò x vaø y. Khi caû hai bieán ngaãu nhieân naøy phuï thuoäc thoáng keâ laãn nhau thì phaân phoái xaùc suaát coù ñieàu kieän trôû thaønh caùc phaân phoái caän bieân töông öùng. Ñeå hieåu ñöôïc ñieàu naøy, haõy löu yù raèng söï ñoäc laäp thoáng keâ ngaàm ñònh fXY(x, y) = fX(x) . fY(y). Ruùt ra töø keát luaän naøy, chuùng ta coù: fYX (yx) = fXY(x, y)/fX(x) = fY(y) vaø fXY (xy) = fXY(x, y)/fY(y) = fX(x) Baûng 2.4 Phaân phoái xaùc suaát keát hôïp ñoái vôùi soá laàn xuaát hieän caùc con soá 3 (X) vaø soá 5 (Y) khi moät caëp suùc saéc ñöôïc thaûy. Ramu Ramanathan 13 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ X0 1 2 Y 0 16/36 8/36 1/36 1 8/36 2/36 0 2 1/36 0 0 VÍ DUÏ 2.9 Baûng 2.4 trình baøy caùc giaù trò xaùc suaát keát hôïp cuûa soá laàn xuaát hieän cuûa soá 3 (X) vaø soá 5 (Y) khi moät caëp suùc saéc ñöôïc thaûy. Chuùng ta haõy tính keát quaû thöù nhaát cuûa maät ñoä caän bieân cuûa bieán X vaø Y. Vì X = 0 coù theå xaûy ra khi Y = 0 hoaëc 1 hoaëc 2, P(X = 0) coù theå tính toaùn ñöôïc baèng P(X = 0, Y = 0) + P(X = 0, Y = 1) + P(X = 0, Y = 2) = 16/36 + 8/36 + 1/36 = 25/36. Tính toaùn töông töï, chuùng ta coù P(X = 1) = 10/36 vaø P(X = 2) = 1/36. Löu yù raèng toång cuûa ba giaù trò xaùc suaát treân laø baèng 1, vì ñieàu naøy laø hieån nhieân. Phaân phoái caän bieân cuûa Y cuõng ñöôïc xaùc ñònh theo trình töï tính toaùn töông töï. Baûng 2.5 trình baøy caùc giaù trò caän bieân cuûa X vaø Y ôû caùc haøng vaø coät ngoaøi cuøng töông öùng. Löu yù raèng caùc giaù trò naøy xuaát hieän vôùi caùc quy luaät gioáng nhau. Baûng 2.5 Phaân Phoái Caän Bieân Ñoái Vôùi Soá Laàn Xuaát Hieän Caùc Con Soá 3 (X) Vaø Soá 5 (Y) Khi Moät Caëp Suùc Saéc Ñöôïc Thaûy. X0 1 2 fY(y) Y 0 16/36 8/36 1/36 25/36 1 8/36 2/36 0 10/36 2 1/36 0 0 1/36 fX(x) 25/36 10/36 1/36 1 Baûng 2.6 Phaân Phoái Coù Ñieàu Kieän Ñoái Vôùi Soá Laàn Xuaát Hieän Caùc Con Soá 5 (Y) Cho Tröôùc Soá Laàn Xuaát Hieän Cuûa Caùc Soá 3 (X) Khi Moät Caëp Suùc Saéc Ñöôïc Thaûy. X0 1 2 Y 0 0,64 0,32 0,04 1 0,80 0,20 0,00 2 1,00 0,00 0,00 Xaùc suaát coù ñieàu kieän ñeå Y = 0 vôùi X = 0 cho tröôùc ñöôïc tính toaùn nhö sau: P(Y = 0X = 0) = P(X = 0, Y = 0)/ P(X = 0) = 16/36 ÷ 25/36 = 0,64 Ramu Ramanathan 14 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ Tieán haønh töông töï, chuùng ta seõ coù ñöôïc caùc giaù trò phaân phoái coù ñieàu kieän cuûa bieán Y vôùi X cho tröôùc trình baøy trong baûng 2.6. Giaù Trò Kyø Voïng Toaùn Hoïc Trong Tröôøng Hôïp Hai Bieán Khaùi nieäm kyø voïng toaùn hoïc coù theå môû roäng deã daøng sang tröôøng hôïp caùc bieán ngaãu nhieân goàm hai bieán. Cho tröôùc haøm g(X, Y) vaø haøm xaùc suaát keát hôïp f(x, y), giaù trò kyø voïng cuûa g(X, Y) ñöôïc xaùc ñònh baèng caùch nhaân g(x, y) vôùi f(x, y) vaø coäng toång caùc giaù trò coù theå coù cuûa x vaø y. Chuùng ta coù caùc ñònh nghóa sau ñaây. ÑÒNH NGHÓA 2.3 (GIAÙ TRÒ KYØ VOÏNG) Giaù trò kyø voïng cuûa g(X, Y) ñöôïc xaùc ñònh nhö sau: ∑ ∑ g(x, y)f (x, y) E[g(X, Y)] = x y Trong ñoù pheùp tính toång hai laàn bieåu dieãn pheùp tính toång treân taát caû caùc giaù trò coù theå coù cuûa x vaø y. (Vì vaäy giaù trò kyø voïng seõ baèng toång coù troïng soá vôùi giaù trò xaùc suaát keát hôïp ñöôïc duøng laøm troïng soá). Goïi µx laø giaù trò kyø voïng cuûa bieán ngaãu nhieân X, vaø µy laø giaù trò kyø voïng cuûa bieán ngaãu nhieân Y. Phöông sai cuûa chuùng ñöôïc xaùc ñònh töông töï nhö tröôøng hôïp ñôn bieán: σ 2 = E[(X − µ x ) 2 ] vaø σ 2 = E[(Y − µ y ) 2 ] (2.5) x y BAØI TAÄP THÖÏC HAØNH 2.5 Töø caùc giaù trò xaùc suaát keát hôïp cho trong baûng 2.4, haõy tính trò trung bình µx = E(X), µy = E(Y), vaø phöông sai σ 2 , σ 2 . Haõy kieåm chöùng raèng bieán X vaø Y laø khoâng ñoäc laäp thoáng x y keâ vôùi nhau. Giaù Trò Kyø Voïng Coù Ñieàu Kieän vaø Phöông Sai Coù Ñieàu Kieän Giaù trò kyø voïng cuûa Y vôùi X cho tröôùc ñöôïc goïi laø giaù trò kyø voïng cuûa Y vôùi X cho tröôùc. Moät caùch cuï theå hôn, ñoái vôùi moät caëp bieán ngaãu nhieân rôøi raïc, thì E(YX =x) = ∑ y fYX(x,y). Hay noùi caùch khaùc, ñoù laø giaù trò trung bình cuûa Y söû duïng giaù trò maät ñoä Y=y ∑ y fYX(x,y) nhö moät troïng soá. Giaù trò kyø voïng cuûa Y vôùi X cho tröôùc coù ñieàu kieän cuûa Y=y Ramu Ramanathan 15 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ coøn ñöôïc goïi laø giaù trò hoài quy cuûa Y theo X. Töø baûng 2.6, chuùng ta coù theå thaáy raèng E(YX = 0) = (0,64 × 0) + (0,32 × 1) + (0,04 × 2) = 0,32 + 0,08 = 0,4; E(YX = 1) = 0,2; vaø E(YX = 2) = 0. Trong moâ hình hoài quy ñôn giaûn ñöôïc trình baøy trong ví duï 1.1, chuùng ta coù PRICE = α + β SQFT + u. Neáu E(uSQFT) = 0 thì E(PRICESQFT) = α + β SQFT. Vì vaäy, phaàn xaùc ñònh cuûa moâ hình laø giaù trò kyø voïng coù ñieàu kieän cuûa bieán PRICE vôùi SQFT cho tröôùc, khi E(uSQFT) = 0. Khaùi nieäm giaù trò kyø voïng coù ñieàu kieän ñaõ trình ôû treân coù theå môû roäng deã daøng ñeå tính toaùn phöông sai coù ñieàu kieän, ñöôïc xaùc ñònh nhö sau. Goïi µ*(X) laø giaù trò kyø voïng coù ñieàu kieän cuûa Y cho tröôùc X, ñöôïc kyù hieäu laø E(YX). Phöông sai coù ñieàu kieän cuûa Y vôùi X cho tröôùc ñöôïc ñònh nghóa nhö sau Var(YX) = EYX [(Y – µ* )2 | X ]. Noùi caùch khaùc, coá ñònh giaù trò cuûa bieán X vaø tính toaùn giaù trò trung bình coù ñieàu kieän cuûa Y vôùi X cho tröôùc, vaø sau ñoù tính toaùn phöông sai xung quanh giaù trò trung bình naøy vôùi troïng soá laø maät ñoä coù ñieàu kieän fYX(x,y). Moät soá tính chaát cuûa giaù trò kyø voïng coù ñieàu kieän söû duïng trong moân hoïc kinh teá löôïng ñöôïc toùm taét sau ñaây. Ñeå hieåu roõ theâm veà phaàn chöùng minh, xin tham khaûo taùc giaû Ramanathan (1993, phaàn 5.2). Tính chaát 2.4 Ñoái vôùi moïi haøm u(x) thì ta luoân coù E[u(x)X] = u(x). Tính chaát naøy ngaàm ñònh raèng khi tieán ñeán giaù trò kyø voïng coù ñieàu kieän cho tröôùc X thì haøm u(X) tieán ñeán giaù trò haèng soá. Do ñoù, moät tröôøng hôïp ñaëc bieät ñöôïc suy ra laø neáu c laø haèng soá thì E(cX) = c. Tính chaát 2.5 E([a(x) + b(X)Y]X) = a(X) + b(X) E(YX) Tính chaát 2.6 EXY(Y) = EX [EYX (YX)]. Tính chaát naøy coù nghóa laø giaù trò kyø voïng khoâng ñieàu kieän cuûa Y, söû duïng maät ñoä chung giöõa X vaø Y, coù theå tính toaùn ñöôïc baèng caùch tính tröôùc tieân giaù trò kyø voïng coù ñieàu kieän cuûa Y vôùi X cho tröôùc (laø bieåu thöùc trong daáu ngoaëc vuoâng), sau ñoù tính giaù trò kyø voïng cuûa chuùng theo X. Tính chaát naøy ñöôïc goïi laø luaät cuûa caùc giaù trò kyø voïng laëp (law of iterated expectations). Tính chaát 2.7 Var(Y) = EX[Var(YX)] + VarX[E(YX)]. Noùi caùch khaùc, giaù trò phöông sai cuûa Y söû duïng haøm maät ñoä keát hôïp fXY(x, y) tính toaùn ñöôïc seõ töông ñöông vôùi giaù trò kyø voïng cuûa phöông sai coù ñieàu kieän cuûa bieán Y coäng vôùi phöông sai cuûa giaù trò kyø voïng coù ñieàu kieän cuûa bieán Y vôùi X cho tröôùc. Ñoàng phöông sai vaø töông quan Khi gaëp phaûi hai bieán ngaãu nhieân, moät trong nhöõng vaán ñeà thöôøng thu huùt söï quan taâm laø moái quan heä giöõa hai bieán naøy nhö theá naøo? Khaùi nieäm ñoàng phöông sai vaø töông quan laø hai caùch ñeå ño löôøng möùc ñoä quan heä “chaët” giöõa hai bieán ngaãu nhieân ñoù. Ramu Ramanathan 16 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ Haõy xem xeùt haøm g(X, Y) = (X – µX)(Y – µY). Giaù trò kyø voïng cuûa haøm soá naøy ñöôïc goïi laø ñoàng phöông sai giöõa X vaø Y vaø ñöôïc kyù hieäu laø σXY hay Cov(X, Y). ÑÒNH NGHÓA 2.4 (ÑOÀNG PHÖÔNG SAI) Giaù trò ñoàng phöông sai giöõa X vaø Y ñöôïc xaùc ñònh nhö sau σxy = Cov(X, Y) = E[(X – µx)(Y – µy)] = E[XY – Xµy – µxY + µxµy] (2.6) = E(XY) – µyE(X) – µxE(Y) + µxµy = E(XY) – µxµy Deã daøng suy ra töø keát luaän treân raèng Cov(X,X) = Var(X) Caùc ñònh nghóa veà phöông sai vaø ñoàng phöông sai ñeàu ñuùng trong caû hai tröôøng hôïp phaân phoái coù daïng rôøi raïc vaø lieân tuïc. Vì phöông sai chæ laø moät ñaïi löôïng ño löôøng möùc ñoä phaân taùn cuûa bieán ngaãu nhieân xung quanh giaù trò trung bình, neân ñoàng phöông sai giöõa hai bieán ngaãu nhieân seõ laø ñaïi löôïng ño löôøng möùc ñoä lieân keát chung giöõa chuùng. Giaû söû raèng hai bieán ngaãu nhieân rôøi raïc X vaø Y quan heä ñoàng höôùng vôùi nhau, vaø do ñoù khi giaù trò Y taêng thì giaù trò X cuõng taêng theo nhö bieåu dieãn treân hình 2.6. Caùc voøng troøn nhoû bieåu thò caùc caëp giaù trò cuûa X vaø Y töông öùng vôùi caùc keát quaû khaû dó giôùi haïn. Ñöôøng gaïch chaám bieåu dieãn giaù trò trung bình µx vaø µy. Baèng caùch chuyeån truïc toaï ñoä ñeán ñöôøng gaïch chaám naøy vôùi goác toaï ñoä laø (µx, µy), chuùng ta coù theå thaáy raèng Xi – µx vaø Yi – µy laø ñoä daøi tính töø goác toaï ñoä môùi, ñoái vôùi moät keát quaû naøo ñoù ñöôïc kyù hieäu baèng haäu toá i . Töø hình veõ, coù theå chöùng minh raèng caùc ñieåm naèm trong phaàn tö thöù nhaát vaø thöù ba seõ laøm cho tích (Xi – µx)(Yi – µy) luoân coù giaù trò döông, vì töøng soá haïng trong bieåu thöùc seõ cuøng döông hoaëc cuøng aâm. Khi chuùng ta tính toaùn ñaïi löôïng ñoàng phöông sai laø toång coù troïng soá caùc tích bieåu thöùc treân, keát quaû cuoái cuøng coù khuynh höôùng nhaän giaù trò döông vì coù nhieàu soá haïng döông hôn caùc soá haïng aâm. Vì vaäy, giaù trò ñoàng phöông sai coù khuynh höôùng daáu döông. Trong tröôøng hôïp caû hai bieán X vaø Y di chuyeån theo höôùng ngöôïc laïi, giaù trò Cov(X, Y) seõ coù daáu aâm. Maëc duø ñaïi löôïng ñoàng phöông sai raát coù ích trong vieäc xaùc ñònh tính chaát cuûa moái lieân keát giöõa X vaø Y nhöng noù toàn taïi moät vaán ñeà khaù nghieâm troïng laø caùc giaù trò tính baèng soá raát nhaïy ñoái vôùi giaù trò ñôn vò duøng ñeå ño bieán X vaø Y. Neáu X laø moät loaïi bieán taøi chính tính baèng ñoâ-la hôn laø tính baèng ñôn vò ngaøn ñoâ-la, ñaïi löôïng ñoàng phöông sai seõ doác ñöùng do aûnh höôûng cuûa heä soá 1.000. Ñeå traùnh vaán ñeà naøy, ngöôøi ta seõ söû duïng ñaïi löôïng ñoàng phöông sai “ñöôïc chuaån hoùa”. Ñaïi löôïng naøy coøn ñöôïc goïi laø heä soá töông quan giöõa bieán X vaø Y vaø ñöôïc kyù hieäu laø ρxy. ÑÒNH NGHÓA 2.5 (HEÄ SOÁ TÖÔNG QUAN) Ramu Ramanathan 17 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ Heä soá töông quan giöõa bieán X vaø Y ñöôïc ñònh nghóa nhö sau: σ xy Cov(X, Y) (2.7) ρ xy = = σxσy [Var(X)Var(Y)]1 / 2 Neáu bieán X vaø Y coù quan heä döông thì heä soá töông quan seõ coù daáu döông. Neáu bieán X vaø y coù quan heä aâm thì chuùng seõ di chuyeån theo höôùng ngöôïc laïi. Trong tröôøng hôïp naøy, giaù trò ñoàng phöông sai vaø heä soá töông quan ñeàu coù daáu aâm. Heä soá töông quan hoaøn toaøn coù theå baèng zero. Trong tröôøng hôïp naøy, chuùng ta coù theå keát luaän raèng bieán x vaø y khoâng coù töông quan. Ngöôøi ta coù theå vieát raèng ρ 2 ≤ 1 hay töông ñöông vôùi ρxy ≤ 1. xy Giaù trò ρxyseõ baèng 1 khi vaø chæ khi coù moät moái quan heä tuyeán tính chính xaùc giöõa X vaø Y theo bieåu thöùc Y – µy = β( X – µx). Neáu ρxy = 1 thì quan heä giöõa X vaø Y ñöôïc goïi laø töông quan hoaøn haûo. Neâu löu yù raèng moái töông quan hoaøn haûo chæ xaûy ra khi giöõa X vaø Y coù moái quan heä tuyeán tính moät caùch chính xaùc. Ví duï, Y coù theå xuaát hieän trong bieåu thöùc daïng Y = X2, roõ raøng laø coù bieåu hieän moái quan heä nhöng heä soá töông quan giöõa X vaø Y seõ khoâng theå baèng 1. Vì vaäy, heä soá töông quan seõ ño löôøng phaïm vi cuûa moái lieân keát tuyeán tính giöõa hai bieán. Neáu bieán X vaø Y laø hai bieán ñoäc laäp thì fXY(x, y) = fX(x) . fY(y), coù nghóa laø xaùc suaát keát hôïp chính laø tích cuûa caùc xaùc suaát rieâng leû. Trong tröôøng hôïp naøy, neân löu yù töø ñònh nghóa cuûa σxy, chuùng ta coù σ xy = ∑∑ (x − µ x )(y − µ y )fx (x)f y (y) x y Vì bieán x vaø y baây giôø coù theå taùch rôøi nhau neân chuùng ta coù σ xy = ∑ (x − µ x )f x (x) ∑ (y − µ y )fy (y) x y = E ( X − µ x ) E (Y − µ y ) Nhöng do E(X – µx) = E(X) – µx = 0 (xin xem tính chaát 2.1a), neân σxy = 0 vaø ρxy = 0 neáu hai bieán ngaãu nhieân naøy laø ñoäc laäp. Hay noùi caùch khaùc, neáu bieán X vaø Y laø hai bieán ñoäc laäp thì chuùng seõ khoâng töông quan nhau. Keát luaän ngöôïc laïi coù theå khoâng coøn chính xaùc (nghóa laø moái töông quan zero seõ khoâng ngaàm ñònh tính chaát ñoäc laäp), vaø coù theå kieåm chöùng thoâng qua caùc ví duï sau. Ñaët fXY(x, y) töông töï nhö trong baûng 2.7. Ramu Ramanathan 18 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ Cov(X, Y) = E(XY) – E(X) E(Y) E(X) = (1 × 0,4) + (2 × 0,2) + (3 × 0,4) = 2 E(Y) = (6 × 0,4) + (8 × 0,2) + (10 × 0,4) = 8 E(XY) = (6 × 1 × 0,2) + (6 × 3 × 0,2) + (8 × 2 × 0,2) + (10 × 1 × 0,2) + (10 × 3 × 0,2) = 16 Vì vaäy, Cov(X, Y) = 0. Nhöng bieán X vaø Y laø khoâng ñoäc laäp vì P(X = 2, Y = 6) = 0, P(X = 2) = 0,2, vaø P(Y = 6) = 0,4. Do ñoù, xaùc suaát keát hôïp seõ khoâng theå baèng tích cuûa caùc xaùc suaát rieâng leû. BAØI TAÄP THÖÏC HAØNH 2.6 Söû duïng caùc bieán X vaø Y vôùi xaùc suaát keát hôïp cho trong baûng 2.4, haõy tính giaù trò Cov(X, Y) vaø ρxy (löu yù raèng baïn ñaõ tính giaù trò trung bình vaø phöông sai trong baøi taäp 2.5) + BAØI TAÄP THÖÏC HAØNH 2.7 Giaû söû bieán ngaãu nhieân X chæ coù theå nhaän caùc giaù trò 1, 2, 3, 4, vaø 5, moãi giaù trò öùng vôùi xaùc suaát baèng nhau vaø baèng 0,2. Cho Y = X2. Haõy tính heä soá töông quan giöõa X vaø Y vaø chöùng minh raèng heä soá naøy khoâng baèng 1, cho duø giöõa bieán X vaø Y coù moái quan heä chính xaùc. Baûng 2.7 Ví Duï Cho Thaáy Ñoàng Phöông Sai Baèng Khoâng Khoâng Nhaát Thieát Phaûi Laø Ñoäc Laäp Y 6 8 10 FX(x) X 1 0,2 0 0,2 0,4 2 0 0,2 0 0,2 3 0,2 0 0,2 0,4 FY(y) 0,4 0,2 0,4 1 Tính chaát 2.8 lieät keâ moät soá tính chaát lieân quan ñeán hai bieán ngaãu nhieân. Tính chaát 2.8 a. Neáu a vaø b laø haèng soá thì Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X,Y). Moät tröôøng hôïp ñaëc bieät cuûa tính chaát naøy laø Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). Töông töï, Var(X – Y) = Var(X) + Var(Y) – 2Cov(X, Y). b. Heä soá töông quan ρxy naèm trong khoaûng – 1 ñeán + 1. Ramu Ramanathan 19 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ c. Neáu X vaø Y laø hai bieán ñoäc laäp thì σxy = Cov(X, Y) = 0; coù nghóa laø, X vaø Y khoâng töông quan nhau. Trong tröôøng hôïp naøy, keát hôïp (a) vaø heä quaû ruùt ra töø tính chaát naøy, ta coù Var(X + Y) = Var(X) + Var(Y) vaø Var(X – Y) = Var(X) + Var(Y). d. Giaù trò ρxy seõ baèng 1 khi vaø chæ khi toàn taïi moái quan heä tuyeán tính chính xaùc giöõa X vaø Y theo bieåu thöùc Y – µy = β( X – µx). e. Giaù trò töông quan giöõa bieán X vaø chính noù baèng 1. f. Neáu U = a0 + a1X, V = b0 + b1Y, vaø a1b1 > 0 thì ρuv = ρxy; nghóa laø heä soá töông quan seõ thay ñoåi trong tröôøng hôïp ñôn vò ño ñöôïc ñieàu chænh theo tyû leä. Neáu a1b1 < 0 thì ρuv = – ρxy. Tuy nhieân, neáu U = a0 + a1X + a2Y, V = b0 + b1X + b2Y thì ρuv ≠ ρxy. Ñieàu naøy coù nghóa laø giaù trò töông quan khoâng thay ñoåi trong tröôøng hôïp coù söï bieán ñoåi tuyeán tính toång quaùt (ai vaø bi ñöôïc giaû thieát coù giaù trò khaùc zero). g. Neáu giaù trò a1, a2, b1 vaø b2 laø coá ñònh thì Cov(a1X + a2Y, b1X + b2Y) = a1b1Var(X) + (a1b2 + a2b1)Cov(X, Y) + a2b2Var(Y). Phaân Phoái Nhieàu Bieán * Trong phaàn naøy, caùc khaùi nieäm vöøa trình baøy ôû treân seõ ñöôïc môû roäng cho tröôøng hôïp coù nhieàu hôn hai bieán ngaãu nhieân. Goïi x1, x2, …, xn töông öùng vôùi n soá bieán ngaãu nhieân. Vaø haøm maät ñoä xaùc suaát keát hôïp cuûa chuùng laø fX(x1, x2, …, xn). Töông töï nhö tröôùc ñaây, chuùng laø ñoäc laäp neáu haøm maät ñoä xaùc suaát PDF chung laø tích cuûa moãi PDF rieâng leû. Vì vaäy, chuùng ta coù fX(x1, x2, …, xn) = fX1(x1) . fX2(x2) . . . fXn(xn) Trong tröôøng hôïp ñaëc bieät khi moãi giaù trò x ñöôïc phaân phoái gioáng nhau vaø ñoäc laäp laãn nhau (ñöôïc kyù hieäu laø iid – independently and idetically distributed), chuùng ta coù fX(x1, x2, …, xn) = fX (x1) . fX (x2) . . . fX (xn) Trong ñoù fX(x) laø haøm phaân phoái chung cuûa moãi giaù trò x. Moät soá keát quaû ñaùng quan taâm veà phaân phoái ña bieán ñöôïc trình baøy trong tính chaát 2.9. Tính chaát 2.9 a. Neáu a1, a2, …, an laø haèng soá hoaëc khoâng ngaãu nhieân thì E[a1x1 + a2x2 + . . . + anxn] = a1E(x1) + a2E(x2) + . . . + anE(xn). Vì vaäy, giaù trò kyø voïng cuûa moät toå hôïp tuyeán tính caùc soá haïng baèng toå hôïp tuyeán tính cuûa moãi giaù trò kyø voïng rieâng leû. Trong kyù hieäu pheùp laáy toång, ta coù E[Σ(aixi)] = ΣE(aixi) = ΣaiE(xi). b. Neáu moãi xi ñeàu coù giaù trò trung bình baèng nhau thì E(xi) = µ, chuùng ta coù E(Σai xi) = µΣai. Ñaëc bieät, neáu taát caû heä soá ai ñeàu baèng nhau vaø baèng 1/n thì chuùng ta seõ coù Ramu Ramanathan 20 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ E(Σxi/n) = E( x ) = µ. Vì vaäy, giaù trò kyø voïng cuûa giaù trò trung bình cuûa caùc bieán ngaãu nhieân coù phaân phoái gioáng nhau seõ baèng giaù trò trung bình chung cuûa chuùng. c. Var[Σ(aixi)] = Σi a 2 Var(xi) + ∑ ∑ a i a j Cov(xi, xj), trong ñoù caùc heä soá ai ñöôïc giaû i i≠ j thieát laø haèng soá hoaëc khoâng ngaãu nhieân. d. Neáu taát caû caùc bieán x1, x2, . . ., xn ñeàu ñoäc laäp thì moãi caëp töông quan (ρij) vaø ñoàng phöông sai seõ baèng zero hay Cov(xi, xj) = 0 = ρij vôùi moïi i ≠ j. e. Töø (c) vaø (d) ta coù theå ruùt ra keát luaän raèng khi bieán x ñoäc laäp thì Var[Σ(aixi)] = Σ a 2 Var(xi), vì soá haïng ñoàng phöông sai seõ khoâng toàn taïi nöõa. Do ñoù, phöông sai i cuûa toång caùc bieán ngaãu nhieân ñoäc laäp seõ baèng toång caùc phöông sai. Ñaëc bieät, neáu taát caû caùc giaù trò phöông sai ñeàu baèng nhau, nghóa laø Var(xi) = σ2 vôùi moãi i, thì Var[Σ(aixi)] = σ2Σ a 2 . i f. Neáu taát caû caùc x1, x2, . . ., xn ñeàu laø bieán ngaãu nhieân ñoäc laäp nghóa laø taäp bieán xi coù phaân phoái chuaån vôùi giaù trò trung bình µi vaø phöông sai σ 2 hay ñöôïc theå hieän baèng i kyù hieäu xi ∼ N(µi, σ i ) thì toå hôïp tuyeán tính cuûa taäp bieán x cho tröôùc coù daïng a1 x1 + 2 a2 x2 + . . . + an xn cuõng seõ coù daïng phaân phoái chuaån vôùi giaù trò trung bình laø a1 µ1 + a2 µ2 + . . . + an µn vaø giaù trò phöông sai laø a 1 σ 1 + a 2 σ 2 + . . . + a 2 σ 2 . Trong kyù hieäu 22 22 nn pheùp laáy toång, chuùng ta coù theå vieát nhö sau U = Σ( ai xi) ∼ N[(Σai µi), (Σ a 2 σ 2 )]. i i g. Neáu taát caû caùc x1, x2, . . ., xn ñeàu ñoäc laäp vaø coù phaân phoái gioáng nhau (iid) tuaân theo phaân phoái chuaån N(µ, σ2) thì giaù trò trung bình cuûa chuùng laø x = (1/n)Σxi seõ coù daïng phaân phoái chuaån vôùi giaù trò trung bình baèng µ vaø phöông sai baèng σ2/n, nghóa laø x ∼ N(µ, σ2/n). Töông töï, chuùng ta coù z = n ( x − µ) / σ ∼ N(0, 1). 2.4 Laáy Maãu Ngaãu Nhieân vaø Caùc Phaân Phoái Laáy Maãu Moät kieåm ñònh baèng thoáng keâ coù theå phaùt sinh theâm ngoaøi nhu caàu giaûi quyeát moät baøi toaùn cuï theå naøo ñoù. Noù coù theå laø moät söï coá gaéng nhaèm giaûi thích moät caùch hôïp lyù haønh vi trong quaù khöù cuûa moät taùc nhaân naøo ñoù hay döï baùo caùc haønh vi trong töông lai cuûa chuùng. Trong vieäc ñònh daïng vaán ñeà, ñieàu quan troïng laø phaûi xaùc ñònh ñöôïc moät khoâng gian thoáng keâ hôïp lyù, hay toång theå maø bao goàm toång taát caû caùc phaàn töû coù lieân quan ñeán thoâng tin yeâu caàu. Thuaät ngöõ toång theå ñöôïc duøng theo moät nghóa toång quaùt vaø khoâng chæ giôùi haïn khi ñeà caäp ñeán caùc sinh vaät maø thoâi. Taát caû caùc haït gioáng trong thuøng löu tröõ, moïi coâng ty trong thaønh phoá, vaø taát caû caùc boàn söõa ñöôïc saûn xuaát bôûi traïi boø söõa cuõng ñöôïc goïi laø toång theå. Moät nhaø phaân tích seõ quan taâm nhieàu ñeán nhöõng keát luaän ruùt ra veà nhöõng tính chaát cuûa toång theå. Ñieàu hieån nhieân laø chi phí seõ raát cao neáu nghieân cöùu töøng phaàn töû cuûa taäp chính ñeå ñöa ra caùc keát luaän. Do ñoù maø nhaø phaân tích seõ choïn ra moät maãu goàm moät soá phaàn töû, tieán haønh quan saùt chuùng, vaø söû duïng nhöõng quan saùt naøy ñeå ruùt caùc keát luaän veà ñaëc ñieåm cuûa toång theå maø maãu phaàn töû laøm ñaïi dieän. Quaù trình naøy ñöôïc goïi laø laáy maãu. Ramu Ramanathan 21 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ Coù theå coù raát nhieàu caùch laáy maãu: laáy maãu ngaãu nhieân, laáy maãu phaùn ñoaùn, laáy maãu choïn loïc, laáy maãu coù hoaëc khoâng coù hoaøn traû phaàn töû trôû laïi toång theå, laáy maãu phaân taàng, v.v. Trong taøi lieäu naøy, chuùng toâi chæ ñeà caäp ñeán laáy maãu ngaãu nhieân, laø caùch laáy maãu thöôøng duøng nhaát. ÑÒNH NGHÓA 2.6 (Laáy maãu ngaãu nhieân) Moät maãu ngaãu nhieân ñôn giaûn cuûa n yeáu toá laø moät maãu coù tính chaát raèng moïi toå hôïp cuûa n yeáu toá ñeàu coù moät cô hoäi laø maãu ñöôïc choïn baèng nhau. Moät maãu ngaãu nhieân cuûa caùc quan saùt ñoái vôùi moät bieán ngaãu nhieân X laø moät taäp hôïp cuûa caùc bieán ngaãu nhieân ñoäc laäp, ñöôïc phaân phoái gioáng nhau (iid) X1, X2, . . . , Xn, moãi bieán coù cuøng phaân phoái xaùc suaát nhö phaân phoái cuûa X. Caùc Phaân Phoái Maãu Moät haøm cuûa caùc giaù trò quan saùt cuûa caùc bieán ngaãu nhieân khoâng chöùa baát kyø thoâng soá chöa bieát naøo ñöôïc goïi laø moät trò thoáng keâ maãu. Hai trò thoáng keâ maãu ñöôïc söû duïng moät _ caùch thöôøng xuyeân nhaát laø trung bình maãu (kyù hieäu laø x) vaø phöông sai maãu (kyù hieäu laø s2): 1 _ Trung bình maãu: x = (x1 + x2 + . . . + xn)/n = ∑xI (2.8) n 1 1 _ _ Phöông sai maãu: s2 = (x1 – x)2 + (x2 – x)2 (2.9) (n − 1) (n − 1) 1 _ (xn – x)2 +...+ (n − 1) 1 _ ∑ (xi - x)2 = (n − 1) Lyù do phaûi chia cho n – 1 chöù khoâng phaûi laø n ñöôïc giaûi thích trong Phaàn 2.7. Caên baäc hai cuûa phöông sai maãu (s) ñöôïc goïi laø ñoä leäch chuaån maãu hay sai soá chuaån. Söï khaùc bieät giöõa moät trò thoáng keâ maãu vaø moät thoâng soá toång theå phaûi ñöôïc hieåu moät caùch roõ raøng. Giaû söû bieán ngaãu nhieân X coù giaù trò kyø voïng µ vaø phöông sai σ2. Ñaây laø nhöõng thoâng soá toång theå coù giaù trò coá ñònh vaø khoâng ngaãu nhieân. Tuy nhieân ngöôïc laïi trung bình _ maãu x vaø phöông sai maãu s2 laø caùc bieán ngaãu nhieân. Ñieàu naøy laø do nhöõng thöû nghieäm khaùc nhau cuûa moät thí nghieäm cho caùc giaù trò trung bình maãu vaø phöông sai khaùc nhau. Bôûi vì caùc trò thoáng keâ naøy laø caùc bieán ngaãu nhieân, noù coù yù nghóa khi noùi veà caùc phaân phoái cuûa chuùng. Neáu chuùng ta ruùt ra moät maãu ngaãu nhieân coù côõ maãu laø n vaø tính trung _ bình maãu x, chuùng ta thu ñöôïc moät giaù trò nhaát ñònh. Laëp laïi thí nghieäm naøy nhieàu laàn, moãi laàn ruùt ra moät maãu ngaãu nhieân coù cuøng côõ maãu n. Chuùng ta seõ coù ñöôïc nhieàu giaù trò cuûa trung bình maãu. Chuùng ta khi ñoù coù theå tính tyû soá nhöõng laàn maø caùc giaù trò trung bình Ramu Ramanathan 22 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ naøy rôi vaøo moät khoaûng xaùc ñònh. Tyû soá naøy cho chuùng ta xaùc suaát maø taïi ñoù trung bình maãu seõ naèm trong khoaûng xaùc ñònh ñoù (xem khaùi nieäm taàn suaát trong xaùc suaát ñaõ ñöôïc giôùi thieäu trong Phaàn 2.1 vaø trong Ví duï 2.1). Baèng caùch thay ñoåi khoaûng naøy, chuùng ta coù theå ñaït ñöôïc toaøn boä khoaûng xaùc suaát, töø ñoù phaùt ra moät phaân phoái xaùc suaát. Phaân phoái naøy ñöôïc goïi laø phaân phoái cuûa trung bình maãu. Vôùi moät caùch töông töï, chuùng ta coù theå tính phöông sai maãu cho moãi laàn laëp laïi thöû nghieäm ñoù vaø söû duïng caùc giaù trò khaùc nhau coù ñöôïc töø caùch naøy ñeå ñaït ñöôïc phaân phoái cuûa phöông sai maãu. Bôûi vì trung bình vaø phöông sai maãu naøy laø daønh cho moät maãu coù kích côõ xaùc ñònh laø n, chuùng ta seõ kyø voïng caùc phaân phoái maãu phuï thuoäc vaøo n cuõng nhö vaøo nhöõng thoâng soá cuûa phaân phoái toång theå maø maãu ñaõ ñöôïc ruùt ra töø ñoù. Laáy Maãu töø moät Phaân phoái Chuaån Caùc phaân phoái maãu cuûa trung bình vaø phöông sai maãu laø moái quan taâm ñaùng keå trong kinh teá löôïng vaø thoáng keâ, ñaëc bieät laø khi toång theå maø caùc quan saùt ñöôïc ruùt ra töø ñoù coù phaân phoái chuaån. Cho X laø moät bieán ngaãu nhieân coù phaân phoái chuaån vôùi trung bình µ vaø phöông sai σ2. Vì vaäy, X ∼ N(µ,σ2). Haõy ruùt ra moät maãu ngaãu nhieân coù côõ n töø toång theå, _ ño löôøng bieán ngaãu nhieân, vaø thu ñöôïc caùc quan saùt x1, x2, . . . , xn. Phaân phoái maãu cuûa x vaø s2? Chuùng ta löu yù raèng trung bình maãu laø moät söï keát hôïp tuyeán tính cuûa n bieán ngaãu nhieân. töø Tính chaát 2.9g, chuùng ta thaáy raèng söï keát hôïp tuyeán tính naøy cuõng coù moät phaân _ _ phoái chuaån. Cuï theå laø x cuõng coù trung bình µ vaø Var(x) = σ2 / n. Do ñoù chuùng ta coù tính chaát sau. Tính chaát 2.10 a. Neáu moät maãu ngaãu nhieân x1, x2, . . . , xn ñöôïc ruùt ra töø moät toång theå chuaån vôùi trung _ bình µ vaø phöông sai σ2, trung bình maãu x ñöôïc phaân phoái chuaån vôùi trung bình µ vaø _ phöông sai σ2/n. Vì vaäy, x ∼ N (µ,σ2/n). Chuùng ta chuù yù töø ñieåm naøy phaân phoái cuûa trung bình maãu coù moät söï phaân taùn nhoû hôn chung quanh trung bình, vaø côõ maãu caøng lôùn thì phöông sai caøng nhoû. _ _ b. Phaân phoái cuûa Z = (x − µ) / (σ / √n ) = √n (x − µ) / σ laø N (0,1). Caùc coâng thöùc cuûa phaân phoái cuûa phöông sai maãu ñöôïc xaùc ñònh trong Phöông trình (2.9) seõ ñöôïc baøn tieáp ôû Phaàn 2.7. Caùc phaân phoái Maãu Lôùn Khi côõ maãu lôùn, chuùng ta coù theå thu ñöôïc töø moät soá tính chaát khaù höõu ích trong thöïc teá. Hai trong soá naøy laø luaät soá lôùn vaø lyù thuyeát giôùi haïn trung taâm ñöôïc phaùt bieåu ôû Tính chaát 2.11. Ramu Ramanathan 23 Thuïc Ñoan/Haøo Thi
- Chöông trình Giaûng daïy Kinh teá Fulbright Phöông phaùp phaân tích Nhaäp moân kinh teá löôïng vôùi caùc öùng duïng Nieân khoùa 2003-2004 Baøi ñoïc Chöông 2: OÂn laïi xaùc suaát vaø thoáng keâ Tính chaát 2.11 _ Luaät soá lôùn: Goïi Z laø trung bình cuûa moät maãu ngaãu nhieân caùc giaù trò Z1, Z2, . . . , a. _ Zn , ñöôïc phaân phoái moät caùch ñoäc laäp vaø gioáng nhau. Khi ñoù Z hoäi tu veà E(Z). Noùi ngaén goïn laø khi n taêng, trung bình maãu cuûa moät taäp hôïp caùc bieán ngaãu nhieân tieán tôùi _ _ giaù trò kyû voïng cuûa noù. Moät tröôøng hôïp ñaëc bieät cuûa söï gia taêng naøy xaûy ra khi Z = x _ _ , trung bình maãu. Bôûi vì E(x) = µ, trung bình cuûa toång theå, x hoäi tuï veà µ. Töông töï s2 _ = [∑(xi – x)2] / (n –1) hoäi tuï veà σ2 khi n tieán tôùi voâ cöïc. b. Lyù thuyeát giôùi haïn trung taâm: Goïi x1, x2, . . . , xn laø maãu ngaãu nhieân cuûa caùc quan saùt töø cuøng moät phaân phoái vaø goïi E(xi) = µ vaø Var(xi) = σ2. Khi ñoù phaân phoái maãu _ cuûa bieán ngaãu nhieân Zn = √n (x − µ) / σ hoäi tuï veà phaân phoái chuaån chuaån hoùa N (0,1) khi n hoäi tuï veà voâ cöïc. Lyù thuyeát giôùi haïn trung taâm raát coù hieäu löïc bôûi vì noù vaãn ñuùng ngay caû khi phaân phoái xuaát phaùt cuûa caùc quan saùt laø khoâng chuaån. Ñieàu naøy coù nghóa laø neáu chuùng ta chaéc chaén raèng côõ maãu laø lôùn, thì chuùng ta coù theå söû duïng bieán ngaãu nhieân Zn ñöôïc xaùc ñònh ôû treân ñeå traû lôøi caùc caâu hoûi veà toång theå cuûa caùc quan saùt maø chuùng ta ruùt ra ñöôïc, vaø chuùng ta khoâng caàn bieát phaân phoái chính xaùc cuûa toång theå maø töø ñoù caùc quan saùt ñöôïc ruùt ra. 2.5 Caùc thuû tuïc Öôùc löôïng Caùc Thoâng soá Cho ñeán ñaây chuùng ta ñaõ coù thaûo luaän caùc chuû ñeà cuï theå veà xaùc suaát vaø thoáng keâ ñeå töï chuaån bò cho hai muïc tieâu cô baûn cuûa baát kyø moät nghieân cöùu thöïc nghieäm naøo: vieäc öôùc löôïng caùc thoâng soá chöa bieát vaø vieäc kieåm ñònh caùc giaû thuyeát. Trong phaàn naøy chuùng ta seõ thaûo luaän vaán ñeà cuûa vieäc öôùc löôïng. Kieåm ñònh giaû thuyeát seõ ñöôïc ñeà caäp ôû Phaàn 2.8. Trong moät khaûo saùt thöïc nghieäm, nhaø phaân tích thöôøng vaãn bieát, hoaëc coù theå öôùc ñoaùn ñöôïc daïng toång quaùt cuûa caùc phaân phoái xaùc suaát cuûa caùc bieán ngaãu nhieân ñöôïc quan taâm. Tuy nhieân, caùc giaù trò cuï theå cuûa caùc thoâng soá toång theå cuûa caùc phaân phoái laø chöa bieát. Nhö ñaõ coù ñeà caäp tröôùc ñaây, moät ñieàu tra toaøn dieän veà toång theå laø vöôït ngoaøi phaïm vi caâu hoûi vì chi phí cho vieäc naøy quaù lôùn. Do ñoù, nhaø khaûo saùt chæ ñaït ñeán moät maãu quan saùt ñoái vôùi caùc bieán ñöôïc quan taâm vaø söû duïng chuùng ñeå ruùt ra nhöõng suy luaän veà phaân phoái xaùc suaát ñaèng sau ñoù. Nhö laø moät minh hoïa, giaû söû chuùng ta bieát raèng chieàu cao cuûa moät ngöôøi coù phaân phoái gaàn nhö chuaån nhöng chuùng ta khoâng bieát trò trung bình, µ, cuûa phaân phoái, hay phöông sai cuûa noù, σ2. Vaán ñeà cuûa vieäc öôùc löôïng ñôn giaûn chæ laø moät caùch löïa choïn moät maãu caùc ñoái töôïng, ño ñaïc chieàu cao töøng ngöôøi moät, vaø sau ñoù duøng caùc phöông phaùp ñònh löôïng ñeå thu ñöôïc caùc öôùc löôïng cuûa µ vaø σ2. Thuaät ngöõ öôùc löôïng ñöôïc duøng ñeå chæ coâng thöùc cho chuùng ta giaù trò baèng soá cuûa caùc thoâng soá ñöôïc quan taâm. Moãi giaù trò baèng soá chính laø moät giaù trò öôùc löôïng. Ramu Ramanathan 24 Thuïc Ñoan/Haøo Thi
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Xác suất thống kê_ Chương 7
14 p |
609 |
456
-
Bài thuyết trình - Công nghệ sinh học
63 p |
895 |
383
-
Bài tập về Nguyên lý thống kê kinh tế
17 p |
800 |
265
-
Những nguyên tắc cơ bản của nuôi cấy vi sinh vật công nghiệp
10 p |
460 |
222
-
Xác suất thống kê_ Chương 7: Kiểm tra chất lượng sản phẩm
14 p |
412 |
173
-
Kinh tế lượng_ Chương 3: Hồi quy đơn biến
15 p |
305 |
99
-
Giáo trình quản lý nguồn nước - Chương 1
17 p |
260 |
98
-
VẬT LIỆU BÁN DẪN
3 p |
327 |
86
-
Chương 2: mô hình hồi qui hai biến
62 p |
281 |
79
-
Giáo trình môn quản lý chất thải độc hại 18
14 p |
194 |
64
-
Môi trường trong xây dựng - Chương 5
13 p |
193 |
45
-
Giáo trình hóa và vi sinh vật nước - Chương 4
20 p |
147 |
43
-
Giáo trình môn quản lý chất thải độc hại 14
14 p |
129 |
35
-
Bài tập về luật chương 3
1 p |
132 |
20
-
Giáo trình kinh tế chất lượng - ôn lại thống kê - 1
12 p |
122 |
9
-
Giáo trình kinh tế chất lượng - ôn lại thống kê - 3
12 p |
114 |
9
-
Áp dụng chu trình PDCA trong giảng dạy các học phần Toán tại Trường Đại học Kinh tế Nghệ An
9 p |
3 |
1
![](images/icons/closefanbox.gif)
![](images/icons/closefanbox.gif)
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
![](https://tailieu.vn/static/b2013az/templates/version1/default/js/fancybox2/source/ajax_loader.gif)