Giáo trình phân tích quy trình ứng dụng các loại diode phân cực trong bán kì âm tín hiệu p7
lượt xem 3
download
Tham khảo tài liệu 'giáo trình phân tích quy trình ứng dụng các loại diode phân cực trong bán kì âm tín hiệu p7', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo trình phân tích quy trình ứng dụng các loại diode phân cực trong bán kì âm tín hiệu p7
- . iáo trình Linh Kiện Điện Tử G IC (mA) 8 7 6 5 4 Q IE = 3mA 3 2 1 VOC 7,5V 0 VCB(Volt) 2 4 6 8 10 12 Hình 22 * Khi RC = 3 KΩ (RC tăng) IC # IE =3mA VCB = VCC - RC.IC = 12 - 3x3 = 3V V 12 I SH = CC = = 4mA RC 3 IC (mA) 4 IE = 3mA Q 3 2 1 VOC 0 VCB(Volt) 2 4 6 8 10 12 Hình 23 Như vậy, khi giữ các nguồn phân cực VCC, VEE và RE cố định, thay đổi RC, điểm điều hành Q sẽ chạy trên đặc tuyến tương ứng với IE = 3mA. Khi RC tăng thì VCB giảm và ngược lại. 2. Ảnh hưởng của nguồn phân cực nối thu nền VCC. Nếu giữ IE là hằng số (tức VEE và RE là hằng số), RC là hằng số, thay đổi nguồn VCC, ta thấy: Khi VCC tăng thì VCB tăng, khi VCC giảm thì VCB giảm. Trang 76 Biên soạn: Trương Văn Tám
- . iáo trình Linh Kiện Điện Tử G Thí dụ: RE = 100Ω RC = 2KΩ IC (mA) VCC = 14V + VCC = 12V 7 IC VCC = 10V 6 VCC: 10V 5 12V VEE = 1V 4 14V Q1 Q1 IE =3 (mA) 3 Q2 2 1 VCB 0 2 4 6 8 10 12 14 Hình 24 3. Ảnh hưởng của IE lên điểm điều hành: Nếu ta giữ RC và VCC cố định, thay đổi IE (tức thay đổi RE hoặc VEE) ta thấy: khi IE tăng thì VCB giảm (tức IC tăng), khi IC giảm thì VCB tăng (tức IC giảm). VCC IC (mA) I C ( sat ) = I SH = RC 7 IE =6 (mA) 6 Q2 Tăng IE =5 (mA) 5 Q1 IE =4 (mA) 4 Q IE =3 (mA) 3 Q3 IE =2 (mA) Giảm 2 Q4 IE =1 (mA) 1 VCB ICBO 0 2 4 6 8 10 12 14 Hình 25 Khi IE tăng thì IC tăng theo và tiến dần đến trị ISH. Transistor dần dần đi vào vùng bảo hoà. Dòng tối đa của IC, tức dòng bảo hoà gọi là IC(sat). Như vậy: VCC I C (sat ) = I SH = RC Lúc này, VCB giảm rất nhỏ và xấp xĩ bằng 0V (thật sự là 0,2V). Khi IE giảm thì IC giảm theo. Transistor đi dần vào vùng ngưng, VCB lúc đó gọi là VCB(off) và IC = ICBO. Trang 77 Biên soạn: Trương Văn Tám
- .Giáo trình Linh Kiện Điện Tử Như vậy, VCB(off) = VOC = VCC. Vùng bảo hoà và vùng ngưng là vùng hoạt động không tuyến tính của BJT. Đối với mạch cực phát chung, ta cũng có thể khảo sát tương tự. VIII. KIỂU MẪU MỘT CHIỀU CỦA BJT. Qua khảo sát ở phần trước, người ta có thể dùng kiểu mẫu gần đúng sau đây của transistor trong mạch điện một chiều: E C E C IC=αDCIE≈IE IE ≈ αDCIE B Transistor N P N B E C E C IC=αDCIE≈IE IE ≈ αDCIE B Transistor PNP B Hình 26 Tuy nhiên, khi tính các thành phần dòng điện và điện thế một chiều của transistor, người ta thường tính trực tiếp trên mạch điện với chú ý là điện thế thềm VBE khi phân cực thuận là 0,3V đối với Ge và 0,7V đối với Si. Thí dụ 1: tính IE, IC và VCB của mạch cực nền chung như sau: Trang 78 Biên soạn: Trương Văn Tám
- Giáo trình Linh Kiện Điện Tử . Si RE RC - + IE IC 0,7V VCB +- VEE VCC Si RE RC - + IE IC 0,7V VCB -+ VEE VCC Hình 27 Ta dùng 3 bước: VEE − 0,7 ; IC # αDC # IE Mạch nền phát (ngõ vào): I E = RE Áp dụng định luật kirchoff (ngõ ra), ta có: − Với transistor NPN: VCB = VCC - RC.IC; VCB > 0 − Với transistor PNP: VCB = -VCC + RC.IC; VCB
- .Giáo trình Linh Kiện Điện Tử − Với transistor NPN: VCE = VCC -RC IC >0 − Với transistor PNP: VCE = -VCC + RC.IC
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo trình phân tích quy trình thiết kế hệ thống vận chuyển và phân phối không khí trong kênh gió p1
5 p | 136 | 22
-
Giáo trình phân tích quy trình tự động hóa với Autocad 3d cho thiết kế công trình giao thông p1
5 p | 123 | 22
-
Giáo trình phân tích quy trình tự động hóa với Autocad 3d cho thiết kế công trình giao thông p8
5 p | 109 | 11
-
Giáo trình phân tích quy trình tự động hóa với Autocad 3d cho thiết kế công trình giao thông p3
5 p | 92 | 8
-
Giáo trình phân tích quy trình tự động hóa với Autocad 3d cho thiết kế công trình giao thông p10
5 p | 112 | 8
-
Giáo trình phân tích quy trình thiết kế hệ thống vận chuyển và phân phối không khí trong kênh gió p6
5 p | 92 | 7
-
Giáo trình phân tích quy trình ứng dụng hệ thống quy đổi cường độ nén của bêtông p8
3 p | 68 | 5
-
Giáo trình phân tích quy trình ứng dụng hệ thống quy đổi cường độ nén của bêtông p6
5 p | 85 | 5
-
Giáo trình phân tích quy trình ứng dụng cấu tạo mạch tích hợp của vi mạch chuyển đổi đo lường p10
8 p | 106 | 5
-
Giáo trình phân tích quy trình ứng dụng hệ thống quy đổi cường độ nén của bêtông p2
5 p | 68 | 4
-
Giáo trình phân tích quy trình ứng dụng hệ thống quy đổi cường độ nén của bêtông p5
5 p | 69 | 4
-
Giáo trình phân tích quy trình ứng dụng hệ thống quy đổi cường độ nén của bêtông p1
5 p | 79 | 4
-
Giáo trình phân tích quy trình ứng dụng hệ thống quy đổi cường độ nén của bêtông p7
5 p | 81 | 4
-
Giáo trình phân tích quy trình thiết kế hệ thống vận chuyển và phân phối không khí trong kênh gió p7
5 p | 76 | 4
-
Giáo trình phân tích quy trình ứng dụng hệ thống quy đổi cường độ nén của bêtông p4
5 p | 69 | 4
-
Giáo trình phân tích quy trình ứng dụng cấu tạo mạch tích hợp của vi mạch chuyển đổi đo lường p3
11 p | 79 | 3
-
Giáo trình phân tích quy trình ứng dụng cấu tạo mạch tích hợp của vi mạch chuyển đổi đo lường p6
8 p | 76 | 3
-
Giáo trình phân tích quy trình ứng dụng cấu tạo mạch tích hợp của vi mạch chuyển đổi đo lường p7
11 p | 74 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn