intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Giáo dục học: Bước chuyển từ lượng giác "trong đường tròn" đến lượng giác trong "hàm số" trong dạy học Toán ở trường phổ thông

Chia sẻ: Lavie Lavie | Ngày: | Loại File: PDF | Số trang:111

92
lượt xem
15
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn Thạc sĩ Giáo dục học: Bước chuyển từ lượng giác "trong đường tròn" đến lượng giác trong "hàm số" trong dạy học Toán ở trường phổ thông nghiên cứu các tri thức lượng giác “trong đường tròn” và “trong hàm số” ở cấp độ tri thức khoa học; nghiên cứu chương trình và SGK để làm rõ mối quan hệ thể chế với các tri thức lượng giác “trong đường tròn” và “trong hàm số”,... Mời các bạn tham khảo.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Giáo dục học: Bước chuyển từ lượng giác "trong đường tròn" đến lượng giác trong "hàm số" trong dạy học Toán ở trường phổ thông

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Nguyễn Thị Cẩm Hằng Chuyên ngành : Lý luận và phương pháp dạy học môn Toán Mã số : 60 14 10 LUẬN VĂN THẠC SĨ GIÁO DỤC HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. LÊ VĂN PHÚC Thành phố Hồ Chí Minh - 2007
  2. 51B50B49B48B47B46B45B44B43B42B41B40B39B38B37B36B35B3 4B33B32B31B30B29B28B27B26B25B24B23B22B21B20B19B18B17 B16B15B14B13B12B11B10B9B8B7B6B5B4B3B2B1B0B2H3H4H5 H6H7H8H9H10H11H12H13H14H15H16H17H18H19H20H21H22 H23H24H25H26H27H28H29H30H31H32H33H34H35H36H37H38 H39H40H41H42H43H44H45H46H47H48H49H50H51H0H1H MỞ ĐẦU 1. Lý do chọn đề tài và câu hỏi xuất phát Lượng giác là một trong các chủ đề toán học quan trọng và có nhiều ứng dụng trong ngành vật lý, thiên văn, hàng hải... Trong chương trình môn Toán ở bậc phổ thông tại nhiều nước trên thế giới như Mỹ, Pháp, Úc…, lượng giác luôn được giảng dạy theo thứ tự: lượng giác “trong tam giác” 1, lượng giác “trong đường tròn” 2 và lượng giác “trong hàm số” 3. Ở Việt Nam, không nằm ngoài xu hướng giảng dạy của các nước trên thế giới, lượng giác cũng được đưa vào giảng dạy trong chương trình Toán phổ thông hiện hành theo thứ tự như thế. Cụ thể: lượng giác “trong tam giác” được đưa vào giảng dạy ở lớp 9, lượng giác “trong đường tròn” được giảng dạy ở lớp 10 và lượng giác “trong hàm số” được dạy ở lớp 11. Như thế, chúng tôi thấy rõ có một trình tự để dạy lượng giác (theo ba giai đoạn) ở bậc trung học cơ sở (THCS) và trung học phổ thông (THPT) tại Việt Nam. Câu hỏi đặt ra là: . Tại sao những người soạn thảo chương trình và sách giáo khoa Việt Nam lại lựa chọn và đưa nội dung "lượng giác" vào giảng dạy ở trường phổ thông theo trình tự đó? Có thể thay đổi trình tự giảng dạy lượng giác trên được không? 1 Tri thức lượng giác gắn với tam giác được gọi tắt 2 Tri thức lượng giác gắn với đường tròn lượng giác được gọi tắt 3 Tri thức lượng giác gắn với hàm số lượng giác được gọi tắt.
  3. . Tri thức lượng giác cần dạy ở giai đoạn trước chuẩn bị cho việc dạy học tri thức lượng giác ở giai đoạn sau như thế nào? Và, tri thức lượng giác ở giai đoạn sau khai thác các tri thức lượng giác ở giai đoạn trước ra sao? Có hay không sự thống trị của tri thức lượng giác ở giai đoạn trước đối với giai đoạn sau? Đâu là mâu thuẫn tạo động lực phát triển tri thức lượng giác ở giai đoạn sau? . Nếu nhìn từ góc độ tri thức ở bậc đại học thì trình tự trên xuất hiện như thế nào? Tri thức lượng giác trong từng giai đoạn gắn liền với tình huống nào? . Đâu là sự khác biệt về cách trình bày trong sách giáo khoa với giáo trình đại học về tri thức lượng giác trong từng giai đoạn? Lý do của sự khác biệt đó? . Cách trình bày của sách giáo khoa ảnh hưởng như thế nào đến ứng xử của giáo viên và học sinh khi dạy - học các tri thức lượng giác ở từng giai đoạn? Những câu hỏi này đã lôi cuốn và dẫn chúng tôi đến việc cần phải nghiên cứu sâu sắc bước chuyển từ giai đoạn trước sang giai đoạn sau của tri thức lượng giác không những trong sách giáo khoa (SGK) mà còn trong việc giảng dạy. Đặc biệt, phân tích tính kế thừa và gián đoạn của các bước chuyển trên. Trong phạm vi của một luận văn thạc sĩ, để đảm bảo tính khả thi, chúng tôi chọn chủ đề nghiên cứu chủ yếu của mình vào hai giai đoạn giảng dạy lượng giác ở bậc THPT - từ tri thức lượng giác “trong đường tròn” đến tri thức lượng giác “trong hàm số”. Việc lựa chọn này xuất phát từ lý do: - Tri thức lượng giác “trong hàm số” luôn được ưu tiên đề cập trong cả hai bộ sách giáo khoa Đại số và Giải tích lớp 11 (ban nâng cao và cơ bản) ở Việt Nam, - Chủ đề hàm giữ vai trò chủ đạo xuyên suốt chương trình môn Toán ở trường phổ thông tại Việt Nam, - Giáo viên và học sinh thường gặp khó khăn khi dạy - học những tri thức liên quan đến lượng giác “trong hàm số”. 2. Mục đích nghiên cứu và phạm vi lý thuyết tham chiếu Mục đích tổng quát của luận văn này là nghiên cứu bước chuyển từ giai đoạn giảng dạy tri thức lượng giác “trong đường tròn” sang giai đoạn giảng dạy tri
  4. thức lượng giác “trong hàm số”; đặc biệt là xoay quanh tính kế thừa và gián đoạn của bước chuyển này. Để thực hiện mục đích nghiên cứu trên, chúng tôi đặt nghiên cứu của mình trong phạm vi didactic toán. Cụ thể, chúng tôi vận dụng các khái niệm công cụ như: tổ chức toán học, mối quan hệ thể chế, mối quan hệ cá nhân, cách đặt vấn đề sinh thái học và khái niệm hợp đồng didactic. Trong phạm vi didactic với các khái niệm công cụ đã chọn, các câu hỏi cấu thành nên mục đích nghiên cứu của chúng tôi được trình bày lại như sau: Q1. Nếu nhìn từ góc độ tri thức ở bậc đại học thì các tri thức lượng giác «trong đường tròn» và «trong hàm số» được trình bày như thế nào? Chúng gắn liền với các tổ chức toán học (TCTH) và có những đặc trưng nào? Đặc biệt, bước chuyển từ tri thức lượng giác “trong đường tròn” sang tri thức lượng giác “trong hàm số” có đặc trưng gì? Q2. Trong chương trình và SGK Việt Nam, các tri thức lượng giác “trong đường tròn” và “trong hàm số” được trình bày như thế nào? Đặc biệt, bước chuyển từ tri thức lượng giác “trong đường tròn” sang tri thức lượng giác “trong hàm số” có đặc trưng gì? Đâu là TCTH được xây dựng xung quanh các tri thức lượng giác trong hai giai đoạn trên? Những đặc trưng của các TCTH này là gì? Có sự chênh lệch nào giữa TCTH ở bậc đại học với TCTH ở trường phổ thông? Sự chênh lệch đó bắt nguồn từ những điều kiện và ràng buộc nào của thể chế? Q3. Những quy tắc nào của hợp đồng didactic có thể được hình thành giữa giáo viên và học sinh trong quá trình tiếp cận với các tri thức lượng giác trong từng giai đoạn? Q4. Cách trình bày của SGK về tri thức lượng giác “trong đường tròn” có ảnh hưởng như thế nào đến giáo viên và học sinh khi dạy - học về tri thức lượng giác “trong hàm số”? 3. Phương pháp và tổ chức nghiên cứu
  5. Bằng cách tham khảo một số tài liệu, chúng tôi sẽ thực hiện một nghiên cứu sơ lược lịch sử lượng giác và các TCTH hiện diện trong giai đoạn đường tròn 4 và giai đoạn hàm số 5 ở bậc đại học. Nghiên cứu trên sẽ là yếu tố tham chiếu cho nghiên cứu mối quan hệ thể chế mà ở đó, chúng tôi sẽ lần lượt triển khai các nhiệm vụ sau:  Thứ nhất: Thông qua nghiên cứu chương trình THPT, chúng tôi sẽ làm rõ sự hiện diện của các tri thức lượng giác trong giai đoạn đường tròn và giai đoạn hàm số qua các cấp học; từ đây có thể dự đoán được tương lai của chúng trong chương trình Toán bậc THPT.  Thứ hai: Bằng sự nghiên cứu sâu các SGK, SBT, SGV Toán (lớp 10 và lớp 11), chúng tôi sẽ chỉ ra TCTH được xây dựng xung quanh các kỹ thuật giải các bài toán trong giai đoạn đường tròn và giai đoạn hàm số để phân tích tính kế thừa và gián đoạn trong bước chuyển từ TCTH hiện diện ở giai đoạn đường tròn sang giai đoạn hàm số. Song song đó, chúng tôi sẽ làm rõ các quy tắc hợp đồng didactic ngầm ẩn liên quan đến tri thức lượng giác trong việc dạy - học lượng giác ở cả hai giai đoạn đường tròn và giai đoạn hàm số. Từ đó, chúng tôi xác định sự chênh lệch có thể có giữa TCTH tham chiếu và TCTH cần giảng dạy ở trường phổ thông. Điều này sẽ hỗ trợ cho chúng tôi trong việc làm rõ những điều kiện và ràng buộc của thể chế trong việc dạy - học các tri thức lượng giác ở hai giai đoạn trên  Thứ ba: Việc quan sát thực tế giờ dạy - học các tri thức lượng giác ở giai đoạn đường tròn (lớp 10) sẽ giúp chúng tôi bước đầu tìm hiểu ứng xử của giáo viên và học sinh trước khi dạy - học các tri thức lượng giác ở giai đoạn hàm số. Qua đó, kết hợp quan sát thực tế giờ dạy - học các tri thức lượng giác ở giai đoạn hàm số (lớp 11) với phân tích chương trình và SGK để hình thành các giả thuyết nghiên cứu, đề xuất câu hỏi mới.  Sau cùng, nghiên cứu mối quan hệ thể chế với các tri thức lượng giác trong hai giai đoạn trên sẽ giúp chúng tôi rút ra được một số giả thuyết nghiên cứu mà tính hợp thức của các giả thuyết này sẽ được kiểm chứng qua một thực nghiệm được tiến hành trên hai đối tượng giáo viên và học sinh. 4 Giai đoạn giảng dạy các tri thức lượng giác gắn với đường tròn lượng giác 5 Giai đoạn giảng dạy các tri thức lượng giác gắn với hàm số lượng giác
  6. 4. Cấu trúc của luận văn Dựa vào phương pháp luận nghiên cứu nêu trên, cấu trúc luận văn của chúng tôi gồm 5 phần: Phần mở đầu, chương 1, chương 2, chương 3 và phần kết luận.  Trong phần mở đầu, chúng tôi trình bày lý do chọn đề tài, câu hỏi xuất phát, phạm vi lý thuyết tham chiếu, mục đích nghiên cứu của đề tài, phương pháp, tổ chức nghiên cứu và cấu trúc của luận văn.  Trong chương 1, chúng tôi nghiên cứu các tri thức lượng giác “trong đường tròn” và “trong hàm số” ở cấp độ tri thức khoa học. Cụ thể: chúng tôi tìm các TCTH liên quan đến các tri thức lượng giác hiện diện ở giai đoạn đường tròn và giai đoạn hàm số; đồng thời, làm rõ đặc trưng của bước chuyển từ TCTH hiện diện ở giai đoạn đường tròn sang giai đoạn hàm số trong các giáo trình ở bậc đại học. Các TCTH tìm được trong giáo trình ở bậc đại học sẽ đóng vai trò là TCTH tham chiếu cho phép chúng tôi bước sang chương 2.  Trong chương 2, chúng tôi thực hiện nghiên cứu chương trình và SGK để làm rõ mối quan hệ thể chế với các tri thức lượng giác “trong đường tròn” và “trong hàm số”. Chúng tôi sẽ chỉ rõ "vết" mà TCTH tham chiếu để lại trong SGK và giải thích sự chênh lệch có thể có giữa TCTH tham chiếu và TCTH cần giảng dạy. Từ đó, chúng tôi làm rõ những ràng buộc của thể chế và các quy tắc hợp đồng chuyên biệt gắn liền với các bài toán ở hai giai đoạn trên. Việc tiến hành tổng hợp kết quả ở chương 1 và chương 2 sẽ cho phép chúng tôi đề xuất các hợp đồng didactic, câu hỏi mới và giả thuyết nghiên cứu liên quan đến bước chuyển từ giai đoạn đường tròn sang giai đoạn hàm số.  Trong chương 3, chúng tôi trình bày các thực nghiệm nhằm kiểm chứng tính thoả đáng của những giả thuyết nghiên cứu và hợp đồng didactic đã nêu, tìm câu trả lời cho những câu hỏi mới.  Trong phần kết luận, chúng tôi tóm tắt những kết quả đạt được ở ba chương trên, chỉ ra lợi ích của đề tài, đồng thời nêu ra hướng mở rộng nghiên cứu cho luận văn. Cấu trúc luận văn được sơ đồ hóa như sau : Mở đầu Chương 1 Chương 2
  7. Chương 1: CÁC TỔ CHỨC TOÁN HỌC THAM CHIẾU LIÊN QUAN ĐẾN CÁC TRI THỨC LƯỢNG GIÁC “TRONG ĐƯỜNG TRÒN” VÀ “TRONG HÀM SỐ” Mục đích của chương 1 là nghiên cứu các tri thức lượng giác “trong đường tròn” và “trong hàm số” dưới cấp độ tri thức ở bậc đại học. Qua đó, chúng tôi tìm câu trả lời cho câu hỏi Q1 đặt ra trong phần mở đầu như sau: Q1. Nếu nhìn từ góc độ tri thức ở bậc đại học thì các tri thức lượng giác ”trong đường tròn” và “trong hàm số” được trình bày như thế nào? Chúng gắn liền với các tổ chức toán học (TCTH) và có những đặc trưng nào? Đặc biệt, bước chuyển từ các tri thức lượng giác “trong đường tròn” sang các tri thức lượng giác ” trong hàm số” có đặc trưng gì? Các giáo trình đại học chủ yếu được chọn tham khảo để nghiên cứu trong chương này là: [35] Toán học cao cấp và Bài tập Toán cao cấp (tập 2) (dùng cho sinh viên các trường đại học kỹ thuật) của Nguyễn Đình Trí (chủ biên). [41] "College Algebra with Trigonometry" của Raymond A. Barnett. [42] "Algebra and Trigonometry for College students" của Richard S. Paul và Ernest F. Haeussler. [43] "A text book of Trigonometry for Colleges and Engineering Schools" của William H. H. Cowles và James E. Thompson. Sau đây, chúng tôi sẽ thực hiện một nghiên cứu sơ lược về lịch sử lượng giác. Nhưng, phần phân tích của chúng tôi không chỉ đơn thuần là sự tóm tắt các
  8. sách, báo viết về lịch sử lượng giác đã tham khảo. Nghiên cứu của chúng tôi chủ yếu là tìm trong lịch sử trình tự xuất hiện của từng giai đoạn mà chúng tôi đã nêu ở phần mở đầu cũng như các tình huống gắn liền với các tri thức lượng giác trong từng giai đoạn. 1.1. Sơ lược lịch sử lượng giác Kết quả trong mục này được rút ra từ [6], [24], [32], [33] và http://www.math.rutgers.edu/, http://vi.wikipedia.org về lịch sử lượng giác. Lịch sử lượng giác có thể chia thành hai thời kỳ lớn. Lượng giác đã bắt đầu với tư cách là yếu tố tính toán của hình học. Nó nảy sinh từ sự cần thiết phải đo lại ruộng đất sau những trận lụt hàng năm ở sông Nin và hình thành cùng với sự phát triển của hình học. Ngay từ thời kỳ cổ Hi Lạp, khi xây dựng các công trình đồ sộ như đền đài, kim tự tháp, người ta đã biết sử dụng khái niệm về tỉ số các đoạn thẳng (trùng với khái niệm sin, cosin ngày nay). Về sau, những tri thức lượng giác đầu tiên đã xuất hiện ở thời cổ Hi Lạp do nhu cầu của thiên văn. Hippac và Plôtêmê (thế kỷ thứ 2 trước công nguyên) đã lập các bảng về sự liên hệ giữa độ dài của dây trương một cung tròn đã biết. Việc biến đổi lượng giác có sử dụng các tỉ số sin, cos, tan, cot ở tam giác vuông đã được những nhà học giả Ả Rập tiến hành vào thế kỷ thứ 9. Kiến thức hình học của người Babilon, về căn bản cũng như người Ai Cập. Tuy nhiên, người Babilon đã có khái niệm sơ bộ về đo góc và đó là mầm mống của "tam giác lượng" (hay lượng giác trong tam giác). Lượng giác đặc biệt phát triển mạnh vào thời kỳ trung cổ ở phương Đông rồi sau đó mới phát triển ở châu Âu. Để giảm bớt nặng nhọc trong lao động tính toán, người ta đã thành lập những bảng sin, tan v.v ... An Casi (đầu thế kỷ 15) cũng đã lập ra bảng các giá trị lượng giác của góc (cung) với độ chính xác đến 9 chữ số thập phân. Lượng giác phẳng và lượng giác cầu đã có được một “hệ thống cân đối” giàu sự kiện. Chẳng hạn, trong tác phẩm của Naxirêđin (1201 - 1274) với tên là "Luận
  9. văn về hình bốn cạnh đầy đủ" đã có phần phương pháp giải tam giác phẳng và tam giác cầu, giải các bài toán xác định cạnh của một tam giác cầu theo ba góc. Như vậy, trong thời kỳ đầu, lượng giác chỉ bao gồm những thủ thuật tính toán các yếu tố của một tam giác và các hình có thể quy về những tam giác. Vì thế, người Hilạp gọi là "tam giác lượng" tức là đo đạc các tam giác. Ở thời kỳ thứ hai, lượng giác đã xuất hiện như một khoa học về "tam giác lượng". Việc ra đời của giải tích toán và sự phát triển mạnh mẽ của nó ở thế kỷ 17 và 18 đã tạo điều kiện cho lượng giác phát triển, nhưng theo một phương hướng mới. Các đại lượng của lượng giác trước đây chỉ được coi như là phương tiện để giải các vấn đề hình học thì nay đã trở thành những đối tượng để nghiên cứu. Các đối tượng đó được xem như là những hàm. Lý thuyết về các hàm lượng giác được Euler nghiên cứu lần đầu tiên (1748) trong tác phẩm "Mở đầu về giải tích của các vô cùng bé"; trong đó, các hàm lượng giác đã được nghiên cứu theo phương pháp giải tích nhờ các chuỗi. Hướng mới này bắt nguồn từ các dao động trong cơ học, âm học, quang học và sóng điện từ... Sau đó, Wessel, một nhà đo đạc người Nauy, đã xuất phát từ hình học để giải thích sự tồn tại của số phức (1797) với ý đồ muốn tìm cách biểu diễn các phương trong không gian theo kiểu giải tích. Ông đã đưa ra cách giải thích hình học cho 1 và chỉ ra mọi bán kính của vòng tròn đơn vị đều có thể viết ở dạng cosv + δ sinv, trong đó δ.δ = -1. Từ đó, suy ra mọi đoạn thẳng của mặt phẳng đều được biểu diễn bởi biểu thức giải tích dạng: r(cosv + δ sinv) hay a + δb ...  Tóm lại - Qua nghiên cứu sơ lược lịch sử, các tri thức lượng giác liên quan rất nhiều đến các hiện tượng trong đời sống và ứng dụng trong các ngành khoa học như: kỹ thuật, vật lý, thiên văn, trắc địa, hàng hải v.v... - Lượng giác xuất hiện ban đầu chỉ với tư cách là công cụ giải quyết các vấn đề hình học, có thể xem đây là sự xuất hiện của các tri thức lượng giác “trong tam giác”. Sau đó, lượng giác tiến triển và trở thành đối tượng nghiên cứu, cụ thể là các tri thức lượng giác “trong hàm số”. Tuy nhiên, các tri thức lượng giác “trong hàm số” chỉ được nghiên cứu theo hướng phát triển của giải tích; đặc biệt, hàm số lượng giác được định nghĩa nhờ vào các chuỗi lũy thừa.
  10. - Các tri thức lượng giác “trong đuờng tròn” dường như ít để lại dấu vết trong lịch sử, chỉ thấy tri thức lượng giác “trong đường tròn” xuất hiện khi đề cập đến số phức. - Theo các nhà nghiên cứu lịch sử, ý tưởng tổng quát về liên hệ hàm - trong đó, có hàm lượng giác chưa xuất hiện trong thời cổ đại. Cuối thế kỷ 16, những hàm được nghiên cứu bằng các bảng giá trị như bảng lượng giác, bảng lôgarit. - Vào thế kỷ 17, Euler cho thấy phạm vi mà ông quan tâm là lý thuyết hàm số và thay đổi cách xem xét hình học bằng cách xem xét biểu thức của hàm số - trong đó có hàm số lượng giác. Quan niệm hình học của Euler tồn tại rất lâu trong sự phát triển của giải tích nhưng đã trở thành một sự cản trở cho sự phát triển của lý thuyết hàm, nhất là từ sau công trình của Fourier. - Gần đây, người ta đã xây dựng các hàm lượng giác theo phương pháp tiên đề; nhờ đó, lượng giác đã đi sát được với toán học hiện đại và có một giá trị lớn về cơ sở lý thuyết. Như thế, tri thức lượng giác xuất hiện trong các bài toán về đo đạc - thuộc phạm vi hình học. Đặc biệt, từ sự nghiên cứu cung và góc, người ta đã nghiên cứu đến hàm số lượng giác thuộc phạm vi đại số. Chúng tôi sẽ phân tích cụ thể giáo trình “College Algebra with Trigonometry" của Raymond A. Barnett và tổng hợp một số giáo trình đại học đã tham khảo để làm rõ những TCTH được xây dựng xung quanh các tri thức lượng giác “trong đường tròn” và “trong hàm số”. 1.2. Các tri thức lượng giác “trong đường tròn” và “trong hàm số” trong các giáo trình ở bậc đại học 1.2.1. Lượng giác trong giáo trình “College Algebra with Trigonometry" của Raymond A. Barnett Mở đầu giáo trình, tác giả giới thiệu cách tiếp cận với lượng giác của mình theo sự tiến triển của lịch sử. Đó là lý do mà chúng tôi chọn giáo trình này để phân tích tình huống nảy sinh các tri thức lượng giác trong giai đoạn đường tròn và giai đoạn hàm số. - Xuất phát từ các hiện tượng trong tự nhiên, nhu cầu đo góc bất kỳ được đưa ra. Người ta đã nghiên cứu đến việc xây dựng góc lượng giác để đáp ứng nhu cầu
  11. trên. Đường tròn số mà trên đó xác định các góc tương ứng với hai đơn vị đo góc: độ và radian cũng xuất hiện. - Tác giả đã giới thiệu định nghĩa hàm số lượng giác của góc  bất kỳ dựa vào toạ độ của điểm nằm trên tia cuối của góc với công cụ chủ yếu là mặt phẳng tọa độ và công thức tỉ số lượng giác của góc trong tam giác. Cách xây dựng định nghĩa này thể hiện cụ thể qua việc mô tả "máy cosin" với đối số là góc có đơn vị đo như sau:  (độ hay radian) TXĐ 1. Tìm tọa độ của điểm trên tia cuối (Góc) của góc  . Tìm bán kính R b a a  b a cos  a R TGT   R P(a,b) (Số thực) R 2. cos   a R "Máy cosin" [41, tr.355] * Ứng dụng để tìm dạng lượng giác của số phức: Các tác giả Franklin Demana, Bert K. Waits và Stanley R. Clemens trong [39] đã giới thiệu 6: P(a,b) a + bi r b  a x Số phức a + bi xác định một tam giác vuông "Dạng chung để biểu diễn các số phức liên quan đến các hàm số lượng giác của góc sin  , cos  . Để xây dựng dạng lượng giác của số phức, chúng ta sẽ sử dụng cách biểu diễn hình học của số phức. Số phức a + bi tương ứng với điểm P(a, b) trong mặt phẳng phức. 6 Các trích dẫn do chúng tôi dịch từ bản tiếng Anh.
  12. Trên hình, chúng ta thấy tam giác vuông được xác định bởi z = a + bi, độ a b dài ba cạnh của tam giác là a, b, r, với r  a 2  b 2 , cos   ,sin   . r r Do đó: chúng ta có thể viết a + bi = r(cos  + i sin  )". [39, tr.445- 446] * Một tình huống ứng dụng trong ngành kỹ thuật: y "Hình minh họa một piston được nối với một bánh xe quay 3 vòng/giây. Từ đây, góc  sẽ là 3(2  ) = y 6  /giây hay  = 6  t, với t là thời gian tính bằng 4 giây. Giả sử P ở (1, 0) khi t = 0, chứng minh rằng: P(a, b) y = b + 42  a 2  sin 6 t  16  (cos 6 t )2 , t  0  (1, 0) x và tìm vị trí của piston khi t = 0,2 s". [41, tr.354]  Nhận xét - Thuật ngữ "hàm lượng giác" được sử dụng chung để chỉ các hàm sin, cos, tan, cot, csc, ... mà không có sự phân biệt rạch ròi giữa khái niệm hàm số lượng giác và giá trị lượng giác của góc bất kỳ như ngày nay. - Các tri thức lượng giác “trong đường tròn” đã vận hành khi xây dựng hàm số lượng giác của góc 7. Đánh dấu cho sự vận hành này là sự xuất hiện của đường tròn định hướng gắn với hệ trục tọa độ. Song song đó, người ta luôn tìm một "tam giác tham chiếu" hay "góc tham chiếu" trong đường tròn định hướng; thao tác trên tọa độ (a, b) của điểm nằm trên đường tròn định hướng và tia cuối của góc khi định nghĩa hàm số lượng giác của góc. 7 Trong các giáo trình đại học mà chúng tôi tham khảo, khái niệm hàm số lượng giác của góc trùng với khái niệm giá trị lượng giác của góc bất kỳ trong các SGK môn Toán dạy ở trường phổ thông tại Việt Nam.
  13. - Vấn đề giải quyết các tình huống trong ngành kỹ thuật đã làm xuất hiện những biến không phải là các góc có đơn vị đo độ và radian. Chính vì thế, tác giả dẫn chúng ta đến một cách tiếp cận mới với hàm số lượng giác - không dựa vào các góc có đơn vị đo. Đó là việc xây dựng định nghĩa hàm số lượng giác - dựa vào các số thực với công cụ đường tròn lượng giác - đường tròn định hướng bán kính đơn vị. Chúng tôi nhận thấy tác giả giáo trình giới thiệu định nghĩa hàm số lượng giác của số thực bằng hai cách: * Cách 1: x (số thực) TXĐ 1. Liên hệ số thực x với góc x (Số thực) radian 2. Tìm tọa độ của điểm trên tia cuối của góc x. Tìm bán kính R b x b R b sin x  TGT P(a,b) R (Số thực) a x a 3. sinx = sin (x rad) = b R "Máy sin" * Cách 2: b a b b (0, 1) sinx = b = = sin(x rad) ; P (cosx, sinx) 1 x a x cosx = a = = cos(x rad) (-1, 0) O (1, 0) a 1 (0, -1) [41, tr.355-372] - Chúng tôi chỉ minh họa hai hàm số lượng giác sin và cosin. Cách thứ nhất đã ngầm ẩn sử dụng đường tròn định hướng có bán kính tùy ý, cách thứ hai dùng đường tròn lượng giác. - Điểm giống nhau của hai cách là cùng dựa vào hàm số lượng giác của góc có đơn vị đo radian và tọa độ của điểm nằm trên tia cuối của góc, cùng thuộc phạm vi đại số. Việc giải thích cho hai cách trên lại dựa trên phạm vi hình học. Thật vậy:
  14. Từ hệ thức trong hình học phẳng s =  r, nếu r = 1 thì s =  . Trong trường hợp này s và  được biểu thị bằng cùng một số thực. Tương ứng tự nhiên giữa góc và cung cũng cho phép sử dụng số đo cung làm số đo góc chắn cung. - Mặt khác, công nghệ giải thích cho kỹ thuật trên còn là tri thức về mặt phẳng tọa độ và khoảng cách giữa hai điểm trong mặt phẳng tọa độ. - Đặc trưng của lượng giác trong hàm số là nó luôn đồng hành với công cụ đường tròn lượng giác, nhất là khi xây dựng định nghĩa hàm số lượng giác của số thực và các tính chất của hàm số này. Chính điều đó mà thuật ngữ "hàm số vòng" còn được dùng thay thế cho hàm số lượng giác của số thực. 1.2.2. Các giáo trình đại học khác Chúng tôi sẽ tổng hợp các giáo trình đại học đã tham khảo để tìm hiểu cụ thể cách định nghĩa “hàm lượng giác”.  Định nghĩa bằng tam giác vuông Hàm Định nghĩa Biểu thức Sin Tỉ số cạnh đối và cạnh huyền Cos Tỉ số cạnh kề và cạnh huyền Tan Tỉ số cạnh đối và cạnh kề Cot Tỉ số cạnh kề và cạnh đối Sec Tỉ số cạnh huyền và cạnh kề  Định nghĩa bằng đường tròn đơn vị Định nghĩa dùng đường tròn đơn vị thật ra cũng dựa vào tam giác vuông, nhưng chúng có thể định nghĩa cho mọi góc là số thực, không chỉ giới hạn giữa 0  và . 2 Hàm Định nghĩa sin(θ) y cos(θ) x tan(θ) y/ x cot(θ) x/ y
  15.  Dùng đại số sec(θ) 1/x csc(θ) 1/y Vòng tròn đơn vị và một số điểm đặc biệt ứng với một số góc đặc biệt. Với góc θ là góc giữa đường thẳng nối gốc tọa độ và điểm (x; y) trên vòng tròn và chiều dương của trục x của hệ tọa độ Oxy, các hàm lượng giác có thể được định nghĩa là: Khi các góc quay trên vòng tròn, hàm sin, cos, sec và cosec trở nên hàm tuần hoàn với chu kỳ 2π radian hay 3600: sin  = sin(  + 2  k); cos  = cos(  + 2  k). Ở đây θ là góc, một số thực bất kỳ; k là một số nguyên bất kỳ. Tan và cot tuần hoàn với chu kỳ π radian hay 1800.  Dùng hình học Mọi hàm lượng giác đều có thể được dựng lên bằng phương pháp hình học trên một vòng tròn đơn vị có tâm ở O. Hình vẽ cho thấy định nghĩa các hàm lượng giác cho góc bất kỳ trên vòng tròn đơn vị tâm O bằng hình học, với θ là nửa cung AB: Hàm Định nghĩa Chú thích sin(θ) AC Định nghĩa lần đầu giới thiệu trong lịch sử bởi người Ấn Độ cos(θ) OC Đường tiếp tuyến với đường tròn tại A, ý nghĩa này đã mang lại tan(θ) AE cho cái tên "tan" của hàm, xuất phát từ tiếng La tinh là "tiếp tuyến" cot(θ) AF
  16. Đường cắt vòng tròn, ý nghĩa này đã mang lại cho cái tên sec(θ) OE "secant" của hàm, xuất phát từ tiếng La tinh là "đường cắt vòng tròn" csc(θ) OF versin(θ) CD versin(θ) = 1 − cos(θ) exsec(θ) DE exsec(θ) = sec(θ) − 1 Nhiều cách xây dựng tương tự có thể được thực hiện trên vòng tròn đơn vị và các tính chất của các hàm lượng giác có thể được chứng minh bằng hình học.  Định nghĩa bằng chuỗi Hàm sin được xấp xỉ bằng chuỗi Taylor bậc 7 Có thể dùng chuỗi Taylor để phân tích hàm sin và cos ra chuỗi cho mọi góc x đo bằng giá trị radian thực. Từ hai hàm này, có thể suy ra chuỗi của các hàm lượng giác còn lại. Các đẳng thức bên dưới đây cho biết chuỗi Taylor của các hàm lượng giác. Chúng có thể dùng làm định nghĩa hàm lượng giác. Chúng được dùng trong nhiều ứng dụng như chuỗi Fourier, vì lý thuyết của chuỗi vô hạn có thể được xây dựng từ nền tảng hệ thống số thực, độc lập với hình học. Các tính chất như khả vi hay liên tục có thể được chứng minh chỉ từ định nghĩa bằng chuỗi. Trong bảng bên dưới, quy ước: En là số Euler thứ n , Un là số lên/xuống thứ n. Hàm Định nghĩa Cụ thể  (  1) n x 2 n  1 Sin(x)  n0 ( 2 n  1) ! Cos(x) Tan(x) Cot(x)
  17. Sec(x) Csc(x)  Trên trường số phức Từ định nghĩa bằng chuỗi, có thể chứng minh rằng các hàm sin và cos là phần ảo và phần thực của hàm mũ của số ảo: , với i là đơn vị ảo, i = 1 . Liên hệ này được phát hiện lần đầu bởi Euler và công thức này đã được gọi là công thức Euler. Trong giải tích phức, nếu vẽ đường tròn đơn vị trên mặt phẳng phức, gồm các điểm z = eix thì các mối liên hệ giữa số phức và lượng giác trở nên rõ ràng. Ví dụ như các quá trình miêu tả bởi hàm mũ phức có tính chất tuần hoàn. Công thức trên cũng cho phép mở rộng hàm lượng giác ra cho biến phức z: Trong trường hợp đặc biệt, z = x, một số thực: ;  Định nghĩa bằng phương trình vi phân Cả hai hàm sin và cos thỏa mãn phương trình vi phân: y'' = - y. Các hàm này là các hàm trái dấu của vi phân bậc hai của chúng. Trong không gian vectơ hai chiều V chứa tất cả các nghiệm của phương trình vi phân trên, sin là hàm duy nhất thỏa mãn điều kiện biên y(0) = 0 và y′(0) = 1, còn cos là hàm duy nhất thỏa mãn điều kiện biên y(0) = 1 và y′(0) = 0. Hai hàm này lại độc lập tuyến tính trong V, chúng tạo thành hệ cơ sở cho V. Thực tế cách định nghĩa này tương đương với việc dùng công thức Euler. Phương trình vi phân không chỉ có thể được dùng để định nghĩa sin và cos mà còn có thể được dùng để chứng minh các đẳng thức lượng giác cho các hàm này. Như vậy, xét về lý thuyết trong giáo trình ở bậc đại học, có nhiều cách tiếp cận với hàm lượng giác thuộc các phạm vi đại số, hình học và giải tích. Tri thức lượng giác được trình bày theo trình tự:
  18. Lượng giác “trong tam giác” Lượng giác “trong đường tròn” Lượng giác “trong hàm số” Phạm vi hình học Phạm vi đại số Bước chuyển từ giai đoạn đường tròn sang giai đoạn hàm số trong giáo trình đại học có những đặc trưng gì? Trong khi tiếp cận với lượng giác trong hàm số, tác giả giáo trình đại học này cũng như hầu hết các giáo trình khác không thể không nhờ đến sự hỗ trợ của lượng giác trong đường tròn. Đâu là mâu thuẫn thúc đẩy sự phát triển của lượng giác trong hàm số? Có hay không mâu thuẫn giữa "cái cũ" (hàm số lượng giác có đối số là góc có đơn vị đo) và "cái mới" (hàm số lượng giác có đối số là số thực)? Việc làm rõ các TCTH liên quan đến các tri thức lượng giác hiện diện trong giai đoạn đường tròn và giai đoạn hàm số ở các giáo trình đại học sẽ cho phép chúng tôi phân tích sâu sắc hơn tính kế thừa và gián đoạn trong bước chuyển trên. Cụ thể hơn, chúng tôi sẽ làm rõ chức năng của các bài toán lượng giác trong giai đoạn đường tròn đối với giai đoạn hàm số. Qua việc tổng hợp các giáo trình ở bậc đại học, chúng tôi thấy tồn tại các TCTH liên quan đến "hai lượng giác" được ưu tiên sau đây: 1.2.3. Các TCTH liên quan đến tri thức lượng giác “trong đường tròn” Các kiểu nhiệm vụ T*, kỹ thuật τ*, công nghệ θ* tương ứng như sau:  T*1: Chuyển đổi giữa radian và độ, có 2 kỹ thuật giải quyết: τ*11: Áp dụng công thức π = 1800. s θ*11: Công thức tìm số đo cung tròn   và độ dài đường tròn s = 2  r. r τ*12: Dùng máy tính bỏ túi hoặc bảng tính Brađixơ.  T*2: Tìm góc  , có 2 kiểu nhiệm vụ con và kỹ thuật tương ứng như sau: ♦ T*21: Tìm góc  khi biết nó có cùng tia cuối với góc cho trước, τ*21: Cộng thêm hoặc trừ đi k2π vào góc đã cho (k  ). θ*21: Tính chất của góc lượng giác: "Nếu  là số đo của một góc, có một số nguyên k và  ' sao cho  =  ' + k2π". Ví dụ: Tìm góc  tương ứng với 16 biết 0 ≤  < 2π . [38, tr. 343] 3 ♦ T*22: Tìm góc  khi biết một giá trị của hàm số lượng giác của góc đó, τ*22: Dùng máy tính bỏ túi hay bảng Brađixơ.
  19.  T*3: Tìm độ dài cung tròn biết bán kính và góc chắn cung đó τ*3: Đổi số đo góc từ độ sang radian, áp dụng công thức s =  r. θ*3 = θ*11.  T*4: Tính diện tích A của hình quạt tròn biết bán kính và góc giữa τ*4: Đổi số đo góc từ độ sang radian, rồi áp dụng công thức A= 1 r2  . 2 θ*4 = θ*11.  T*5: Tìm vận tốc góc của vòng tròn hay vận tốc dài của 1 điểm di chuyển trên đường tròn khi biết bán kính và số vòng quay τ*5: Áp dụng công thức ω = 2πn với n là số vòng quay và v = ωr. θ*5 = θ*11. Ví dụ: Một bánh xe bán kính 18 đang quay khoảng 850 vòng/phút. Xác định: Vận tốc góc của bánh xe và vận tốc dài của 1 điểm trên đường tròn bánh xe. [39, tr.164]  T*6 : Tìm các giá trị của hàm số lượng giác của góc  , có 3 kiểu nhiệm vụ con sau: ♦ T*61: Tìm giá trị của hàm số lượng giác của góc  khi biết tọa độ (x, y) của điểm trên tia cuối, τ*61: - Áp dụng công thức trong định nghĩa tính r = x2  y2 , x y x - Thay vào sin  = y , cos  = , tan  = , cot  = , ... r r x y θ*61: Khoảng cách giữa hai điểm trong mặt phẳng tọa độ và định lý Pitago: "Bình phương độ dài cạnh huyền bằng tổng bình phương hai cạnh góc vuông". ♦ T*62: Tìm các giá trị của hàm số lượng giác khác của góc  khi biết một hoặc hai giá trị của hàm số lượng giác của góc đó, τ*62a: - Áp dụng các công thức cơ bản, hệ thức lượng giác, - Xét dấu các giá trị lượng giác của góc  . τ*62b: Sử dụng đường tròn lượng giác. θ*62 = θ*61: Định lý Pitago và định nghĩa góc lượng giác. 1 Ví dụ: Cho sin  =  . Tìm các giá trị lượng giác khác của góc  biết 4 tan  > 0. [36, tr. 352]
  20. ♦ T*63: Tìm giá trị của hàm số lượng giác của góc  khi biết số đo của góc  , τ*63a: - Vẽ tia cuối của góc đó trên hệ trục tọa độ, - Tìm góc tham chiếu là góc nhọn rồi áp dụng vào công thức trong định nghĩa hàm số lượng giác của góc. θ*63a: Định nghĩa góc lượng giác và tỉ số lượng giác trong tam giác. τ*63b : Dùng bảng Brađixơ hoặc máy tính bỏ túi.  T*7: Xác định dấu của các hàm số lượng giác của góc 8 τ*71: - Biểu diễn góc lượng giác, - Tính giá trị của hàm số lượng giác của góc, tìm dấu của hàm số lượng giác. τ*72: - Áp dụng các hệ thức liên hệ để tìm giá trị hàm số lượng giác của góc. - Suy ra dấu của hàm số lượng giác. θ*7: Định nghĩa hàm số lượng giác của góc và tính chất của góc lượng giác.  Nhận xét - Kiểu nhiệm vụ T*6: "Tìm các giá trị của hàm số lượng giác của góc  " được ưu tiên trong các giáo trình ở bậc đại học mà chúng tôi chọn tham khảo trong mục này. - Kiểu nhiệm vụ T*22: "Tìm góc  khi biết một giá trị của hàm số lượng giác của góc đó" với số lượng bài tập rất hiếm, thường được giới hạn miền xác định của góc là từ 00    3600 nên  tìm được chỉ có một hoặc hai giá trị. - Các kỹ thuật thiên về dùng công thức lượng giác cơ bản và bảng lượng giác được ưu tiên trong việc tính toán bằng đơn vị đo radian. - Đặc trưng trong việc giải thích cho các kỹ thuật là dựa vào quan điểm hình học. 1.2.4. Các TCTH liên quan đến tri thức lượng giác “trong hàm số”  T*8: Khảo sát các hàm số lượng giác 9, có 7 kiểu nhiệm vụ con như sau: ♦ T*81: Tìm miền xác định của hàm số lượng giác, với 2 kỹ thuật: τ*81a: "Phương pháp đại số". τ*81b: Dùng đường tròn đơn vị hay đồ thị suy ra tập xác định. θ*81b = θ*7 + Định nghĩa hàm số lượng giác. 8 Như đã ghi chú ở trên, trong giáo trình đại học, hàm số lượng giác của góc trùng với giá trị lượng giác của góc bất kỳ 9 Hàm số lượng giác có biến số thực
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
12=>0