LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 34
lượt xem 5
download
Tham khảo tài liệu 'luyện thi đại học môn toán - đề 34', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: LUYỆN THI ĐẠI HỌC MÔN TOÁN - ĐỀ 34
- http://ductam_tp.violet.vn/ TRƯỜNG THPT NGUYỄN HUỆ TỔ TOÁN ĐỀ THI THỬ TUYỂN SINH ĐẠI HỌC KHỐI D (Thời gian làm bài : 180 phút) I.PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) x+2 Cho hàm số y = 2x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm những điểm trên đồ thị (C) cách đều hai điểm A(2 , 0) và B(0 , 2) Câu 2 (2,0 điểm) π π 1.Giải phương trình : 5 cos 3 x + + 3 cos 5 x − = 0 6 10 2 x 2 − 3x − 2 2.Giải bất phương trình : ≥0 2 x2 − 5x Câu III (1,0 điểm) Cho hình phẳng (H) giới hạn bởi các đường : x = y ; x = 0 ; y = − x + 2 . Tính thể tích khối tròn xoay tạo thành khi cho hình (H) quay quanh trục Oy Câu IV (1,0 điểm) Cho lăng trụ tam giác đều ABC.A1B1C1 cạnh đáy bằng a, cạnh bên bằng a 2 . Tính thể tích khối lăng trụ và góc giữa AC 1 và đường cao AH của mp(ABC) Câu V (1,0 điểm) Cho : a 2 + b 2 + c 2 = 65 . Tìm giá trị lớn nhất và nhỏ nhất của hàm số : π y = a + b 2 . sin x + c. sin 2 x x ∈(0 , ) 2 II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2) 1. Theo chương trình chuẩn Câu VI.a (2,0 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : x 2 + y 2 − 4 x − 2 y − 1 = 0 và đường thẳng d : x + y + 1 = 0 . Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến (C) hai tiếp tuyến hợp với nhau góc 900 2. Trong không gian với hệ tọa độ Oxyz. Cho mặt cầu (S) : ( x − 1) 2 + y 2 + ( z + 2) 2 = 9 . x y −1 z Lập phương trình mặt phẳng (P) vuông góc với đường thẳng a : = = và cắt mặt cầu (S) theo −2 1 2 đường tròn có bán kính bằng 2 . CâuVII.a (1,0 điểm) Có bao nhiêu số tự nhiên gồm bốn chữ số khác nhau mà mỗi số đều lớn hơn 2010. 2.Theo chương trình nâng cao CâuVI.b (2,0 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy. Cho elip (E) : x 2 + 4 y 2 − 4 = 0 .Tìm những điểm N trên elip (E) ˆ sao cho : F NF = 600 ( F1 , F2 là hai tiêu điểm của elip (E) ) 1 2 x = t 2.Trong Không gian với hệ tọa độ Oxyz.Cho đường thẳng ∆ : y = 2t và điểm A(1, 0 , − 1) z = 1 Tìm tọa độ các điểm E và F thuộc đường thẳng ∆ để tam giác AEF là tam giác đều. Câu VII.b (1,0 điểm) 2 z − i = z − z + 2i Tìm số phức z thỏa mãn : 2 2 z − ( z) = 4 ----------------------------------------------------------------------------------------------
- ĐÁP ÁN THANG ĐIỂM KHỐI D
- Điểm Câu Đáp án I ( 2,0 1.(1,25) điểm) 1 a/ Tập xác định : D = R \ 2 0,25 −5 / b/ Sự biến thiên: y = < 0 ∀x ∈ D (2 x − 1) 2 0,25 1 1 + H/s nghịch biến trên (−∞ , ) ; ( , + ∞) ; H/s không có cực trị 2 2 +Giới hạn –tiệm cận : 1 Lim y = Lim y = Lim+ y = + ∞ ; Lim y = − ∞ ; 2 1− x→+ ∞ x → −∞ 1 x→ x→ 2 2 0,25 1 1 Tiệm cận ngang y = ; Tiệm cận đứng x = 2 2 1 +∞ 2 x - y / - - Y +∞ 1 0,25 Y 1 / // / −∞ 2 // 2 x o o 0,25 c/ Đồ thị : Đđb x = 0 , y = -2 y = 0 , x = -2. Đồ thị nhận giao điểm 2 tiệm cận làm tâm đ ối x ứng. 2.(1,0 điểm) Pt đường trung trực đọan AB : y = x Những điểm thuộc đồ thị cách đều A và B có hoàng độ là nghiệm của pt : x+2 =x 0,25 2x −1 ↔ x2 − x −1 = 0 1− 5 x = 2 ↔ 0,25 1+ 5 x = 2 1− 5 1− 5 1+ 5 1+ 5 0,25 Hai điểm trên đồ thị thỏa ycbt : 2 , 2 ; 2 , 2 1.(1,0 điểm) II ( 2,0 điểm) π 3 3π 1313 ↔ 5 cos 3x + + 3 cos 5 x − = 0 1 1 2 1 + + 4 4 2 - - 44
- VII.a(1,0 Gọi số cần tìm có dạng : abcd điểm) 3 + Nếu a > 2 : có 7 cách chọn a và A9 cách chọn b, c , d + Nếu a = 2 : + b > 0 : có 8 cách chọn b và có A82 cách chọn c , d 0,25 0,25 + b = 0 và c > 1: có 7 cách chọn c và và 7 cách ch ọn d 0,25 + b = 0 và c = 1 : có 7 cách chọn d 3 2 Vậy số các số thỏa yêu cầu bài toán là : 7. A9 + 8. A8 + 7.7 + 7 = 4032 0,25 VI.a 1.(1,0 điểm) ( 2,0 x2 điểm) 0,25 + y 2 = 1 ; a 2 = 4 → a = 2 ; b2 = 1 → b = 1 ; c2 = a 2 − b2 = 3 → c = 3 (E) : 4 + Áp dụng định lí côsin trong tam giác F1NF2: ( F1 F2 ) 2 = NF12 + NF22 − 2 NF1 NF2 . cos 60 0 0,25 ↔ ( F1 F2 ) 2 = ( NF1 + NF2 ) 2 − 2 NF1 .NF2 − NF1 .NF2 42 4 ( a − c2 ) = ↔ NF1 .NF2 = 3 3 32 2 ↔ x2 = ; y2 = 0,25 9 18 4 2 1 4 2 1 4 2 1 4 2 1 Vậy có 4 điểm thỏa yêu cầu bài toán : N1 , ; N2 , − ; N3 − , ; N4 − ,− 3 3 3 3 3 3 3 0,25 3 2.(1,0 điểm) → → → → + Đường thẳng ∆ đi qua M 0 (0 , 0 ,1) và có vtcp u (1, 2 , 0) ; M 0 A = (1,0 ,−2) ; M 0 A , u = ( 4 , − 2 , 2) → → M 0 A , u 26 + Khoảng cách từ A đến ∆ là AH = d ( A , ∆ ) = = 0,25 → 5 u 2 42 42 + Tam giác AEF đều → AE = AF = AH . = .Vậy E , F thuộc mặt cầu tâm A , BK R = 0,25 3 5 5 x = t y = 2t và đường thẳng ∆ , nên tọa độ E , F là nghiệm của hệ : z = 1 ( x − 1) 2 + y 2 + ( z + 1) 2 = 32 0,25 5 1− 2 2 1+ 2 2 x = x = 5 5 2−4 2 2+4 2 1 2 2 suy ra tọa độ E và F là : y = ∨ y = t= 5 5 5 0,25 z = 1 z = 1 + Gọi số phức z = x + yi ( x , y ∈ R ) VII.b (1,0 2 x + ( y − 1)i = ( 2 y + 2)i điểm) 0,25 Hệ ↔ 4 xyi = 4
- x2 x = 3 4 y = 4 ↔ ↔ 0,50 1 y = 3 1 1 y = ∨y= − 4 x x 1 Vậy số phức cần tìm là : z = 4 + 3 i 0,25 3 4 f/( f(t)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề luyện thi đại học môn toán 2012 khối A
1 p | 1199 | 206
-
Đề luyện thi đại học môn toán 2012 khối D
1 p | 824 | 146
-
Đề luyện thi đại học môn toán 2012 khối B
1 p | 593 | 103
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 1) - Thầy Đặng Việt Hùng
2 p | 224 | 42
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 2) - Thầy Đặng Việt Hùng
2 p | 129 | 25
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 4
1 p | 158 | 24
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 3) - Thầy Đặng Việt Hùng
1 p | 102 | 18
-
Đề tự luyện thi đại học môn toán số 2
1 p | 128 | 16
-
Đề tự luyện thi đại học môn toán số 3
1 p | 116 | 16
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 5) - Thầy Đặng Việt Hùng
2 p | 108 | 15
-
Đề tự luyện thi đại học môn toán số 4
6 p | 137 | 15
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 4) - Thầy Đặng Việt Hùng
1 p | 114 | 14
-
Giải đề tự luyện thi đại học môn toán số 1
3 p | 113 | 13
-
Luyện thi Đại học môn Toán 2015: Phương trình mũ (phần 3) - Thầy Đặng Việt Hùng
9 p | 101 | 12
-
Đề tự luyện thi đại học môn toán số 5
3 p | 125 | 12
-
Luyện thi Đại học môn Toán 2015: Phương trình mũ (phần 4) - Thầy Đặng Việt Hùng
2 p | 82 | 11
-
Giải đề tự luyện thi đại học môn toán số 2
3 p | 104 | 10
-
Luyện thi Đại học môn Toán 2015: Phương trình mũ (phần 5) - Thầy Đặng Việt Hùng
1 p | 139 | 10
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn