intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang

Chia sẻ: Trần Bá Trung4 | Ngày: | Loại File: PDF | Số trang:6

759
lượt xem
507
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

"Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang " Trong các kỳ thi tuyển sinh sau đại học, đại số tuyến tính là môn cơ bản là môn bắc buộc đối với các thí sinh thi vào sau đại học vào cách ngành toán, cụ thể là chuyên ngành đại số, hình học, giải tích. Các bài viết nhằm cung cấp cho bạn đọc một cách hệ thống và chọn lọc những kiến thức và kỹ năng cơ bản với mục đích giúp người đọc chủ động và tích cực hơn trong...

Chủ đề:
Lưu

Nội dung Text: Ôn thi cao hoc đại số tuyến tính bài 11 - PGS TS Vinh Quang

  1. Đ I S CƠ B N (ÔN THI TH C SĨ TOÁN H C) Bài 11. Cơ S , S Chi u C a Không Gian Vectơ PGS TS M Vinh Quang Ngày 27 tháng 3 năm 2005 1. Cơ s Cho V là không gian vectơ, α1 , α2 , . . . , αn là m t h vectơ c a V . H vectơ α1 , α2 , . . . , αn g i là h sinh c a V n u m i vectơ β ∈ V đ u bi u th tuy n tính đư c qua h α1 , α2 , . . . , αn . H vectơ α1 , α2 , . . . , αn g i là m t cơ s c a không gian vectơ V n u nó là h sinh c a V và là h đ c l p tuy n tính. T đ nh nghĩa, hai cơ s b t kỳ c a V đ u tương đương và đ c l p tuy n tính. Do đó, theo đ nh lý cơ b n chúng có s vectơ b ng nhau. S đó g i là s chi u V , ký hi u là dimV . V y theo đ nh nghĩa: dimV = s vectơ c a m t cơ s b t kỳ c a V Không gian vectơ có cơ s g m h u h n vectơ g i là không gian vectơ h u h n chi u. Không gian vectơ khác không, không có cơ s g m h u h n vvectơ g i là không gian vectơ vô h n chi u. Đ i s tuy n tính ch y u xét các không gian vectơ h u h n chi u. 2. Các ví d Ví d 1. Không gian Rn , xét các vectơ: e1 = (1, 0, ..., 0) e2 = (0, 1, ..., 0) .................... e3 = (0, 0, ..., 1) D dàng ki m tra e1 , e2 , . . . , en là cơ s c a Rn , g i là cơ s chính t c c a Rn và ta có dimRn = n Ví d 2. Trong không gian vectơ các ma tr n c p m × n h s th c Mm×n (R). 1
  2. Ta xét h vectơ {Eij }, trong đó:  . .  0 . 0 1≤i≤m Eij =  . . . 1 . . . . . .  ← hàng i,   . 1≤j≤n 0 . . 0 ↑ c tj là cơ s c a Mm×n (R) và do đó ta có dimMm×n (R) = mn Ví d 3. Rn [x] là t p các đa th c v i h s th c có b c ≤ n v i các phép toán thông thư ng là m t không gian vectơ. H vectơ 1, x, x2 , . . . , xn là m t cơ s c a Rn [x] và ta có dimRn [x] = n + 1 3. Tính ch t cơ b n c a không gian vectơ h u h n chi u Cho V là không gian vectơ h u h n chi u, dimV = n. Khi đó: (a) M i h vectơ có nhi u hơn n vectơ đ u ph thu c tuy n tính (b) M i h có n vectơ đ c l p tuy n tính đ u là cơ s c a V (c) M i h có n vectơ là h sinh c a V đ u là cơ s c a V (d) M i h đ c l p tuy n tính, có k vectơ đ u có th b sung têm n − k vectơ đ đư c cơ s c a V Chú ý r ng t tính ch t (b), (c) n u bi t dimV = n thì đ ch ng minh m t h n vectơ là cơ s c a V ta ch c n ch ng minh h đó là h đ c l p tuy n tính ho c h đó là h sinh. 4. T a đ c a vectơ trong cơ s . (a) Đ nh nghĩa Cho V là không gian vectơ n chi u (dimV = n) α1 , α2 , . . . , αn là cơ s c a V . V i x ∈ V , khi đó x vi t đư c duy nh t dư i d ng: x = a1 α1 + a2 α2 + . . . + an αn , ai ∈ R B s (a1 , a2 , . . . , an ) g i là t a đ c a x trong cơ s (α), ký hi u: x/ (α) = (a1 , a2 , ..., an ) Ho c:   a1  a2  [x]/ (α) =    . .   .  an (b) Ma tr n đ i cơ s , công th c đ i t a đ Trong không gian vectơ V cho 2 cơ s : α1 , α2 , . . . , αn (α) β1 , β2 , . . . , βn (β) 2
  3. Khi đó, các vectơ β1 , β2 , . . . , βn vi t đư c duy nh t dư i d ng:   β1 =  a11 α1 + a12 α2 + . . . + an1 αn β2 = a21 α1 + a22 α2 + . . . + an2 αn   ... ...  ... ... ... ... ... ... ... βn = an1 α1 + a2n α2 + . . . + ann αn  Ma tr n các h s chuy nv:   a11 a21 . . . an1  a12 a22 . . . a2n  Tαβ =  .   . .. .   .. . . . ..  a1n a2n . . . ann g i là ma tr n đ i cơ s t (α) sang (β) −1 T đ nh nghĩa, ta có ngay Tαβ là ma tr n kh ngh ch và Tαβ = Tαβ (c) Công th c đ i t a đ Cho V là không gian vectơ, x ∈ V , và các cơ s c a V là: α1 , α2 , . . . , αn (α) β1 , β2 , . . . , βn (β) Gi s : x/ x/ = (y1 , y2 , ..., yn ) (α) = (x1 , x2 , ..., xn ) , (β) Khi đó ta có:     x1 y1  x2   y2   = Tαβ       . . . .   .   .  xn yn hay vi t m t cách ng n g n: [x]/(α) = Tαβ [x]/(β) Công th c trên cho phép tính t a đ c a vectơ x trong cơ s (α) theo t a đ c a vectơ x trong cơ s (β). 5. M t s ví d Ví d 1. Trong R3 cho 2 cơ s : α1 = (1, 1, 1), α2 = (−1, 2, 1), α3 = (1, 3, 2) (α) β1 = (1, 0, 1), β2 = (1, 1, 0), β3 = (0, 1, 1) (β) (a) Tìm ma tr n đ i cơ s t (α) sang (β). (b) Vi t công th c tính t a đ c a vectơ x trong cơ s (α) theo t a đ c a x trong cơ s (β). Gi i: 3
  4. (a) Gi s : β1 = a1 α1 + a2 α2 + a3 α3 (1) β2 = b1 α1 + b2 α2 + b3 α3 (2) β3 = c1 α1 + c2 α2 + c3 α3 (3) Khi đó theo đ nh nghĩa   a1 b 1 c 1 Tαβ =  a2 b2 c2  a3 b 3 c 3 Đ tìm ai , bi , ci ta ph i gi i các phương trình vectơ (1), (2), (3).   a1 − a2 + a3 = 1 Phương trình (1) tương đương v i h : a1 + 2a2 + 3a3 = 0 a1 + a2 + 2a3 = 1    b1 − b2 + b3 = 1 Phương trình (2) tương đương v i h : b1 + 2b2 + 3b3 = 1 b1 + b2 + 2b3 = 0    c1 − c2 + c3 = 0 Phương trình (3) tương đương v i h : c1 + 2c2 + 3c3 = 1 c1 + c2 + 2c3 = 1  Đ gi i 3 h trên, ta dùng phương pháp Gauss. Ma tr n các h s m r ng:     1 −1 1 1 1 0 1 −1 1 1 1 0  1 2 3 0 1 1 → 0 3 2 −1 0 1  1 1 2 1 0 1 0 2 1 0 −1 1   1 −1 1 1 1 0 → 0 1 1 −1 1 0  0 0 −1 2 −3 1 H 1) a3 = −2, a2 = −1 − a3 = 1, a 1 = a2 − a3 + 1 = 4 H 2) b3 = 3, b2 = 1 − b3 = −2, b1 = b2 − b3 + 1 = −4 H 3) c3 = −1, c2 = −c3 = 1, c1 = c2 − c3 = 2 V y ma tr n đ i  s t (α) sang (β) là: cơ  4 −4 2 Tαβ =  1 −2 1  −2 3 −1 (b) Gi s x/ x/ = (y1 , y2 , y3 ) (α) = (x1 , x2 , x3 ) , (β) Công th c tính t a đ c a vectơ x trong cơ s (α) theo t a đ c a x trong cơ s (β) là:      x1 4 −4 2 y1  x2  =  1 −2 1   y2  x3 −2 3 −1 y3 hay x1 = 4y1 − 4y2 + 2y3 x2 = y1 − 2y2 + y3 x3 = −2y1 + 3y2 − y3 4
  5. Ví d 2. Trong Rn [x] cho 2 cơ s : u1 = 1, u2 = x, u3 = x2 , . . . , un+1 = xn (U ) 2 n v1 = 1, v2 = x − a, v3 = (x − a) , . . . , vn+1 = (x − a) (V ) trong đó a là h ng s . (a) Tìm ma tr n đ i cơ s t (U ) sang (V ) (b) Tìm ma tr n đ i cơ s t (V ) sang (U ) Gi i (a) Ta có: vk+1 = (x − a)k = Ck (−a)k + Ck (−a)k−1 x + . . . + Ck xk 0 1 k = Ck (−a)k u1 + Ck (−a)k−1 u2 + . . . + Ck uk+1 + 0uk+2 + . . . + 0un+1 0 1 k l n lư t cho k = 0, 1, . . . , n ta có: 0 0 C0 C1 (−a) . . . Ck (−a)k 0 . . . Cn (−a)n 0   1  0 C1 . . . Ck (−a)k−1 1 . . . Cn (−a)n−1 1  . . ... . . ...     . . . . . . . .    . . . . . . . .   . . ... . ... .  TU V =   . . ... . . . Ck ... .   . . k .  . . .     . . . . ... 0 ... . .    . . . . ... . . . .   . . . .. . .  n 0 0 ... 0 ... Cn (b) Ta có uk+1 = xk = [(x − a) + a]k = Ck ak + Ck ak−1 x + . . . + Ck xk 0 1 k = Ck ak v1 + Ck ak−1 v2 + . . . + Ck vk+1 + 0vk+2 + . . . + 0vn+1 0 1 k l n lư t cho k = 0, 1, . . . , n ta có: 0 0 C0 C1 a . . . Ck ak 0 . . . Cn an 0   1  0 C1 . . . Ck ak−1 1 . . . Cn an−1 1  . . ... . . ...     . . . . . . . .    . . . . . . . .   . . ... . ... .  TU V =   . . . . ... . . Ck .. .   . . k .  . . .     . . . . ... 0 ... . .    . . . . ... . . . .   . . . .. . .  n 0 0 ... 0 ... Cn 5
  6. BÀI T P 1. Trong R3 [x] cho các vectơ: u1 = x3 + 2x2 + x + 1 u2 = 2x3 + x2 − x + 1 u3 = 3x3 + 3x2 − x + 2 Tìm đi u ki n đ vectơ u = ax3 + bx2 + cx + d bi u th tuy n tính đư c qua h u1 , u2 , u3 . 2. Trong R3 cho các h vectơ: u1 = (1, 2, 1), u2 = (2, −2, 1), u3 = (3, 2, 2) (U ) v1 = (1, 1, 1), v2 = (1, 1, 0), v3 = (1, 0, 0) (V ) (a) Ch ng minh r ng (U ), (V ) là các cơ s c a R (b) Tìm các ma tr n đ i cơ s t (U ) sang (V ) và t (V ) sang (U ) 3. Trong R2 cho các cơ s (α), (β), (γ) Bi t: 1 1 3 1 Tαβ = , Tγβ = 2 1 2 1 và cơ s (γ): γ1 = (1, 1), γ2 = (1, 0) Tìm cơ s (α) 4. Cho R+ là t p các s th c dương. Trong R+ ta đ nh nghĩa 2 phép toán ∀x, y ∈ R+ x ⊕ y = xy + + ∀a ∈ R , x ∈ R a × x = xa + Bi t r ng (R , ⊕, ∗) là không gian vectơ. Tìm cơ s , s chi u c a không gian đó a −b 5. V = sao cho a, b ∈ R b a Bi t r ng V cùng v i phép c ng hai ma tr n và phép nhân 1 s v i 1 ma tr n là m t không gian vectơ. Tìm cơ s và s chi u c a V . 1 1 Đánh máy: NGUY N NG C QUYÊN, Ngày: 12/03/2005 6
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2