Sáng kiến kinh nghiệm THPT: Dạy và học chương Số phức theo hình thức thi trắc nghiệm khách quan
lượt xem 2
download
Mục đích của đề tài nghiên cứu giúp giáo viên định hướng tốt những phương pháp cũng như việc ra các câu hỏi kiểm tra cuối chương hợp lý. Giúp học sinh nhận ra muốn làm tốt bài toán ở chương Số phức dưới hình thức thi trắc nghiệm khách quan thì phải nắm vững kiến thức lý thuyết cũng như vận dụng thành thạo phương pháp giải bài tập kết hợp với sử dụng MTCT. Đặc biệt là không lạm dụng việc sử dụng máy tính.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sáng kiến kinh nghiệm THPT: Dạy và học chương Số phức theo hình thức thi trắc nghiệm khách quan
- 1 PHẦN 1: MỞ ĐẦU 1.1 Lý do chọn đề tài Kể từ năm học 2016-2017, Bộ Giáo dục và Đào tạo đã đổi mới hình thức thi tốt nghiệp trung học phổ thông quốc gia ở bộ môn Toán là chuyển từ hình thức thi tự luận sang hình thức thi trắc nghiệm khách quan. Thực tế cho thấy việc thi theo hình thức nào thì việc dạy và học không có gì thay đổi về chuẩn kiến thức kĩ năng. Tuy nhiên, với hình thức thi trắc nghiệm cần lượng kiến thức bao quát hơn thay vì tập trung sâu về một vấn đề. Để đáp ứng yêu cầu của hình thức thi trắc nghiệm, bên cạnh việc dạy và học bao quát kiến thức, học sinh phải hiểu rõ bản chất vấn đề, cũng như cần có kỹ năng làm bài nhanh. Mà công cụ hỗ trợ đắc lực cho học sinh đó là máy tính cầm tay. Vì vậy trong khi giảng dạy, sau khi cung cấp kiến thức, phương pháp giải bài tập thì đã hướng dẫn các em cách sử dụng máy tính cầm tay với mục đích là giúp các em hoặc là kiểm tra kết quả tính toán hoặc là hỗ trợ tính toán ở các bước trung gian. Đặc biệt là ở chương Số phức của chương trình Giải tích 12, nhờ máy tính các em dễ dàng cho kết quả bài toán mà không cần tính toán nhiều. Vì vậy, đối với một bộ phận không nhỏ học sinh đã xem việc biết sử dụng máy tính là đủ mà không cần phải học lý thuyết cũng như các phương pháp giải mà thầy cô đã cung cấp. Từ đó dẫn đến tình trạng các em sẽ không làm được ở các bài tập vận dụng. Từ thực tế trên, tôi viết đề tài: “Dạy và học chương Số phức theo hình thức thi trắc nghiệm khách quan”. 1.2. Mục đích và nhiệm vụ nghiên cứu: 1.2.1 Mục đích nghiên cứu: - Giúp giáo viên định hướng tốt những phương pháp cũng như việc ra các câu hỏi kiểm tra cuối chương hợp lý. - Giúp học sinh nhận ra muốn làm tốt bài toán ở chương Số phức dưới hình thức thi trắc nghiệm khách quan thì phải nắm vững kiến thức lý thuyết cũng như vận dụng thành thạo phương pháp giải bài tập kết hợp với sử dụng MTCT. Đặc biệt là không lạm dụng việc sử dụng máy tính. 1.2.2 Nhiệm vụ nghiên cứu: - Cung cấp kiến thức, phương pháp, kỹ năng giải bài tập chương Số phức kết hợp sử dụng máy tính cầm tay. 1.3. Đối tượng và phạm vi nghiên cứu
- 2 - Các dạng bài tập chương Số phức của chương trình Giải tích 12 ban cơ bản. 1.4. Phương pháp nghiên cứu - Phương pháp điều tra, phân tích, tổng hợp. 1.5 Tính mới của đề tài - Điểm mới của đề tài là giảng dạy theo hình thức thi trắc nghiệm khách quan và đổi mới việc ra đề kiểm tra đánh giá.
- 3 PHẦN 2: NỘI DUNG 2.1. Cơ sở lý luận ●Trong tập số thực, phương trình bậc hai chỉ có nghiệm khi 0 . Để mọi phương trình bậc hai đều có nghiệm, người ta quy ước i 2 1 . Với việc quy ước này đã cho ta một tập hợp số mới đó là tập số phức và được kí hiệu là C. ●Số phức z a bi có phần thực là a, phần ảo là b (a, b R; i 2 1). a c ● a bi c di . b d ●Số phức z a bi được biểu diễn bởi điểm M a; b trên mặt phẳng tọa độ. ●Độ dài của vectơ OM là môđun của số phức z, tức là: z OM a 2 b2 . ●Số phức liên hợp của z a bi là z a bi. ● Các phép toán trên tập số phức: + Phép cộng: a bi c di a c b d i. + Phép trừ: a bi c di a c b d i. + Phép nhân: a bi c di ac bd ad bc i. a bi a bi c di + Phép chia: . c di c2 d 2 ●Các căn bậc hai của số thực a 0 là i a . ●Xét phương trình bậc hai ax2 bx c 0 với a, b, c R; a 0. Đặt b2 4ac. b + Nếu 0 thì phương trình có một nghiệm kép (thực) x . 2a b + Nếu 0 thì phương trình có hai nghiệm thực x1,2 . 2a b i + Nếu 0 thì phương trình có hai nghiệm phức x1,2 . 2a 2.2 . Cơ sở thực tiễn - Theo Quy chế Thi trung học phổ thông quốc gia và xét công nhận tốt nghiệp trung học phổ thông (Ban hành kèm theo Thông tư số 04/2017/TT-BGDĐT ngày 25 tháng 01 năm 2017 của Bộ trưởng Bộ Giáo dục và Đào tạo) thì năm 2017
- 4 môn Toán thi với hình thức trắc nghiệm khách quan với 50 câu hỏi thời gian làm bài 90 phút nội dung chủ yếu ở chương trình lớp 12. - Với lượng câu hỏi và thời gian làm bài như trên đòi hỏi học sinh phải nắm thật vững lý thuyết và vận dụng thành thạo kiến thức, phương pháp, kĩ năng vào giải bài tập với thời gian ngắn nhất có thể. Để làm được điều đó đòi hỏi các em phải thật sự cố gắng, chăm chỉ làm bài tập về nhà cũng như tự học qua sách, bạn bè, mạng internet,… - Chương Số phức thuộc chương thứ tư của chương trình Giải tích 12. Kiến thức mới và ít liên quan đến những kiến thức cũ hơn so với các chương khác trong chương trình đồng thời lượng kiến thức tương đối ít và dễ nên các em sẽ dễ dàng đạt được trọn điểm số ở chương này. Đồng thời với hình thức thi trắc nghiệm với sự hỗ trợ của MTCT việc tính toán sẽ nhanh và chính xác. Vì hầu hết các phép toán ở chương Số phức đều thực hiện được trên MTCT. Tuy nhiên, ở một số dạng bài tập đòi hỏi học sinh phải nắm vững các kiến thức cơ bản và vận dụng chúng mới giải quyết được yêu cầu bài toán. - Vì vậy khi dạy chương này, trước tiên tôi cung cấp các kiến thức cơ bản và cho bài tập dưới hình thức tự luận để các em vận dụng thành thạo các phép toán trên tập số phức. Đến phần ôn chương, tôi mới bổ sung bài tập trắc nghiệm và hướng dẫn các em sử dụng MTCT. Vì nếu chỉ các em sử dụng máy tính trước thì các em sẽ không học lý thuyết và sẽ không giải quyết được các bài toán vận dụng. Để giúp các em nhận ra điều này thì phần bài tập trắc nghiệm nên đưa nhiều dạng toán vận dụng cho các em làm. 2.3. Một số dạng bài tập và cách giải 2.3.1 Tìm các số thực x, y thỏa yêu cầu đề bài: Đối với dạng này yêu cầu học sinh phải xác định được phần thực, phần ảo của số phức, vận dụng định nghĩa hai số phức bằng nhau. Đồng thời kết hợp máy tính cầm tay. ●Ví dụ 1: Tìm các số thực x, y biết: 2 x 1 1 2 y i 2 x 3 y 2 i. 1 3 1 3 A. x ; y . B. x 1; y 1. C. x 3; y 1. D. x ; y . 3 5 3 5 Giải
- 5 1 2 x 1 2 x x 3 Ta có: . 1 2 y 3 y 2 y 3 5 Chọn đáp án A. Nhận xét: Giáo viên cần cho học sinh nhận dạng phương trình thu được có bao nhiêu ẩn. Đối với bài toán trên để giải pt 2 x 1 2 x không cần thu gọn mà nhập pt vào máy và bấm SHIFT CALC “=”, nếu muốn kết quả ở dạng phân số phấm “=” và “sd”. Tương tự cho pt 1 2 y 3 y 2 , tuy nhiên ta không nhập biến y mà nhập biến x, chú ý kết quả đổi x thành y. ●Ví dụ 2: Tìm các số thực x, y biết: 4 x 3 3 y 2 i y 1 x 3 i. 7 6 17 24 7 6 A. x ;y . B. x ; y . C. x 1; y 2. D. x ;y . 11 11 11 11 11 11 Giải 7 x 4 x 3 y 1 4 x y 2 11 Ta có: . 3 y 2 x 3 x 3 y 1 y 6 11 Chọn đáp án D. Nhận xét: Cả hai phương trình thu được là phương trình bậc nhất hai ẩn, để a1 x b1 y c1 giải hệ trên ta thu gọn đưa về đúng dạng rồi sử dụng máy tính bấm a2 x b2 y c2 MODE51 rồi nhập các hệ số vào sau đó bấm “=” máy hiện nghiệm của hpt. 2.3.2 Tìm tập hợp điểm trên mặt phẳng tọa độ biểu diễn các số phức thỏa yêu cầu đề bài: Đối với dạng này yêu cầu học sinh ôn lại dạng của phương trình đường tròn, cách tìm tâm, bán kính của đường tròn, dạng của phương trình đường thẳng, pt đường elip,… Kết hợp với các kiến thức về số phức như phần thực, phần ảo, môđun, số phức liên hợp. ●Ví dụ 1: Trên mặt phẳng tọa độ tập hợp điểm biểu diễn các số phức thỏa mãn điều kiện phần thực của z bằng phần ảo của nó là: A. đường tròn tâm O, bán kính 1. B. hình tròn tâm O, bán kính 1. C. đường thẳng có phương trình y x. D. đường thẳng có phương trình y x.
- 6 Giải Giả sử z x yi x, y R; i 2 1 . Vì phần thực của z bằng phần ảo của nó nên ta có pt x y . Kết luận: Tập hợp điểm thoả yêu cầu đề bài là đường phân giác của góc phần tư thứ nhất và góc phần tư thứ ba. Chọn đáp án C. Nhận xét: Học sinh phải nhớ phương trình đường phân giác của mặt phẳng tọa độ Oxy. ●Ví dụ 2: Trên mặt phẳng tọa độ tập hợp điểm biểu diễn các số phức thỏa mãn điều kiện: z i z 2 là: A. đường tròn tâm I 2;1 , bán kính 2. B. hình tròn tâm I 2; 1 , bán kính 2. C. đường thẳng có phương trình 4 x 2 y 3 0. D. đường thẳng có phương trình 4 x 2 y 3 0. Giải Giả sử z x yi x, y R; i 2 1 . Ta có: z i z 2 x yi i x yi 2 x y 1 i ( x 2) yi x 2 y 1 x 2 2 2 y2 4 x 2 y 3 0. Kết luận: Tập hợp điểm thoả yêu cầu đề bài là đường thẳng có pt 4 x 2 y 3 0. Chọn đáp án C. Nhận xét: Học sinh phải có kĩ năng khai triển hằng đẳng thức, thu gọn pt. ●Ví dụ 3: Trên mặt phẳng tọa độ tìm tập hợp điểm biểu diễn các số phức thỏa mãn điều kiện z i 1. A. Đường tròn tâm I 0; 1 , bán kính 1 . B. Hình tròn tâm I 0;1 , bán kính 1. C. Đường thẳng có phương trình x y 0. D. Đường thẳng có phương trình x y 2 0.
- 7 Giải Giả sử z x yi x, y R; i 2 1 . Ta có: z i 1 x yi i 1 x y 1 i 1 x2 y 1 1 2 x 2 y 1 1. 2 Kết luận: Tập hợp điểm thoả yêu cầu đề bài là hình tròn tâm I 0;1 và bán kính R 1. Chọn đáp án B. 2.3.3 Tìm số phức z thỏa yêu cầu đề bài: Đối với dạng này yêu cầu học sinh nắm vững các kiến thức về phần thực, phần ảo, môđun của số phức. ●Ví dụ 1: Tìm số phức z biết z 5 và phần thực của z bằng hai lần phần ảo của nó. 10 3 5 3 10 3 5 3 A. z 2 5 5i z 2 5 5i. B. z iz i. 3 3 3 3 C. z 2 i z 2 i. D. z 5 2 5i z 5 2 5i. Giải Giả sử z x yi x, y R; i 2 1 . x yi 5 2 y y 2 25 x2 y 2 5 2 Ta có: x 2y x 2y x 2y x 2 5 x 2 5 . y 5 y 5 z 2 5 5i Trả lời: Có hai số phức cần tìm là . z 2 5 5i Chọn đáp án A. Nhận xét: Học sinh phải đọc hiểu đề biết chuyển từ diễn đạt bằng lời sang kí hiệu Toán học, có kĩ năng giải hệ pt bằng phương pháp thế, kết hợp sử dụng MTCT. ●Ví dụ 2: Tìm số phức z biết z (2 i) 10 và z. z 5. A. z 1 2i z 1 2i. B. z 1 2i z 1 2i. C. z 2 i z 2 i. D. z 2 i z 2 i.
- 8 Giải Giả sử z x yi x, y R; i 2 1 . z 2 i 10 x yi 2 i 10 Ta có: z.z 5 x2 y 2 5 x 2 y 1 i 10 x 2 y 1 2 2 10 x2 y 2 5 x2 y 2 5 x 2 y 2 5 x 1 x 1 . y 2 x y 2 y 2 z 1 2i Trả lời: Có hai số phức cần tìm là . z 1 2i Chọn đáp án B. Nhận xét: Học sinh phải có kĩ năng giải hệ pt bằng phương pháp thế, kết hợp sử dụng máy tính cầm tay. ●Ví dụ 3: Tìm số phức z biết z 2 2 và z 2 là số thuần ảo. A. z 2 2i z 2 2i. B. z 2 2i z 2 2i. C. z 2 2i z 2 2i. D. z 2 2i z 2 2i z 2 2i z 2 2i. Giải Giả sử z x yi x, y R; i 2 1 . Ta có: z 2 x yi x2 y 2 2 xyi. 2 Vì z 2 là số thuần ảo nên x2 y 2 0. x yi 2 2 x 2 y 2 2 2 x2 y 2 8 Ta có: 2 x y 0 x y 0 x y 0 2 2 2 2 2 x 2 x 2 x 2 x 2 . y 2 y 2 y 2 y 2 Trả lời: Có bốn số phức cần tìm là: z1 2 2i; z 2 2 2i; z 3 2 2 i; z 4 2 2 i. Chọn đáp án D. Nhận xét: Học sinh phải biết khái niệm số thuần ảo. 2.3.4 Tính giá trị của biểu thức: Đối với dạng này yêu cầu học sinh biết sử dụng máy tính cầm tay cùng với các kiến thức về phần thực, phần ảo, số phức liên hợp.
- 9 ●Ví dụ 1: Cho số phức z i 3i 1 . Số phức liên hợp của z là: A. z 3 i B. z 3 i C. z 3 i D. z 3 i Giải z i 3i 1 3 i z 3 i. Chọn đáp án D. ●Ví dụ 2: Cho hai số phức z1 1 i và z2 2 3i . Tính môđun của số phức z1 z2 ? A. z1 z2 13 B. z1 z2 5 C. z1 z2 1 D. z1 z2 5 Giải z1 z2 1 i 2 3i 13. Chọn đáp án A. 5 4i ●Ví dụ 3: Cho số phức z biết: z 4 3i phần thực và phần ảo của z 3 6i là : 73 17 73 17 17 73 17 73 A. và i. B. và . C. và i. D. và . 15 5 15 5 5 15 5 15 Giải 5 4i 73 17 z 4 3i i. 3 6i 15 5 Chọn đáp án B. i 2017 ●Ví dụ 4: Biểu diễn về dạng z a bi của số phức z là số phức 1 2i 2 nào? 4 3 4 3 3 4 4 3 A. i. B. i. C. i. D. i. 25 25 25 25 25 25 25 25 Giải i 2017 4 3 z i. 1 2i 2 25 25 Chọn đáp án D. ●Ví dụ 5: Số phức nào sau đây là số thực? 1 2i 1 2i 1 2i 1 2i A. z . B. z . 3 4i 3 4i 3 4i 3 4i
- 10 1 2i 1 2i 1 2i 1 2i C. z . D. z . 3 4i 3 4i 3 4i 3 4i Giải 1 2i 1 2i 6 8 z i A sai. 3 4i 3 4i 25 25 1 2i 1 2i 2 z B đúng. 3 4i 3 4i 5 1 2i 1 2i 4 z i C sai. 3 4i 3 4i 25 1 2i 1 2i 4 z i D sai. 3 4i 3 4i 5 Chọn đáp án B. ●Ví dụ 6: Tìm số phức z, biết z 2 3i . 2 A. z 7 6 2i. B. z 7 6 2i. C. z 7 6 2i. D. z 6 2i. Giải 2 z 2 3i 7 6 2i z 7 6 2i. Chọn đáp án C. Nhận xét: Học sinh phải sử dụng thành thạo MTCT kết hợp với các kiến thức về số phức như phần thực, phần ảo, số phức liên hợp. Chế độ số phức: MODE2, nhập cả biểu thức vào máy và bấm “=”, máy cho kết quả của z rất nhanh và chính xác. Tìm môđun của số phức bấm SHIFT hyb rồi nhập biểu thức vào và bấm “=”. 2.3.5 Giải phương trình trên tập số phức: 2.3.5.1 Phương trình bậc nhất chứa một biến z hoặc z : Giải tương tự như giải pt bậc nhất trong tập số thực. ●Ví dụ 1:Trên tập số phức, nghiệm z của phương trình: 4 5i z 2 i là: 3 14 3 14 A. z 2 6i. B. z i. C. z 2 4i. D. z i. 41 41 41 41 Giải 2i 3 14 4 5i z 2 i z i. 4 5i 41 41 Chọn đáp án B.
- 11 Nhận xét: Máy tính ở chế độ MODE 2 ta không bấm SHIFT CALC được. ●Ví dụ 2: Trên tập số phức, nghiệm cuả phương trình: 3 2i 2 z i 3i là: 36 15 15 36 A. z i. B. z i. 169 169 169 169 36 154 C. z 5 14i. D. z i. 169 169 Giải 3i 3 2i 2 z i 3i z i 3 2i 2 36 15 z i i 169 169 36 15 36 154 z i i i. 169 169 169 169 Chọn đáp án D. 3 5i ●Ví dụ 3:Trên tập số phức, nghiệm của phương trình: 2 4i là: z 7 11 7 11 A. z i. B. z i. C. z 1 9i. D. z 1 i. 10 10 17 17 Giải 3 5i 3 5i 7 11 2 4i z i. z 2 4i 10 10 Chọn đáp án A. ●Ví dụ 4: Trên tập số phức, nghiệm của phương trình: 5 2i z 2 i 4 z 3i là: 2 8 6 8 22 32 6 2 A. z i. B. z i. C. z i. D. z i. 17 17 5 5 29 29 5 5 Giải 5 2i z 2 i 4z 3i 5 2i z 4z 3i 2 i 1 2i z 2 4i 2 4i 6 8 z i. 1 2i 5 5 Chọn đáp án B.
- 12 Nhận xét: Đối với pt chứa nhiều ẩn z, ta chuyển z về một vế, số về một vế rồi đặt z làm nhân tử chung. ●Ví dụ 5: Trên tập số phức, nghiệm z của phương trình: 2 i z 1 2i i3 là: 1 3 1 3 A. z 1 i B. z i. C. z 1 i D. z i. 5 5 5 5 Giải 2 i z 1 2i i3 2 i z i3 1 2i 2 i z 1 3i 1 3i z 1 i 2i z 1 i. Chọn đáp án C. Nhận xét: Đối với pt chứa ẩn z giải tương tự như giải pt chứa ẩn z, tuy nhiên chú ý khi tìm được z thì suy ra z. 2.3.5.2 Phương trình bậc nhất chứa cả z và z : Ta thay z x yi, z x yi vào pt, biến đổi để sử dụng được tính chất hai số phức bằng nhau để tìm x, y. ●Ví dụ 6: Trên tập số phức, nghiệm z của phương trình: 1 3i z 1 2i z 2 9i 0 là: A. z 3 3i. B. z 1 2i. C. z 2 i. D. z 1 2i. Giải Giả sử z x yi x, y R; i 2 1 z x yi. Ta có: 1 3i x yi 1 2i x yi 2 9i y 5x 2 y i 2 9i y 2 x 1 . 5 x 2 y 9 y 2 Vậy z 1 2i. Chọn đáp án D. 2.3.5.3 Phương trình bậc hai với hệ số thực: Sử dụng MTCT cùng với các kiến thức về phần thực, phần ảo, số phức liên hợp. ●Ví dụ 1: Trên tập số phức, nghiệm của phương trình: z 2 z 7 0 là:
- 13 1 3 3 1 3 3 z i z i A. 2 2 . B. 2 2 . 1 3 3 1 3 3 z i z i 2 2 2 2 1 3 1 3 z i z i C. 2 2 . D. 2 2 . 1 3 1 3 z i z i 2 2 2 2 Giải 1 3 3 z i z z7 0 2 2 2 . 1 3 3 z i 2 2 Chọn đáp án A. Nhận xét: Vì đề thi là trắc nghiệm nên ta sử dụng MTCT để cho kết quả là nghiệm của pt. Cách bấm: MODE53, nhập các hệ số của pt và bấm “=”. ●Ví dụ 2: Gọi z1, z2 là hai nghiệm của phương trình: z 2 4 z 5 0. Tính z1 z2 . A. z1 z2 0. B. z1 z2 2. C. z1 z2 5. D. z1 z2 2 2. Giải z 2i z2 4z 5 0 1 z2 2 i z1 z2 2 i 2 i 2. Chọn đáp án B. ●Ví dụ 3: Cho số phức z có phần ảo âm và thỏa mãn z 2 3z 5 0. Tìm mô đun của số phức: w 2 z 3 14i. A. w 14 11. B. w 5. C. w 14 11. D. w 14. Giải 3 11 z 2 3z 5 0 z i 2 2 3 11 w 2 z 3 14i 2 i 3 14i 14 11. 2 2
- 14 Chọn đáp án C. ●Ví dụ 4: Kí hiệu z0 là nghiệm phức có phần ảo dương của phương trình 4 z 2 16 z 17 0. Trên mặt phẳng toạ độ, điểm nào biểu diễn số phức w iz0 ? 1 1 1 1 A. M ; 2 . B. M ; 2 . C. M 2; . D. M 2; . 2 2 2 2 Giải 1 4 z 2 16 z 17 0 z0 2 i 2 1 1 w iz0 i 2 i 2i. 2 2 1 Vậy điểm biểu diễn số phức w là điểm M ; 2 . 2 Chọn đáp án B. ●Ví dụ 5: Gọi z1 và z2 là các nghiệm của phương trình z 2 3z 5 0. Gọi M, N là các điểm biểu diễn của z1 và z2 trên mặt phẳng phức. Tìm độ dài của đoạn MN. A. MN 5. B. MN 5. C. MN 3. D. MN 11. Giải 3 11 3 11 z1 i M ; 2 2 2 2 z 2 3z 5 0 z 3 11 3 11 i N ; 2 2 2 2 2 MN 0; 11 MN 11. Chọn đáp án D. Nhận xét: Yêu cầu học sinh sử dụng thành thạo MTCT, tìm môđun của số phức bấm SHIFT hyb rồi nhập biểu thức vào và bấm “=”. Chú ý giả thiết số phức z có phần ảo âm hoặc z0 là nghiệm phức có phần ảo dương để tìm z hoặc z0 cho đúng. ●Ví dụ 6: Tìm b, c sao cho phương trình: z 2 bz c 0 có một nghiệm là z1 1 3i. A. b 2 và c 10. B. b 5 và c 2.
- 15 C. b 10 và c 5. D. b 2 và c 5. Giải Vì z1 1 3i là một nghiệm của phương trình z 2 bz c 0 nên ta có: 1 3i b 1 3i c 0 2 8 6i b 3bi c 0 b c 3bi 8 6i b c 8 b 2 3b 6 c 10 Chọn đáp án A. Nhận xét: Nếu phần trắc nghiệm có 4 kết quả b, c thì ngoài cách làm trên ta có thể thế b, c ở từng đáp án vào pt z 2 bz c 0 rồi bấm MODE53 để tìm nghiệm, đáp án nào cho pt có nghiệm z1 1 3i là đáp án đúng. ●Ví dụ 7: Lập phương trình bậc hai có nghiệm là z 1 i 2 và z 1 i 2. A. z 2 2 z 3 0. B. z 2 2 z 3 0. C. z 2 z 3 0. D. z 2 z 3 0. Giải 1 i 2 1 i 2 2 Ta có: 1 i 2 1 i 2 3 Suy ra 1 i 2 và 1 i 2 là hai nghiệm của pt: z 2 2 z 3 0. Chọn đáp án B. Nhận xét: Học sinh cần nắm hệ quả của định lí Vi-et. Ngoài ra, ta có thể sử dụng MTCT lần lượt kiểm tra nghiệm của các pt ở 4 đáp án, pt nào có 2 nghiệm là z 1 i 2 và z 1 i 2 thì chọn. 2.3.5.4 Phương trình bậc ba với hệ số thực: Dùng MTCT để tìm các nghiệm của pt. ●Ví dụ 1: Trên tập số phức, nghiệm của phương trình: z 3 8 0 là: A. z 2. B. z 2. C. z 2i z 2i. D. z 2 z 1 3i z 1 3i. Giải
- 16 z 2 z 3 8 0 z 1 3i z 1 3i Chọn đáp án D. Nhận xét: Vì đề thi là trắc nghiệm nên ta sử dụng MTCT để cho kết quả là nghiệm của pt. Cách bấm: MODE54, nhập các hệ số của pt và bấm “=”. ●Ví dụ 2: Biết z1 1 2i là nghiệm phức của pt az 3 az 2 bz 5 0. Tìm các nghiệm còn lại. A. z2 1 và z3 1 2i. B. z2 2 và z3 1 2i. C. z2 2 và z3 1 2i. D. z2 1 và z3 1 2i. Giải Vì z1 1 2i là một nghiệm của phương trình az 3 az 2 bz 5 0 nên ta có: a 1 2i a 1 2i b 1 2i 5 0 3 2 a 11 2i a 3 4i b 1 2i 5 0 a 8 6i b 1 2i 5 8a b 6a 2b i 5 8a b 5 a 1 6a 2b 0 b 3 pt : z 3 z 2 3z 5 0. Vậy các nghiệm còn lại là: 1 và 1 2i. Chọn đáp án A. 2.3.5.5 Phương trình trùng phương với hệ số thực: Đặt ẩn phụ t đưa pt đã cho về pt bậc hai ẩn t, bấm máy tìm nghiệm t rồi tìm z. ●Ví dụ: Ký hiệu z1 , z2 , z3 , z4 là bốn nghiệm của phương trình: z 4 z 2 12 0 . Tính tổng: T z1 z2 z3 z4 . A. T 4. B. T 2 3. C. T 4 2 3. D. T 2 2 3. Giải Đặt t z 2 , ta được pt: t 2 t 12 0 t4 z2 4 2 t 3 z 3
- 17 z1 2 z 2 2 z i 3 3 z4 i 3 Vậy T 2 2 i 3 i 3 4 2 3. Chọn đáp án C. Nhận xét: Chú ý trong tập số phức khi đặt ẩn phụ đối với pt trùng phương thì không đặt điều kiện cho ẩn phụ. 2.4 Kết quả: Với những phương pháp trên, tôi đã áp dụng để dạy lớp 12C1 trường THPT Ngã Năm. Đối với lớp này mặc dù các em học theo chương trình cơ bản nhưng đa số các em có học lực từ khá trở lên và đều có nguyện vọng thi đại học ở ban tự nhiên. Trong quá trình giảng dạy, tôi thấy đa số các em hiểu và vận dụng tốt khi làm bài tập trên lớp cũng như làm tốt bài kiểm tra cuối chương. Khi kiểm tra tôi ra 2 đề khác nhau ở mức độ tương đương gọi là 2 đề gốc ( phụ lục 1) và từ 2 đề gốc đó mỗi đề trộn thành 4 mã đề. Sau đây là kết quả thống kê điểm số bài kiểm tra 1 tiết chương Số phức: Điểm 0 3.4 3.5 4.9 5 6.4 6.5 7.9 8 10 TB trở lên Số lượng 0 1 2 10 24 36 Qua kết quả trên cho thấy đa số các em đạt điểm từ 8 đến 10 điểm, trong đó 5 em đạt 10 điểm ( phụ lục 2) và 1 em thấp nhất là 4.5 điểm ( phụ lục 3). Một số em chọn đáp án sai là do không đọc kĩ đề từ đó dẫn đến nhầm lẫn. 1 1 1 Chẳng hạn như câu: Tìm số phức z biết rằng . z 1 2i (1 2i)2 10 35 8 14 10 35 10 14 z i. z i. z i. z i. A. 13 26 B. 25 25 C. 13 26 D. 13 25 Học sinh bấm máy tìm được z và chọn ngay đáp án A là sai vì đề bài yêu cầu tìm z nên đáp án đúng là C. Qua đó cho ta thấy việc thi trắc nghiệm đối với môn Toán đòi hỏi mức độ nhanh và chính xác, cả hai yếu tố trên rất quan trọng khi làm bài. Vì vậy giáo viên cần đưa ra những phương pháp cũng như hướng dẫn các em vận dụng thành thạo
- 18 vào giải các dạng bài tập kết hợp với việc hướng dẫn các em sử dụng thành thạo MTCT để hỗ trợ tốt cho việc tính toán.
- 19 PHẦN 3: KẾT LUẬN Để đáp ứng việc đổi mới kiểm tra đánh giá của Bộ giáo dục thì cả giáo viên và học sinh đều phải đổi mới phương pháp dạy và cách học môn Toán cho phù hợp với hình thức thi trắc nghiệm khách quan. Ở chương Số phức thay vì chỉ thi một câu theo hình thức tự luận như những năm trước thì bây giờ phải thi sáu câu theo hình thức trắc nghiệm khách quan. Vì vậy đòi hỏi học sinh phải có kiến thức bao quát hơn. Vì vậy với những dạng bài tập ở trên góp phần giúp học sinh nắm vững những kiến thức cơ bản cũng như những phương pháp để giải các dạng bài tập ở chương này. Đồng thời đây cũng là những kinh nghiệm đúc kết trong quá trình giảng dạy muốn được chia sẽ cho các thầy cô đồng nghiệp. Việc làm bài thi môn Toán theo hình thức trắc nghiệm là một áp lực không nhỏ đối với các em học sinh mà đặc biệt là những em có học lực từ trung bình trở xuống. Do đó trong quá trình giảng dạy giáo viên cần chú ý nhắc đi nhắc lại những kiến thức lý thuyết để các em khắc sâu kiến thức đồng thời nhắc các em đọc kỹ yêu cầu đề bài từ đó phân tích đưa ra lời giải nhanh chóng và chính xác kết hợp với việc sử dụng thành thạo MTCT.
- 20 TÀI LIỆU THAM KHẢO 1. Sách giáo khoa Giải tích 12 cơ bản, nhà xuất bản Giáo dục Việt Nam. 2. Sách bài tập Giải tích 12 cơ bản, nhà xuất bản Giáo dục Việt Nam. 3. Thư viện đề thi và kiểm tra trên internet. 4. Đề minh họa của Bộ Giáo dục và Đào tạo.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm THPT: Một số phương pháp nâng cao thành tích môn nhảy xa kiểu ưỡn thân
13 p | 320 | 48
-
Sáng kiến kinh nghiệm THPT: Một số đề xuất nhằm gây hứng thú tập luyện Thể dục thể thao cho học sinh THPT
8 p | 185 | 22
-
Sáng kiến kinh nghiệm THPT: Tăng cường sử dụng phương pháp dạy học trực quan vào giảng dạy môn Toán THPT
37 p | 43 | 13
-
Sáng kiến kinh nghiệm THPT: Nâng cao hiệu quả dạy học môn Sinh thông qua tổ chức các hoạt động nhóm tích cực tại trường THPT Lê Lợi
19 p | 56 | 10
-
Sáng kiến kinh nghiệm THPT: Vận dụng dạy học STEM trong bài Cacbon của chương trình Hóa học lớp 11 THPT
19 p | 140 | 10
-
Sáng kiến kinh nghiệm THPT: Dạy học theo mô hình STEM bài Sự điện li của nước. pH. Chất chỉ thị axit – bazơ và bài Ankan, Hoá học 11 ở trường THPT
56 p | 21 | 8
-
Sáng kiến kinh nghiệm THPT: Vận dụng mô hình học tập Blended Learning trong dạy học chủ đề 9 Tin học 11 tại Trường THPT Lê Lợi nhằm nâng cao hiệu quả học tập
16 p | 22 | 7
-
Sáng kiến kinh nghiệm THPT: Một số giải pháp nâng cao chất lượng tổ chức hoạt động trải nghiệm sáng tạo môn Ngữ văn trong nhà trường THPT
100 p | 29 | 7
-
Sáng kiến kinh nghiệm THPT: Các biện pháp nâng cao hiệu quả làm bài phần Đọc - hiểu trong đề thi tốt nghiệp môn Ngữ văn THPT
36 p | 26 | 6
-
Sáng kiến kinh nghiệm THPT: Dạy học theo nhóm góp phần giáo dục và rèn luyện kĩ năng sống cho học sinh
10 p | 16 | 5
-
Sáng kiến kinh nghiệm THPT: Giải pháp thực hiện một số công cụ đánh giá theo hướng phát triển phẩm chất, năng lực của học sinh trong dạy học môn Địa lí ở trườngTHPT Lạng Giang số 2
57 p | 20 | 5
-
Sáng kiến kinh nghiệm THPT: Kinh nghiệm tổ chức dạy học trực tuyến tại trường THPT Trần Đại Nghĩa giai đoạn 2020-2022
23 p | 22 | 5
-
Sáng kiến kinh nghiệm THPT: Lồng ghép giáo dục ý thức chống rác thải nhựa qua dạy học môn GDCD 11 trường THPT Nông Sơn
33 p | 22 | 5
-
Sáng kiến kinh nghiệm THPT: Dạy học theo chủ đề tích hợp liên môn bài 13. lực ma sát – Vật Lí 10 cơ bản
36 p | 81 | 5
-
Sáng kiến kinh nghiệm THPT: Dạy học Hóa học và vấn đề phát triển kinh tế, xã hội, môi trường gắn với trải nghiệm sáng tạo nhằm phát huy giáo dục địa phương ở trường THPT Bình Minh
77 p | 26 | 4
-
Sáng kiến kinh nghiệm THPT: Dạy học STEM chủ đề Sự biến đổi chất - Sắc nến lung linh
34 p | 22 | 4
-
Sáng kiến kinh nghiệm THPT: Một số biện pháp quản lí và nâng cao hiệu quả của việc giảng dạy online môn Hóa học ở trường THPT
47 p | 11 | 3
-
Sáng kiến kinh nghiệm THPT: Dạy học tích hợp liên môn Lịch sử - Ngoại ngữ - Giáo dục công dân
60 p | 35 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn