SKKN: Rèn luyện kỹ năng cho học sinh giải hệ phương trình đối xứng
lượt xem 157
download
Nhìn chung việc giải các hệ phương trình đại số là một công việc rất khó khăn và đòi hỏi người học cần phải sáng tạo khéo léo phải biết sử dụng tất cả các kiến thức đã biết để vận dụng vào việc giải toán. Để phát huy tính tích cực của học sinh, việc tiếp thu kiến thức mới và công việc giải toán thì người thầy giáo phải là người tiên phong trong việc phát huy tính tích cực của mình để tìm ra những phương pháp giải toán mới, tìm ra những công cụ mới để ngày càng hoàn thiện hơn bản thân và cống hiến cho những người làm toán những công cụ hữu hiệu để có thể đi sâu vào thế giới của toán học. Mời quý thầy cô tham khảo sáng kiến “Rèn luyện kỹ năng cho học sinh giải hệ phương trình đối xứng”.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: SKKN: Rèn luyện kỹ năng cho học sinh giải hệ phương trình đối xứng
- SÁNG KIẾN KINH NGHIỆM RÈN LUYỆN KỸ NĂNG CHO HỌC SINH GIẢI HỆ PHƯƠNG TRÌNH ĐỐI XỨNG
- A. ĐẶT VẤN ĐỀ : Trong quá trình giảng dạy, việc tổ chức cho học sinh biết ôn tập các kiến thức đã học và vận dụng nó vào việc giải toán là một việc làm rất cần thiết. Việc làm đó thể hiện được sự đổi mới phương pháp giảng dạy và đơn giản hóa các vấn đề phức tạp với mục đích giúp cho học sinh hiểu được bài và vận dụng nó vào giải bài tập. Trong chương trình toán ở trường phổ thông hiện nay, trong sách giáo khoa lớp 10 có trình bày việc giải các hệ phương trình đại số rất đơn giản và thời lượng cũng còn quá ít. Trong khi đó khi học sinh tham dự thi học sinh giỏi các cấp hay thi vào đại học thì lại gặp một vấn đề có thể nói là phức tạp, học sinh rất lúng túng khi giải các bài toán này. Tuy nhiên nếu nắm vững tốt về các phương pháp giải thì đó là cơ hội rèn cho người làm toán một kỹ năng, kỹ xão nhằm hình thành tính sáng tạo trong học và giải toán, ngoài ra còn có cả sự khéo léo trong khi biến đổi để đưa bài toán phức tạp về lớp các bài toán đã biết cách giải. Mặc dù vậy song vẫn là chưa đủ bởi sáng tạo của mỗi người làm toán là vô hạn. Chính vì vậy trong bài viết này tôi muốn đề cập về "Rèn luyện kỹ năng cho học sinh giải hệ phương trình đối xứng " qua thực hiện dạy chương trình tự chọn của môn toán lớp 10 nhằm trang bị thêm cho học sinh một số công cụ hữu hiệu để các hệ phương trình và phương trình đại số. B. QUÁ TRÌNH THỰC HIỆN : Nhằm cung cấp cho học sinh nhận ra các dấu hiệu ban đầu để phân loại và nhận dạng khi thực hiện giải các hệ phương trình đối xứng, trong mỗi loại hệ phương trình đối xứng loại 1 hay loại 2, tôi phân chia thành ba dạng toán như sau: Dạng 1 : Giải hệ phương trình: Dạng 2: Tìm điều kiện tham số để hệ đối xứng loại 1 có nghiệm Dạng 3: Một số bài toán giải bằng cách đưa về hệ phương trình Qua thực tế giảng dạy ở các lớp khối 10 trường THPT và các lớp bồi dưỡng học sinh giỏi, tôi nhận thấy việc phân chia dạng như trên là hợp lý, lôgíc cụ thể, có thể nhanh chóng tìm ra phương pháp chứng minh được bất đẳng thức bằng cách áp dụng phương pháp này vào việc giải toán, từ đó làm nền tảng cho hai kỳ thi tốt nghiệp THPT và thi vào các trường Đại học và Cao đẳng sau này.
- Để cho tiết ôn tập đạt được hiệu quả cao, thì mỗi học sinh phải chuẩn bị bài tốt trước khi đến lớp đồng thời phải biết tích cực, tự giác học tập, phải biết suy nghĩ tìm tòi và sáng tạo. Người giáo viên phải biết dẫn dắt học sinh biết phân tích đề bài, từ đó đi tìm tòi lời giải đúng và sáng tạo, ngắn gọn. Muốn làm tốt khâu này giáo viên thiết kế một giáo án theo hướng tích cực hoá hoạt động học tập, cụ thể tiến hành theo các bước: I. BƯỚC CHUẨN BỊ : 1) Nghiên cứu nội dung cần ôn tập , cần truyền đạt: Vạch ra mục tiêu của bài dạy, chọn lọc kiến thức cần ôn tập và chuẩn bị trước, lập phương án kiểm tra nội dung kiến thức dùng cho tiết ôn tập. 2)Chọn bài tập mẫu : Chọn bài tập theo dụng ý nội dung cần ôn tập phù hợp với các đối tượng học sinh nhằm củng cố kiến thức, rèn luyện kỹ năng, kỹ xảo, rèn luyện tư duy thuật toán hay kiểm tra sự lĩnh hội của học sinh . 3/Phân phối thời gian cho mỗi hoạt động của thầy và trò: Cần phải phân bố thời gian phù hợp với mỗi bài tập. Dự kiến thời gian cho mỗi học sinh giải bài tập trên bảng. 4) Bước chuẩn bị của trò và thầy : 4.1) Chuẩn bị của trò : Các kiến thức cần nắm 4.1.1 Định lý Viét: · Nếu phương trình bậc hai ax2 + bx + c = 0 có hai nghiệm x1, x2 thì: ì b ï S = x1 + x2 = - a ï í ï P = x .x = c ï î 1 2 a · Ngược lại, nếu 2 số x1, x2 thỏa mãn x1 + x2 = S và x1.x2 = P thì x1, x2 là nghiệm của phương trình bậc hai; X2 - SX + P = 0. 4.1.2 Hệ phương trình đối xứng đối với hai ẩn x và y: 1. Phương trình hai ẩn x và y được gọi là đối xứng nếu thay x bởi y; y bởi x thì phương trình không thay đổi. 2. Hệ phương trình đối xứng theo hai ẩn số x, y là hệ phương trình khi ta thay x bởi y và thay y bởi x thì hệ phương trình không thay đổi.
- 3. Một hệ hai phương trình chứa hai ẩn x, y được gọi là đối xứng loại một nếu trao đổi vai trò của x, y thì mỗi phương trình hệ này trở thành chính nó(không thay đổi) ì f ( x, y ) = 0 ì f ( x, y ) = f ( y , x ) Dấu hiệu nhận biết: í , trong đó í î g ( x, y ) = 0 î g ( x, y ) = g ( y , x ) 4. Một hệ hai phương trình chứa hai ẩn x, y được gọi là đối xứng loại hai nếu trao đổi vai trò của x, y thì phương trình này chuyển thành phương trình kia của hệ. ì f ( x, y ) = 0 ì f ( x, y ) = g ( y , x ) Dấu hiệu nhận biết: í , trong đó í . î g ( x, y ) = 0 î g ( x, y ) = f ( y , x ) 4.2)Chuẩn bị của thầy: * Phiếu học tập và phiếu trả lời cho học sinh. * Giấy A 2 cho 4 nhóm học sinh hoạt động * Giáo án và các dụng cụ có liên quan. * Phiếu học tập về các bài tập đề nghị để học sinh tự làm thêm bài tập ở nhà * Bảng tóm tắt phương pháp giải toán cụ thể: Hệ phương trình đối xứng loại 1 Dạng 1: Giải phương trình: Phương pháp giải chung: · Bước 1: Đặt điều kiện (nếu có). · Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và S 2 ³ 4 P . · Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng Viét đảo tìm x, y. Chú ý: + Cần nhớ: x2 + y2 = S2 – 2P, x3 + y3 = S3 – 3SP. + Nếu ( x0 ; y0 ) là nghiệm của hệ phương trình đối xứng loại 1, thì ( y0 ; x0 ) cũng là nghiệm tương ứng. + Nếu hệ phương trình đối xứng loại 1 có nghiệm duy nhất thì theo trên ta được x0 = y0 . + Đôi khi ta phải đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. + Có những hệ phương trình trở thành đối xứng loại 1 sau khi đặt ẩn phụ.
- Dạng 2: Tìm điều kiện tham số để hệ đối xứng loại 1 có nghiệm Phương pháp giải chung: · Bước 1: Đặt điều kiện (nếu có). · Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và S 2 ³ 4 P (*). · Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ điều kiện (*) tìm m. Chú ý: Khi ta đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác điều kiện của u, v. Dạng 3: Một số bài toán giải bằng cách đưa về hệ phương trình. Phương pháp giải chung: Chọn ẩn số phụ u và v thích hợp để đưa về hệ phương trình đối xứng. CÁC BÀI TẬP MẪU: Dạng 1 : Giải hệ phương trình: ì x 2 y + xy 2 = 30 Ví dụ 1. Giải hệ phương trình í 3 . î x + y 3 = 35 ì xy ( x - y ) = -2 Ví dụ 2. Giải hệ phương trình í 3 . îx - y = 2 3 ìx + y + 1 + 1 = 4 ï ï x y Ví dụ 3. Giải hệ phương trình í . ïx + y + + 1 1 2 2 =4 ï î x2 y 2 ì x 2 + y 2 + 2 xy = 8 2 (1) ï Ví dụ 4. Giải hệ phương trình í . ï x+ y=4 î (2) Dụng ý: Ø Củng cố về định nghĩa hệ phương trình đối xứng. Ø Rèn luyện cho học sinh các kỹ năng giải hệ phương trình đối xứng Ø Rèn luyện kỹ năng dùng ẩn số phụ để đưa một hệ phương trình về hệ phương trình đối xứng loại 1. Ø Rèn luyện kỹ năng dùng các hằng đẳng thức quen thuộc để biến đổi biểu thức đối xứng theo S = x+y và P = x.y
- Dạng 2: Tìm điều kiện tham số để hệ đối xứng loại 1 có nghiệm Phương pháp giải chung: + Bước 1: Đặt điều kiện (nếu có). + Bước 2: Đặt S = x + y, P = xy với điều kiện của S, P và S ³ 4P (*). 2 + Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P theo m rồi từ điều kiện (*) tìm m. Chú ý: Khi ta đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv thì nhớ tìm chính xác điều kiện của u, v. Bài tập : Ví dụ 1 (trích đề thi ĐH khối D – 2004). Tìm điều kiện m để hệ phương trình ì x + y =1 sau có nghiệm thực: í . î x x + y y = 1 - 3m ì x + y + xy = m Ví dụ 2. Tìm điều kiện m để hệ phương trình í 2 có nghiệm î x y + xy = 3m - 9 2 thực. ì x - 4 + y -1 = 4 Ví dụ 3. Tìm điều kiện m để hệ phương trình í có nghiệm î x + y = 3m thực. ì x 2 + y 2 + 4 x + 4 y = 10 Ví dụ 4. Tìm điều kiện m để hệ phương trình í có î xy ( x + 4)( y + 4) = m nghiệm thực. ì x 2 + y 2 = 2(1 + m) Ví dụ 5. Tìm điều kiện m để hệ phương trình í có đúng hai î ( x + y) = 4 2 nghiệm thực. ì x + y + xy = 2m + 1 Ví dụ 6. Tìm điều kiện m để hệ phương trình í có nghiệm î xy ( x + y ) = m 2 + m duy nhất. Dụng ý : Ø Củng cố về định nghĩa hệ phương trình đối xứng. Ø Rèn luyện cho học sinh các kỹ năng tìm điều kiện của tham số để hệ phương trình đối xứng có nghiệm, có hai nghiệm, có nghiệm duy nhất.
- Ø Rèn luyện kỹ năng dùng ẩn số phụ để đưa một hệ phương trình về hệ phương trình đối xứng loại 1. Ø Rèn luyện kỹ năng dùng các hằng đẳng thức quen thuộc để biến đổi biểu thức đối xứng theo S = x+y và P = x.y Dạng 3: Một số bài toán giải bằng cách đưa về hệ phương trình 3 Ví dụ. Giải phương trình: 3 x + 3 1- x = . 2 Dụng ý: Ø Rèn luyện cho học sinh các kỹ năng đặt ẩn số phụ để đưa một phương trình đại số vế hệ phương trình đối xứng, thông qua đó để giải một số phương trình đại số phức tạp. Hệ phương trình đối xứng loại 2: Phương pháp giải chung: · Bước 1: Đặt điều kiện (nếu có). · Bước 2: Lấy (1) - (2) hoặc (2) - (1) ta được: (x-y)g(x,y)=0. Khi đó ta được x-y=0 hoặc g(x,y)=0. + Trường hợp 1: x-y=0 kết hợp với phương trình (1) hoặc (2) suy ra được nghiệm. + Trường hợp 2: g(x,y)=0 kết hợp với phương trình (1) + (2) suy ra nghiệm (trong trường hợp này hệ phương trình mới trở về hệ đối xứng loại 1) và thông thường vô nghiệm. CÁC BÀI TẬP MẪU: ì x 3 = 3 x + 8 y (1) ï Ví dụ 1: Giải hệ phương trình í 3 (I) ï î y = 3 y + 8x ( 2) ìx + 4 y -1 = 1 ï Ví dụ 2: Giải hệ phương trình í ï y + 4 x -1 = 1 î ìx = y2 - y + m Ví dụ 3: Cho hệ phương trình í (I) îy = x - x + m 2 a. Tìm m để hệ phương trình có nghiệm. b. Tìm m để hệ phương trình có nghiệm duy nhất.
- Ví dụ 4: Giải phương trình: x3 + 1 = 2 3 2 x - 1 . II.BƯỚC SOẠN GIẢNG: Ngày soạn: …………… Tên bài : HỆ PHƯƠNG TRÌNH ĐỐI XỨNG Ngày dạy: ……………. ( Chuyên đề tự chọn Toán 10 – Nâng cao) Tiêt PPCT : 28,29 A> Mục tiêu bài dạy: 1. Kiến thức : Hiểu và nhận biết được hệ phương trình đối xứng. Hệ thống hóa được các hằng đẳng thức cơ bản thường dùng. 2. Kỹ năng : Biết cách giải các dạng bài tập của hệ phương trình đại số, biết vận dụng các hằng đẳng thức liên quan để biến đổi đưa về biểu thức đối xứng của S = x + y và P = x.y. 3. Tư duy : Rèn luyện tư duy so sánh, tư duy thuật toán, tương tự hoá và tư duy logic. B>Đồ dùng dạy học: 1.GV : Bảng tóm tắt các phương pháp giải toán theo từng dạng và phiếu học tập phát cho học sinh kiểm tra ở phần củng cố cuối mỗi dạng toán. 2. HS : Bảng tóm tắt các hằng đẳng thức thường dùng của biểu thức đối xứng. C>Hoạt động dạy và học : 1.Kiểm tra bài cũ Tiết 1( Tiết 34) 2 phút: Kiểm tra việc lập bảng tóm tắt các công thức lượng giác ở nhà của học sinh. Tiết 2(Tiết 35) 2 phút: 2. Hoạt động trên lớp : Hoạt động của giáo giáo viên và học sinh Nội dung ghi bảng Tiết: 1( Tiết 28) Hoạt động 1 (20 phút) Dạng 1 : •GV giới thiêu hệ phương trình đối xứng loại 1 Giải hệ phương trình Giáo viên phát phiếu học tập về bài tập
- dạng 1 cho học sinh. Sau đó chia lớp thành Phương pháp: 4 nhóm mỗi nhóm thực hiện theo sự phân chia như sau: · Bước 1: Đặt điều kiện (nếu có). · Bước 2: Đặt S = x + y, P = xy với điều Nhóm 1 Nhóm 2 Nhóm 3 Nhóm 4 VD1 VD2 VD1 VD2 kiện của S, P và S 2 ³ 4 P . VD3 VD4 VD3 VD4 · Bước 3: Thay x, y bởi S, P vào hệ phương trình. Giải hệ tìm S, P rồi dùng hệ Sau đó GV hướng dẫn học sinh biến đổi hệ thức Viét đảo tìm x, y. phương trình theo các biểu thức của S và P Chú ý: vào 4 ví dụ của bài tập dạng 1. + Cần nhớ: x2 + y2 = S2 – 2P, GV cho đại diện mỗi nhóm phân tích đề bài x3 + y3 = S3 – 3SP. và nêu cách giải của từng ví dụ + Đôi khi ta phải đặt ẩn phụ u = u(x), v = v(x) và S = u + v, P = uv. + Có những hệ phương trình trở thành đối xứng loại 1 sau khi đặt ẩn phụ. CÁC VÍ DỤ MINH HỌA * Đối với VD 1: VD 1: Giải hệ phương trình GV: Em hãy cho biết VD1 yêu cầu gì ? ì x 2 y + xy 2 = 30 Muốn giải bài toán này ta làm như thế nào? í 3 . î x + y = 35 3 ( Cho đại diện nhóm 1 ) HS nhóm 1: Giải: +VD1 yêu cầu giải phương trình +Muốn giải phương trình thì ta phải Đặt S = x + y, P = xy , điều kiện S ³ 4 P . 2 biến đổi từng phương trình của hệ qua biểu Hệ phương trình trở thành: ìS = x + y ì SP = 30 ï ï thức S và P bằng cách đặt í và í î P = x. y ï S(S2 - 3P) = 35 ï î giải hệ để tìm S,P rồi dùng Định lý Viet1 ï P = 30 ì ï đảo tìm x, y ï S Û ïí ï S S2 - 90 = 35 ï ï ( ) ï î S
- ìS= 5 ï Û ï í ïP = 6 ï î ìx+ y= 5 ï Û ï í ï xy = 6 ï î ìx= 2 ìx= 3 ï ï Û ï í Úï í ïy= 3 ïy= 2 ï ï î î Vậy hệ phương trình đã cho có hai nghiệm là: (2;3) và (3;2) * Đối với VD 2: VD 2: Giải hệ phương trình GV: Em hãy cho biết ví dụ 2 yêu cầu gì ? ì xy ( x - y ) = -2 í 3 . Muốn giải bài toán này ta làm như thế nào? îx - y = 2 3 ( Cho đại diện nhóm 2 trả lời) Giải: HS nhóm 2: +VD2 yêu cầu giải hệ phương trình ìt = - y ï ì xy ( x - y ) = -2 Đặt í S = x + t , í 3 ï P = xt îx - y = 2 3 î +Muốn giải hệ phương trình thì ta đưa điều kiện S 2 ³ 4 P về hệ đối xứng loại 1, bằng cách đặt : Hệ phương trình trở thành: t = - y. Từ đó biến đổi hệ phương trình trở ì xt(x + t) = 2 ï ï SP = 2 ì ï ï Û í 3 ì xt(x + t) = 2 ï í 3 ï x + t3 = 2 ï S - 3SP = 2 thành: ï 3 í . Đây là hệ đối xứng ï î ï î ï x + t3 = 2 ï ìS= 2 ìx= 1 ìx= 1 î ï ï ï loại 1 đã biết cách giải. Û ï í Û ïí Û ï í ïP = 1 ï ït = 1 ï ïy= - 1 ï î î î Vậy hệ phương trình có một nghiệm là (1;-1) * Đối với VD 3: VD3: Giải hệ phương trình GV: Em hãy cho biết ví dụ 3 yêu cầu gì ? Muốn giải bài toán này ta làm như thế nào?
- ( Cho đại diện nhóm 3 trả lời) ìx + y + 1 + 1 = 4 HS nhóm 3: ï ï x y í . +VD3 yêu cầu giải hệ phương trình ï x 2 + y 2 + + 1 1 =4 ìx + y + + = 4 1 1 ï î x2 y 2 ï ï x y í Giải: ï x2 + y2 + 1 + 1 = 4 Điều kiện x ¹ 0, y ¹ 0 . ï î x2 y 2 Hệ phương trình tương đương với: +Muốn giải hệ phương trình thì ta đưa ì 1 æ 1ö về hệ đối xứng loại 1, (ï ï ï ) bằng cách ï x + x + ç y + y ø = 4 ç è ÷ ÷ 1 1 í 2 xem x + và y + là hai ẩn số mới, đặt : ï 2 ï x + 1 + æy + 1 ö = 8 x y (ï ï ï î ) x ç ç è ÷ ÷ yø 1 æ 1ö ( S= x+ x) + ç y + ÷, ç è yø÷ Đặt 1 æ 1ö ( P = x+ 1 æ ) 1ö ç y + ÷,÷ ( S= x+ ) x + ç y + ÷, ç è yø ÷ x çè yø 1 æ 1ö S2 ³ 4P ( P = x+ ) x è ç y + ÷, ç ÷ yø Từ đó biến đổi hệ phương trình theo S, P. S2 ³ 4P Giải hệ tìm S,P Þ x, y. ta có: ìS= 4 ï ìS= 4 ï ï Û íï í 2 ï S - 2P = 8 ï ïP = 4 ï î î ï x + 1 + æy + 1 ö = 4 ì ï ï ï ( x )ç ç è ÷ ÷ yø Û í ï ï x + 1 æy + 1 ö = 4 ï ï ï î ( ç x ç è ) yø ÷ ÷ ïx+ 1 = 2 ì ï ï x ìx= 1 ï Û ïí Û ï í . ï 1 ïy= 1 ïy+ = 2 ï ï î ï î y Vậy nghiệm của hệ phương trình là : (1 ; 1) Đối với VD 4: VD 4: Giải hệ phương trình GV: Ví dụ này yêu cầu mức độ khó hơn 3 ì x 2 + y 2 + 2 xy = 8 2 (1) ï ví dụ đầu. Ở phương trình (2) của hệ có í . chứa x và y tuy nhiên khi bình phương ï x+ y=4 î (2) Giải:
- hai vế lại xuất hiện xy , do đó nếu đặt Điều kiện x, y ³ 0 . t = xy .Em hãy biến đổi x + y và x 2 + y 2 Đặt t = xy ³ 0 , ta có: theo t? Muốn giải bài toán này ta làm như · xy = t 2 và (2) Þ x + y = 16 - 2t . thế nào? · x 2 + y 2 = t 2 - 32t + 128 ( Cho đại diện nhóm 4 trả lời) · Thế vào (1), ta được: HS nhóm 4: t 2 - 32t + 128 = 8 - t ( t ³ 0 ) + Đặt t = xy ³ 0 , ta có: xy = t . 2 ì ï8- t ³ 0 ï + Từ (2) Þ x + y = 16 - 2t . ï ï Û ït³ 0 í + x + y = t - 32t + 128 2 2 2 ï ï 2 ï t - 32t + 128 = 64 - 16t + t 2 ï + Đến bước bài toán đã đơn giản và đã biết ï î GV cho các nhóm thảo luận.Sau đó nhóm 1 ì0£ t £ 8 ï và nhóm 3 kiểm tra chéo lẫn nhau; nhóm 2 Û ïí ït = 4 ï î và nhóm 4 kiểm tra chéo lẫn nhau. Mỗi Û t = 4 nhóm cử một người lên bảng trình bày sau Suy ra: đó cho cả lớp nhận xét. Cuối cùng giáo ì xy = 16 ï ìx= 4 ï viên nhận xét đánh giá. ï í Û ïí . ïx+ y= 8 ï ïy= 4 ï î î Vậy nghiệm của hệ phương trình là : (4 ; 4) Hoạt động 2 ( 20 phút) : GV phát phiếu bài Dạng 2: Tìm điều kiện tham số để hệ đối tập dạng 2 cho HS. xứng loại 1có nghiệm GV : Hãy nêu điều kiện để hệ phương trình Phương pháp giải chung: đối xứng loại 1 có nghiệm ? + Bước 1: Đặt điều kiện (nếu có). HS : Hệ phương trình đối xứng loại 1 có + Bước 2: Đặt S = x + y, P = xy với điều nghiệm khi và chỉ khi S 2 ³ 4 P . kiện của S, P và S 2 ³ 4 P (*). GV chia lớp thành 4 nhóm: + Bước 3: Thay x, y bởi S, P vào hệ phương * Nhóm I và II giải 2 Ví dụ 1, 3, 5. trình. Giải hệ tìm S, P theo m rồi từ điều * Nhóm III và IV giải 2 Ví dụ 2, 4, 6. kiện (*) tìm m. Sau đó hoán vị cho mỗi nhóm cùng làm Chú ý: Khi ta đặt ẩn phụ u = u(x), v = v(x) bài tập giống nhau nhận xét rồi cho cả lớp và S = u + v, P = uv thì nhớ tìm chính xác cùng nhận xét và GV đánh giá. Cuối cùng điều kiện của u, v. GV treo phiếu trả lời và chỉnh sửa cho học sinh những sai lầm. Sơ đồ nhóm như sau: Bảng đen
- Nhóm I Nhóm II CÁC VÍ DỤ MINH HỌA Nhóm III Nhóm IV Phiếu trả lời 2.1 VD1: (trích đề thi ĐH khối D – 2004). Điều kiện x, y ³ 0 ta có: Tìm điều kiện m để hệ phương trình sau có ì x+ y = 1 ï ì x + y =1 ï í nghiệm thực: í ï x x + y y = 1 - 3m ï î î x x + y y = 1 - 3m ì x+ y = 1 ï Giải: Û ïí ï ( x)3 + ( y)3 = 1 - 3m Điều kiện x, y ³ 0 ta có: ï î ì x+ y = 1 ï Đặt S = x + y ³ 0, P = xy ³ 0 , S2 ³ 4P. ï í Hệ phương trình trở thành: ï x x + y y = 1 - 3m ï î ïS= 1 ì ï ïS= 1 ì ï ì x+ y = 1 ï í 3 Û í . Û ïí ï S - 3SP = 1 - 3m ï ïP = m ï ï ( x)3 + ( y)3 = 1 - 3m ï î î î Từ điều kiện S ³ 0, P ³ 0, S2 ³ 4P ta có Đặt S = x + y ³ 0, P = xy ³ 0 , S2 ³ 4P. 1 Hệ phương trình trở thành: 0£ m£ . 4 ìS= 1 ï ìS= 1 ï ï Û íï . í 3 ï S - 3SP = 1 - 3m ï ïP = m ï î î Từ điều kiện S ³ 0, P ³ 0, S2 ³ 4P ta có 1 0£ m£ . 4 Phiếu trả lời 2.2 VD2: Tìm điều kiện m để hệ phương trình ì x + y + xy = m ï ï í 2 ì x + y + xy = m ï x y + xy 2 = 3m - 9 í 2 có nghiệm thực. ï î î x y + xy = 3m - 9 2 . ì (x + y) + xy = m ï Û ï í Giải: ï xy(x + y) = 3m - 9 ï î ì x + y + xy = m ï ï Đặt S = x + y, P = xy, S ³ 4P. Hệ phương 2 í 2 ï x y + xy 2 = 3m - 9 ï î ï S+ P = m ì . trình trở thành: ïí . ì ï (x + y) + xy = m ï SP = 3m - 9 ï î Û ï í ï xy(x + y) = 3m - 9 ï Suy ra S và P là nghiệm của phương trình î t 2 - mt + 3m - 9 = 0 Đặt S = x + y, P = xy, S2 ³ 4P. Hệ phương trình trở thành:
- ìS= ï 3 ìS= m- 3 ï ìS+ P = m ï Þ ï í ï Úí . ï í . ïP = ï m- 3 ïP = 3 ï ï SP = 3m - 9 ï î î î Từ điều kiện ta suy ra hệ có nghiệm Suy ra S và P là nghiệm của phương trình é32 ³ 4(m - 3) t 2 - mt + 3m - 9 = 0 Û êê(m - ìS= 3 ìS= m- 3 3)2 ³ 12 ï ï ï ê ë . Þ í Úï í . 21 ïP = m- 3 ïP = 3 ï ï î î Û m£ Úm ³ 3+ 2 3 4 Từ điều kiện ta suy ra hệ có nghiệm é32 ³ 4(m - 3) Û ê ê(m - 3)2 ³ 12 ê ë 21 Û m£ Úm ³ 3+ 2 3 4 Phiếu trả lời 2.3 VD3: Tìm điều kiện m để hệ phương trình ì x - 4 + y -1 = 4 Đặt u = x - 4 ³ 0, v = y - 1 ³ 0 í có nghiệm. hệ trở thành: î x + y = 3m ìu+ v= 4 ìu+ v= 4 ï Giải: ï ï ï ï í 2 Û í . Đặt u = x - 4 ³ 0, v = y - 1 ³ 0 ï u + v 2 = 3m - 5 ï ï uv = 21 - 3m ï î ï î 2 Hệ phương trình trở thành: Suy ra u, v là nghiệm (không âm) của ìu+ v= 4 ï ïu+ v= 4 ì ï ï ï 21 - 3m í 2 Û í . t 2 - 4t + = 0 (*). ï 2 ï u + v = 3m - 5 ï uv = 21 - 3m ï 2 î ï î 2 Hệ có nghiệm Û (*) có 2 nghiệm không Suy ra u, v là nghiệm (không âm) của âm. 21 - 3m ì t 2 - 4t + = 0 (*). ï D/ ³ 0 ï 2 ï Hệ có nghiệm Û (*) có 2 nghiệm không Û ïS³ 0 í ï ï âm. ïP ³ 0 ï ï î ì 3m - 13 ï ï ³ 0 ï ï 2 Û í . ï 21 - 3m ï ï ³ 0 ï î 2 13 Û £ m£ 7 3
- ì D/ ³ 0 ï ï ï Û ïS³ 0 í ï ï ïP ³ 0 ï ï î ì 3m - 13 ï ï ³ 0 ï ï 2 Û í . ï 21 - 3m ï ï ³ 0 ï î 2 13 Û £ m£ 7 3 Phiếu trả lời 2.4 VD4: Tìm điều kiện m để hệ phương trình ì x 2 + y 2 + 4 x + 4 y = 10 í có nghiệm thực. ì x2 + ï ï y 2 + 4x + 4y = 10 î xy ( x + 4)( y + 4) = m í ï xy(x ï + 4)(y + 4) = m î . Giải: ì (x 2 + ï 2 4x + 4) + (y + 4y + 4) = 18 ì x2 + ï y 2 + 4x + 4y = 10 Û ï 2 í 2 ï í ï (x + ï 4x)(y + 4y) = m ï xy(x ï + 4)(y + 4) = m î î . Đặt u = (x + 2) ³ 0, v = (y + 2) ³ 0 . 2 2 ì (x 2 + ï 4x + 4) + (y 2 + 4y + 4) = 18 Û ï 2 í Suy ra x 2 + 4x = u - 4 ; ï (x + ï î 4x)(y 2 + 4y) = m y 2 + 4y = v - 4 Đặt u = (x + 2)2 ³ 0, v = (y + 2)2 ³ 0 . Hệ phương trình trở thành: Suy ra x 2 + 4x = u - 4 ; ì u + v = 18 ï ì S = 18 ï ï í Û ï í y 2 + 4y = v - 4 ï uv - 4(u + v) = m - 16 ï P = m + 56 ï î ï î Hệ phương trình trở thành: (S = u + v, P = uv). ï u + v = 18 ì ì S = 18 ï ï í Û ïí ì ï S2 ³ 4P ï uv - 4(u + v) = m - 16 ï P = m + 56 ï ï ï î ï î Điều kiện ï S ³ 0 Û - 56 £ m £ 25 í (S = u + v, P = uv). ï ï ïP ³ 0 ï Hệ phương trình có nghiệm khi và chỉ khi: ï î ì S2 ³ 4P ï ì 324 ³ 4m + 224 ï ï ï ï ï ï S ³ 0 Û ï 18 ³ 0 í í ï ï ï ï ïP ³ 0 ï ï m + 56 ³ 0 ï ï î ï î Û - 56 £ m £ 25 Vậy: - 56 £ m £ 25
- Ví dụ 5. Tìm điều kiện m để hệ phương ì x 2 + y 2 = 2(1 + m) trình í có đúng hai î ( x + y) = 4 2 nghiệm thực. Phiếu trả lời 2.5 Giải: ì x 2 + y 2 = 2(1 + m) ì ( x + y ) 2 - 2 xy = 2(1 + m) í Û í ì x 2 + y 2 = 2(1 + m) ì ( x + y )2 - 2 xy = 2(1 + m) î ( x + y) = 4 î ( x + y) = 4 2 2 í Û í Đặt S = x + y, P = xy , với S2 ³ 4P. î ( x + y)2 = 4 î ( x + y) = 4 2 Hệ phương trình trở thành: Đặt S = x + y, P = xy , với S2 ³ 4P. ì S2 - 2P = 2(1 + m) ï ìS= ±2 ï ï Û íï . Hệ phương trình trở thành: í 2 ïS = 4 ï ï P = 1- m ï î î ì 2 ï S - 2P = 2(1 + m) ìS= ±2 ï ï Û íï . Hệ phương trình có nghiệm khi và chỉ khi: í 2 ïS = 4 ï ï P = 1- m ï î î S2 ³ 4P Û 4 - 4(1 - m) ³ 0 Û m ³ 0 Hệ phương trình có nghiệm khi và chỉ khi: Suy ra x, y là hai nghiệm của phương trình: S2 ³ 4P Û 4 - 4(1 - m) ³ 0 Û m ³ 0 · t 2 - 2t + 1 - m = 0 có biệt số D '1 = m Suy ra x, y là hai nghiệm của phương trình: · t + 2t + 1 - m = 0 có biệt số D 2 = m 2 ' · t 2 - 2t + 1 - m = 0 (1) Nếu m > 0 thì D '1,2 > 0 nên cả 2 phương · t 2 + 2t + 1 - m = 0 (2) trình có 4 nghiệm do đó hệ phương trình có Phương trình (1) có biệt số D '1 = m 4 nghiệm. Vậy để hệ phương trình có đúng hai Phương trình (1) có biệt số D '2 = m nghiệm thì m = 0 , khi đó Vì cả hai phương trình (1) và (2) đều có t = x = y = 1; t = x = y = -1 D ' = m nên cả 2 phương trình có 4 nghiệm Vậy m = 0 thì hệ phương trình có đúng hai khác nhau là nghiệm. t1,2 = 1 ± m;t1,2 = -1 ± m khi m > 0 , do đó hệ phương trình có 4 nghiệm. Nên để hệ phương trình có đúng hai nghiệm thì m = 0, khi đó t = x = y = 1; t = x = y = -1 Vậy m = 0 là giá trị cần tìm.
- Phiếu trả lời 2.6 Ví dụ 6. Tìm điều kiện m để hệ phương Đặt S = x + y, P = xy , với S2 ³ 4P. ì x + y + xy = 2m + 1 trình í có nghiệm duy Hệ phương trình trở thành: î xy ( x + y ) = m + m 2 ï S + P = 2m + 1 ì ï nhất. í ï S.P = m 2 + m ï Giải: î Suy ra S ; P là hai nghiệm của phương Đặt S = x + y, P = xy , với S2 ³ 4P. trình : t 2 - (2m + 1)t + m 2 + m = 0 (*) Hệ phương trình trở thành: Hệ phương trình có nghiệm khi và chỉ khi ì S + P = 2m + 1 ï ì S = m + (m + 1 ï ï Û í ï í phương trình (*) có nghiệm hay : D ³ 0 ï î 2 ï S.P = m + m ï P = m. (m + 1 ) ï î Mà D = (2m + 1)2 - 4(m 2 + m) = 1 > 0 ìS= m ï ìS= m+ 1 ï Nên phương trình có nghiệm với mọi giá trị Û ïí Úï í ïP = m+ 1 ïP = m ï ï của m. î î ìS= m ìS= m+ 1 ìx= m ï ï ìx= m+ 1 ï (*) Û ï ï Úï ï Û í Úïí í í ïy= m+ 1 ïy= m ïP = m+ 1 ïP = m ï î ï î ï î ï î ì ï x= m ìx= m+ 1 ï Û ïí y = m + 1Úï y = m í Từ đó suy ra hệ phương trình có nghiệm ï ï î ï ï î với mọi giá trị của m Vậy để hệ có nghiệm duy nhất thì Do tính đối xứng nếu x ; y là nghiệm của ( 0 0) x0 = y0 Û m = 1 hệ thì ( y0 ; x0 ) cũng là nghiệm tương ứng. Vậy để hệ có nghiệm duy nhất thì x0 = y0 Û m = 1 Vậy m = 1 là giá trị cần tìm. Tiết 2( Tiết 29) Dạng 3: Hoạt động 3 ( 10 phút) : GV giới thiệu bài Một số bài toán giải bằng cách đưa về hệ tập về một số bài toán đưa về hệ phương phương trình trình, bằng cách chọn u và v thích hợp để 1) Phương pháp: đưa về hệ phương trình đối xứng. Chọn u và v thích hợp để đưa về hệ phương trình đối xứng. CÁC VÍ DỤ MINH HỌA GV : Phương trình đã cho có chứa căn bậc 3 ba. Các biểu thức trong hai căn bậc ba ấy VD1: Giải phương trình: 3 x + 3 1- x = . 2 có tổng là một hằng số. Nếu đặt u = 3 x và ì3 x = u ï v = 3 1 - x em hãy cho biết điều kiện của u Đặt: í 3 . ï 1- x = v î và v. Đồng thời theo cách đặt đó ta suy ra
- được hệ phương trình như thế nào ? HS : Dựa vào bài toán ta thấy : Ta có hệ: · Ta có tổng của hai biểu thức trong ì 3 ì 3 căn bậc ba là x + 1 – x = 1. ïu + v = ïu + v = í 2 Ûí 2 · Nếu đặt u = x và v = 1 - x thì u ïu + v = 1 ï(u + v) é(u + v) 2 - 3uv ù = 1 3 3 î 3 3 î ë û và v là hai số thực nào đó. ì 3 · Ta có : ïu+v = 2 ï 3 3 + u = x và v = 1 – x. Ûí ïu.v = 19 ì 3 ï î ïu + v = 36 + Ta có hệ: í 2 với u, v Î ¡ Suy ra u, v là hai nghiệm của phương trình: ï u 3 + v3 = 1 î 3 19 X2 - X + =0 + Đây là hệ phương trình đối xứng đã 2 36 biết cách giải. é 3 é æ9 + 5 ö 9+ 5 êx = ç ÷ êu = ê è 12 ø 12 Þê Þê ê 9- 5 ê æ9 - 5 ö 3 êu = ê x = ç 12 ÷ ë 12 ë è ø Vậy phương trình có tập nghiệm là: ìæ 9 + 5 ö3 æ 9 - 5 ö3 ü ï ï S = íç ÷ ;ç ÷ ý. ïè 12 ø è 12 ø ï î þ Hoạt động 4 ( 30 phút) : Hệ phương trình đối xứng loại 2 · GV giới thiêu hệ phương trình đối xứng 1. Phương pháp: loại 2 · Bước 1: Đặt điều kiện (nếu có). · Giáo viên phát phiếu học tập về bài tập · Bước 2: Lấy (1) - (2) hoặc (2) - (1) ta dạng 1 cho học sinh. Sau đó chia lớp thành được: (x-y)g(x,y)=0. Khi đó ta được x-y=0 4 nhóm mỗi nhóm thực hiện theo sự phân hoặc g(x,y)=0. chia như sau: + Trường hợp 1: x-y=0 kết hợp với Nhóm 1 Nhóm 2 Nhóm 3 Nhóm 4 phương trình (1) hoặc (2) suy ra được VD1 VD2 VD3 VD4 nghiệm. Sau đó GV hướng dẫn học sinh biến đổi hệ + Trường hợp 2: g(x,y)=0 kết hợp với phương trình đã cho tương đương với hai phương trình (1) + (2) suy ra nghiệm (trong hệ phương trình theo hai trường hợp trường hợp này hệ phương trình mới trở về + Trường hợp 1: x-y=0 kết hợp với hệ đối xứng loại 1) và thông thường vô phương trình (1) hoặc (2) suy ra được nghiệm.
- nghiệm. + Trường hợp 2: g(x,y)=0 kết hợp với phương trình (1) + (2) suy ra nghiệm (trong trường hợp này hệ phương trình mới trở về hệ đối xứng loại 1) và thông thường vô nghiệm. · GV cho đại diện mỗi nhóm phân tích đề bài và nêu cách giải của từng ví dụ CÁC VÍ DỤ MINH HỌA GV : Gọi 1 học sinh đại diện nhóm 1 đứng VD1:Giải hệ phương trình tại chỗ và hỏi: Em hãy cho biết nội dung ì x 3 = 3 x + 8 y (1) ï VD1 yêu cầu gì ? Để giải quyết bài toán í 3 (I) này ta làm như thế nào ? ï y = 3 y + 8x ( 2) î Học sinh đại diện nhóm 1: GIẢI · Đây là hệ phương trình đối xứng loại 2, · Lấy (1) - (2) ta được: vì khi ta thay đổi vai trò của x bởi y và y (x - y)(x 2 + xy + y 2 + 5) = 0 bởi x thì phương trình (1) của hệ biến thành éx - y = 0 phương trình (2), đồng thời phương trình Ûê 2 2 (2) biến thành phương trình (1). ë x + xy + y + 5 = 0 Trường hợp 1: · Để giải hệ này ta làm như sau: + Lấy (1) - (2) ta được: ì x 3 = 3x + 8y (I) Û í (x - y)(x 2 + xy + y 2 + 5) = 0 îx = y éx - y = 0 ìé x = 0 Ûê 2 ì x 3 - 11x = 0 ï ê 2 ë x + xy + y + 5 = 0 Ûí Û í ë x = ± 11 . îx = y ï + Xết hai trường hợp: îx = y TH1: Khi x = y ì x 2 +xy+y 2 +5=0 ï TH2: x 2 + xy + y 2 + 5 = 0 Trường hợp 2: (I) Û í 3 3 (hệ ï î x +y =11( x+y ) + Biến đổi thu gọn được kết quả . này vô nghiệm) GV cho nhóm 1 thảo luận và giải VD1, Vậy hệ phương trình đã cho có tập sau đó gọi 1 học sinh đại diện nhóm lên nghiệm: bảng giải sau đó cho cả lớp nhận xét. GV S= {(0,0); ( 11, 11); (- 11,- 11)} đánh giá lời giải và sửa chữa những sai lầm ( nếu có) GV : Gọi 1 học sinh đại diện nhóm 2 đứng Ví dụ 2: Giải hệ phương trình
- tại chỗ và hỏi: Em hãy cho biết nội dung ìx + 4 y -1 = 1 ï VD2 yêu cầu gì ? Để giải quyết bài toán í này ta làm như thế nào ? ï y + 4 x -1 = 1 î Học sinh đại diện nhóm 2: GIẢI · Đây là hệ phương trình đối xứng loại 2, ìu = 4 x - 1 ï Đặt: í với u≥ 0 và v ≥ 0 vì khi ta thay đổi vai trò của x bởi y và y v= 4 y-1 ï î bởi x thì phương trình (1) của hệ biến thành Hệ phương trình trở thành phương trình (2), đồng thời phương trình (2) biến thành phương trình (1). ì u 4 + 1 + v = 1 ìu 4 + v = 0 í 4 Ûí · Để giải hệ này ta làm như sau: î v + 1 + u = 1 îv4 + u = 0 + Đặt ĐK để phương trình có nghĩa. ìu = 0 ìx = 1 Ûí (Do u, v ≥ 0) Þ í . +Dùng phương pháp đặt ẩn số phụ bằng î v=0 î y=1 cách Đặt: 4 x - 1 = u ³ 0; 4 y-1 =v³0 Vậy hệ phương trình đã cho có một nghiệm + Biến đổi thu gọn được kết quả . là: ( 1; 1) GV cho nhóm 2 thảo luận và giải VD2, sau đó gọi 1 học sinh đại diện nhóm lên bảng giải sau đó cho cả lớp nhận xét. GV đánh giá lời giải và sửa chữa những sai lầm ( nếu có) GV : Gọi 1 học sinh đại diện nhóm 3 đứng VD 3: Cho hệ phương trình tại chỗ và hỏi: Em hãy cho biết nội dung ìx = y2 - y + m VD3 yêu cầu gì ? Để giải quyết bài toán í (I) î y = x2 - x + m này ta làm như thế nào ? a. Tìm m để hệ phương trình có nghiệm. Học sinh đại diện nhóm 3: b. Tìm m để hệ phương trình có nghiệm · Đây là hệ phương trình đối xứng loại 2, duy nhất. vì khi ta thay đổi vai trò của x bởi y và y Giải: bởi x thì phương trình (1) của hệ biến thành phương trình (2), đồng thời phương trình (2) biến thành phương trình (1). · Bài toán yêu cầu là tìm m để hệ phương trình có nghiệm, có nghiệm duy nhất. · Để giải bài toán này ta làm như sau: + Lấy (1) – (2) về theo vế để đưa hệ đã cho tương đương với hai hệ phương trình mới.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
SKKN: Một số biện pháp rèn luyện kỹ năng sống cho học sinh tiểu học
11 p | 3817 | 675
-
SKKN: Một số biện pháp rèn luyện kỹ năng đọc cho học sinh lớp 2
10 p | 3663 | 364
-
SKKN: Dạy giải bài tập về véc tơ trong Hình học 10 nhằm rèn luyện kỹ năng giải toán cho học sinh
28 p | 1019 | 190
-
SKKN: Rèn luyện kỹ năng giao tiếp cho trẻ mẫu giáo lớn trong giờ hoạt động góc
13 p | 2192 | 171
-
SKKN: Rèn luyện kỹ năng sống cho học sinh qua một số tiết dạy Tiếng Anh lớp 9
15 p | 1247 | 149
-
SKKN: Giáo dục giá trị sống, rèn luyện kỹ năng sống cho học sinh
22 p | 1002 | 148
-
SKKN: Rèn luyện kỹ năng tập viết cho học sinh lớp 1
8 p | 1038 | 147
-
SKKN: Rèn luyện kỹ năng phân tích tìm lời giải Hình học 9 bằng phương pháp phân tích đi lên
23 p | 476 | 126
-
SKKN: Rèn luyện kỹ năng đọc và lập biểu đồ nhiệt độ và lượng mưa cho HS lớp 7 - GV.Đ.T.Nhàn
9 p | 766 | 120
-
SKKN: Tích hợp rèn luyện kỹ năng sống cho trẻ 5 tuổi
10 p | 757 | 90
-
SKKN: Rèn luyện kỹ năng phân tích tổng hợp cho học sinh lớp 10 THPT qua hệ thống bài tập chương các định luật chất khí
19 p | 387 | 81
-
SKKN: Một số kinh nghiệm rèn luyện kỹ năng kể chuyện cho học sinh lớp 2 trong phân môn tiếng Việt
14 p | 820 | 63
-
SKKN: Thực trạng và những phương pháp rèn luyện kỹ năng sống cho học sinh trung học phổ thông ở bộ môn Ngữ Văn
16 p | 284 | 62
-
SKKN: Rèn luyện kỹ năng nghe – nói môn Anh Văn
16 p | 253 | 58
-
SKKN: Rèn luyện kỹ năng làm việc với phương trình mũ cho học sinh
19 p | 197 | 26
-
SKKN: Một số biện pháp rèn luyện kỹ năng diễn đạt biểu cảm cho trẻ qua trò chơi đóng kịch.
11 p | 217 | 26
-
SKKN: Rèn luyện kỹ năng kết hợp nghiệm và điều kiện trong phương trình lượng giác có điều kiện
20 p | 415 | 22
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn