intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Tài liệu Chuyên đề số phức

Chia sẻ: Paradise9 Paradise9 | Ngày: | Loại File: PDF | Số trang:12

53
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu giảng dạy về toán đã được giảng dạy với mục đích cung cấp cho học sinh những kiến thức cơ bản nhất, có tính hệ thống liên quan tới toán học. Thông qua tài liệu này giúp các bạn hệ thống lại kiến thức. Chúc các bạn thành công

Chủ đề:
Lưu

Nội dung Text: Tài liệu Chuyên đề số phức

  1. www.laisac.page.tl  M  T S  D  N  B  I T  P  MỘ  SỐ DẠ  G BÀ  TẬ  Ộ ẠN ÀẬ V  S  P  Ứ    VỀ  SỐ PH  C  HỨC Nguyễn Trung Kiên I) D N G IS C AS PH C D ng 1) Bài toán liên quan n bi n i s ph c Ví d 1) Tìm s nguyên x, y sao cho s ph c z=x+yi tho mãn z 3 = 18 + 26i Gi i:  x3 − 3 xy 2 = 18  ⇔ 18 ( 3x 2 y − y 3 ) = 26 ( x3 − 3xy 2 ) z 3 = 18 + 26i ⇔ ( x + yi ) = 18 + 26i ⇔  2 3 3 x y − y = 26 3  1 Gi i phương trình b ng cách t y=tx ta ư c t = ⇒ x = 3, y = 1 . V y z=3+i 3 Ví d 2) Cho hai s ph c z1; z2 tho mãn z1 = z2 ; z1 + z2 = 3 Tính z1 − z2 Gi i: a12 + b12 = a2 + b22 = 1 2  t z1 = a1 + b1i; z2 = a2 + b2i . T gi thi t ta có  ( a1 + a2 ) + ( b1 + b2 ) = 3 2 2  ⇒ 2 ( a1b1 + a2b2 ) = 1 ⇒ ( a1 − a2 ) + ( b1 − b2 ) = 1 ⇒ z1 − z2 = 1 2 2 D ng 2) Bài toán liên quan n nghi m ph c Ví d 1) Gi i phương trình sau: z − 8(1 − i ) z + 63 − 16i = 0 2 Gi i: Ta có ∆ ' = 16(1 − i ) 2 − (63 − 16i ) = −63 − 16i = (1 − 8i ) T 2 ó tìm ra 2 nghi m là z1 = 5 − 12i, z2 = 3 + 4i Ví d 2) Gi i phương trình sau: 2(1 + i ) z 2 − 4(2 − i ) z − 5 − 3i = 0 Gi i: Ta có ∆ ’ = 4(2 – i)2 + 2(1 + i)(5 + 3i) = 16. V y phương trình cho hai nghi m là: 2(2 − i ) + 4 4 − i (4 − i )(1 − i ) 3 5 = = =−i z1 = 2(1 + i ) 1+ i 2 22 2(2 − i ) − 4 − i (−i )(1 − i ) 11 = = =− − i z2 = 2(1 + i) 1+ i 2 22 Ví d 3) Gi i phương trình z − 9 z + 14 z − 5 = 0 3 2 Gi i: Ta có phương trình tương ương v i ( 2 z − 1) ( z 2 − 4 z + 5 ) = 0 . T ó ta suy ra 1 phương trình có 3 nghi m là z1 = ; z2 = 2 − i; z3 = 2 + i 2 Ví d 4) Gi i phương trình: 2 z − 5 z 2 + 3 z + 3 + (2 z + 1)i = 0 bi t phương trình có 3 nghi m th c 2 z 3 − 5 z 2 + 3z + 3 = 0 −1 ⇒z= Gi i: Vì phương trình có nghi m th c nên  tho mãn c 2 z + 1 = 0 2 hai phương trình c a h :Phương trình ã cho tương ương v i ( 2 z + 1) ( z 2 − 3z + 3 + i ) = 0 . Gi i phương trình ta tìm ư c z = − ; z = 2 − i; z = 1 + i 1 2 1
  2. Ví d 5) Gi i phương trình: z 3 + (1 − 2i ) z 2 + (1 − i) z − 2i = 0 bi t phương trình có nghi m thu n o: Gi i: Gi s nghi m thu n o c a phương trình là z=bi thay vào phương trình ta có ( bi ) + (1 − 2i) ( bi ) + (1 − i)(bi) − 2i = 0 ⇔ (b − b2 ) + (−b3 + 2b 2 + b − 2)i = 0 3 2 b − b 2 = 0  ⇔ 3 ⇒ b = 1 ⇒ z = i là nghi m, t ó ta có phương trình tương  −b + 2b + b − 2 = 0 2  ương v i ( z − i ) ( z 2 + (1 − i ) z + 2 ) = 0 . Gi i pt này ta s tìm ư c các nghi m Ví d 6) Tìm nghi m c a phương trình sau: z 2 = z . Gi i: Gi s phương trình có nghi m: z=a+bi thay vào ta có ( a + bi ) = a + bi 2 a 2 − b 2 = a 1 3 ⇔ Gi i h trên ta tìm ư c (a, b) = (0; 0), (1; 0),(− ; ± ) . V y phương 2ab = −b 2 2 1 3 trình có 4 nghi m là z = 0; z = 1; z = − ± i 22 D ng 3) Các bài toán liên quan n modun c a s ph c: Ví d 1) Tìm các s ph c z tho mãn ng th i các i u ki n sau: z + 1 − 2i = z − 2 + i và z − i = 5 Gi i:  x + 1 + ( y − 2)i = x − 2 + (1 − y )i  Gi s z=x+yi (x,y là s th c) .T gi thi t ta có   x + ( y − 1)i |= 5  ( x + 1) + ( y − 2) = ( x − 2) + (1 − y )  2  y = 3x 2 2 2 ⇔ 2 ⇔ ⇔ x = 1, y = 3 ho c  x + ( y − 1) = 5 10 x − 6 x − 4 = 0 2  2  2 6 x = − , y = − . V y có 2 s ph c tho mãn i u ki n. 5 5 i−m Ví d 2) Xét s ph c z tho mãn z = ;m∈ R 1 − m(m − 2i ) 1 z. z = a) Tìm m 2 1 z −i ≤ b)Tìm m 4 c) Tìm s ph c z có modun l n nh t. Gi i: a) Ta có ( i − m ) (1 − m2 − 2mi ) i−m − m(1 − m2 ) + 2m + (1 − m 2 + 2m 2 ) z= = = 1 − m 2 + 2mi (1 − m 2 + 2mi )(1 − m 2 − 2mi ) (1 − m2 ) + 4m2 2 2
  3. m(1 + m 2 ) + i (1 + m 2 ) m 1 m 1 = = + i⇒ z = − i (1 + m ) 1+ m 1+ m 1 + m 1 + m2 22 2 2 2 m2 + 1 1 1 ⇒ z. z = ⇔ = ⇔ m 2 + 1 = 2 ⇔ m = ±1 ( m2 + 1) 2 2 2 m2 1  1 1 1 m m b) Ta có z − i ≤ ⇔ + − 1 i ≤ ⇔ − i≤ ⇔ 1+ m  1+ m 1+ m 1+ m 2 2 2 2  4 4 4 m2 m4 m2 1 1 1 1 ⇔ + ≤⇔ ≤ ⇔ 16m 2 ≤ 1 + m2 ⇔ − ≤m≤ (1 + m ) (1 + m ) 16 1+ m 22 22 2 6 15 15 m2 + 1 1 c) Ta có z = = ≤ 1 ⇒| z |max = 1 ⇔ m = 0 (m + 1) 2 m2 + 1 2 Ví d 3) Trong các s ph c z tho mãn i u ki n z − 2 − 4i = 5 Tìm s ph c z có modun l n nh t, nh nh t. Gi i: Xét s ph c z = x+yi . T gi thi t suy ra ( x − 2 ) + ( y − 4 ) = 5 Suy ra t p h p 2 2 i m M(x;y) bi u di n s ph c z là ư ng tròn tâm I(2;4) bán kính R = 5 D dàng có ư c M (2 + 5 sin α ; 4 + 5 cos α ) . Modun s ph c z chính là dài véc tơ OM. Ta có |z|2= OM 2 = (2 + 5 sin α ) 2 + (4 + 5 cos α ) 2 = 25 + 4 5(sin α + 2 cos α ) Theo BDT Bunhiacopxki ta có (sin α + 2 cos α ) 2 ≤ (1 + 4) ( sin 2 α + cos 2 α ) = 5 ⇒ − 5 ≤ sin α + 2 cos α ≤ 5 ⇒ 5 ≤ z ≤ 3 5 . V y −1 −2 | z |min = 5 ⇒ sin α + 2 cos α = − 5 ⇔ sin α = ; cos α = ⇔ x = 1, y = 2 ⇒ z = 1 + 2i 5 5 1 2 | z |max = 3 5 ⇔ sin α + 2 cos α = 5 ⇔ sin α = ; cos α = ⇔ x = 3, y = 6 ⇒ z = 3 + 6i 5 5 Ví d 4) Trong các s ph c tho mãn i u ki n z − 2 − 4i = z − 2i .Tìm s ph c z có moodun nh nh t. Gi i: Xét s ph c z = x+yi . T gi thi t suy ra ( x − 2 ) + ( y − 4 ) = x 2 + ( y − 2 ) ⇔ x + y − 4 = 0 Suy ra t p h p i m M(x;y) bi u di n 2 2 2 s ph c z là ư ng th ng y=-x+4 Ta có z = x 2 + y 2 = x 2 + (4 − x) 2 = 2 x 2 − 8 x + 16 = 2( x − 2) 2 + 8 ≥ 2 2 . T ó suy z min = 2 2 ⇔ x = 2 ⇒ y = 2 ⇒ z = 2 + 2i D ng 4) Tìm t p h p i m bi u di n s ph c Ví d 1) Tìm t p h p các i m M trong m t ph ng ph c bi u di n s ph c z bi t: z b) z = z − 3 + 4i c) z − i + z + i = 4 =3 a) z −i 3
  4. Gi i: G i z=x+yi 9 9 a) T gi thi t ta có z = 3 z − i ⇔ x 2 + y 2 = 9( x 2 + ( y − 1) 2 ) ⇔ x 2 + ( y − ) 2 = 8 64 9 3 V y t p h p i m M là ư ng tròn tâm I (0; ), R = 8 8 b) T gi thi t ta có x + y = ( x − 3) + (4 − y ) ⇔ 6 x + 8 y = 25 . V y t p h p các i m 2 2 2 2 M là ư ng th ng 6x+8y-25=0 c) Gi s z =x+yi thì z − i + z + i = 4 ⇔ x 2 + ( y − 1) + x 2 + ( y + 1) = 4 ⇔ 2 2  x 2 + ( y + 1) 2 ≤ 4  x 2 + ( y + 1)2 ≤ 16   ⇔ ⇔   2 x 2 + ( y − 1) = y + 4  x 2 + ( y − 1)2 = 16 − 8 x 2 + ( y + 1) 2 + x 2 + ( y + 1)2 2    x + ( y + 1) ≤ 16(1) 2 2  x 2 + ( y + 1)2 ≤ 16    x2 y2 2 ⇔  4 x + 4 y + 8 y + 4 = y + 8 y + 16 ⇔  + = 1(2) 2 2 3 4  y ≥ −4  y ≥ −4(3)    Ta th y các i m n m trong hình tròn (1) và Elip (2) và tung các i m n m trên (Elip) x2 y2 + = 1. luôn tho mãn i u ki n y >-4. V y t p h p i m M là Elip có pt 3 4 Ví d 2) Tìm t p h p các i m bi u di n trong m t ph ng ph c s ( ) ph c ω = 1 + i 3 z + 2 bi t r ng s ph c z tho mãn: z − 1 ≤ 2. t z = a + bi ( a, b ∈ R ) Gi i: Ta có z − 1 ≤ 2 ⇔ ( a − 1) + b 2 ≤ 4 (1) 2 T x = a − b 3 + 2  x − 3 = a −1 + b 3 ( ) ( )   ω = 1 + i 3 z + 2 ⇒ x + yi = 1 + i 3 ( a + bi ) + 2 ⇔  ⇔  y = 3a + b  y − 3 = 3(a − 1) + b   ( ) ≤ 4 ( a − 1) + b 2  ≤ 16 do (1) ó ( x − 3) + y − 3 2 2 2 T   ( ) ( ) V y t p h p các i m c n tìm là hình tròn ( x − 3) + y − 3 2 ≤ 16 ; tâm I 3; 3 , bán 2 kính R=4. Ví d 3) Xác nh t p h p các i m M(z) trong m t ph ng ph c bi u di n các s π z−2 có acgumen b ng . ph c z sao cho s z+2 3 Gi i: 4
  5. z − 2 ( x − 2 ) + yi ( x − 2 ) + yi  ( x + 2 ) + yi  =   = Gi s z=x+yi, thì z + 2 ( x + 2 ) + yi ( x + 2) + y 2 2 x 2 − 4 + y 2 + yi ( x + 2 − x + 2 ) x2 + y 2 − 4 4y = = + i (1) ( x + 2) ( x − 2) ( x − 2) + y2 + y2 + y2 2 2 2 π z−2 có acgumen b ng , nên ta có: Vì s ph c z+2 3 π π x2 + y2 − 4  4y i = τ  cos + i sin  v i τ > 0 + ( x − 2) + y 2 ( x − 2) + y 2 2 2  3 3  x2 + y2 − 4 τ =   ( x − 2) + y 2 2 2 ⇒ τ3  4y =  ( x − 2 )2 + y 2 2  T ó suy ra y>0 (1) và 2 2  2 4 4y 4y = 3 ⇔ x2 + y2 − 4 = ⇔ x2 +  y −  =  (2) .T (1) và (2) suy ra x + y −4 2 2  3  3 3 t p h p các i m M là ư ng tròn tâm n m phía trên tr c th c(Trên tr c Ox). D ng 5) Ch ng minh b t ng th c: 2z −1 Ví d 1) Ch ng minh r ng n u z ≤ 1 thì ≤1 2 + iz Gi i: Gi s z =a+bi (a, b ∈ R) thì z = a 2 + b 2 ≤ 1 ⇔ a 2 + b 2 ≤ 1 . Ta có 4a 2 + (2b − 1) 2 2 z − 1 2a + (2b − 1)i = = ng th c c n ch ng minh tương ương .B t 2 + iz (2 − b) + ai (2 − b) 2 + a 2 4a 2 + (2b − 1)2 ≤ 1 ⇔ 4a 2 + (2b − 1) 2 ≤ (2 − b) 2 + a 2 ⇔ a 2 + b 2 ≤ 1 ⇒ dpcm vi (2 − b) + a 2 2 1 Ví d 2) Cho s ph c z khác không tho mãn i u ki n z 3 + ≤ 2 . Ch ng minh z3 1 r ng: z + ≤2 z Gi i: D dàng ch ng minh ư c v i 2 s ph c z1 , z2 b t kỳ ta có z1 + z2 ≤ z1 + z2 3 3  1  1 1 1 1 1 1 Ta có  z +  = z 3 + 3 + 3  z +  ⇒ z + ≤ z3 + 3 + 3 z + ≤ 2 + 3 z +  z  z z z z z z 1 t z + =a ta có a 3 − 3a − 2 ≤ 0 ⇔ ( a − 2 )( a + 1) ≤ 0 ⇒ dpcm 2 z 5
  6. II) D NG LƯ NG GIÁC C A S PH C D ng 1: VI T D NG LƯ NG GIÁC Ví d 1) Vi t dư i d ng lư ng giác c a các s ph c: 1 − ( cos ϕ + i sin ϕ ) b) 1 − ( cos ϕ + i sin ϕ )  (1 + cos ϕ + i sin ϕ ) a)   1 + cos ϕ + i sin ϕ Gi i: 1 − ( cos ϕ + i sin ϕ ) (1 − cos ϕ ) − i sin ϕ = a) (1 + cos ϕ ) + i sin ϕ 1 + cos ϕ + i sin ϕ ϕ ϕ ϕ ϕ ϕ − 2i sin ϕ sin 2 − i cos 2 2sin 2 cos ϕ 2 2 2 = tan = = −i tan ϕ ϕ ϕ ϕ ϕ 2 2 + 2i sin + i sin 2 2 cos cos cos 2 2 2 2 2 ϕ  π  π  ϕ - Khi tan > 0 d ng lư ng giác là: tan cos  −  + i sin  −   2  2  2  2 ϕ  π   π  ϕ - Khi tan < 0 d ng lư ng giác là: − tan cos   + i sin    2 2  2  2 ϕ = 0 thì không có d ng lư ng giác. - Khi tan 2 b) 1 − ( cos ϕ + i sin ϕ )  (1 + cos ϕ + i sin ϕ )   ϕ ϕ ϕ ϕ ϕ ϕ = 2sin  sin − i cos  .cos  cos + i sin  2 2 2 2 2 2 π π    = 2 sin ϕ cos  ϕ −  + isin  ϕ −    2  2  - Khi sin ϕ = 0 thì d ng lư ng giác không xác nh. π π    - Khi sin ϕ > 0 thì d ng lư ng giác là: 2 sin ϕ cos  ϕ −  + i sin  ϕ −    2  2  π π    - Khi sin ϕ < 0 thì d ng lư ng giác là: (−2sin ϕ )  cos  ϕ +  + i sin  ϕ +    2  2  Ví d 2): Vi t dư i d ng lư ng giác c a các s ph c: 1 − ( cos ϕ + i sin ϕ ) b) [1 − (cos ϕ + i sin ϕ ) ][1 + cos ϕ + i sin ϕ ] a) 1 + cos ϕ + i sin ϕ Gi i: ϕ ϕ ϕ sin 2 − i cos 2 1 − ( cos ϕ + i sin ϕ ) 1 − cos ϕ − i sin ϕ ϕ = = tan = −i tan a) ϕ ϕ ϕ 2 cos ϕ − i sin ϕ 1 + cos ϕ + i sin ϕ 2 2 cos 2 + 2i sin .cos 2 2 2 2 2 ϕ   π  π  ϕ Khi tan >0 thì d ng lư ng giác là tan cos  −  + i sin  −   2   2  2  2 6
  7. π   π  ϕ ϕ cos  2  + i sin  2   0 thì d ng lư ng giác là: 2 sin ϕ cos  ϕ −  + i sin  ϕ −    2  2  π π    - Khi sin ϕ < 0 thì d ng lư ng giác là: ( −2sin ϕ ) cos  ϕ +  + i sin  ϕ +    2  2  D ng 2: MÔ UN VÀ ACGUMEN Ví d 1) Tìm ph n th c và ph n o c a s ph c z, bi t z 2 = −2 + 2 3i Gi i: Ta có: z 2 = − 2 + 2 3 i ⇔ z 2 = 4  co s 2 π + i s in 2 π     3 3 2π 2π   Do ó: z 2 = −2 + 2 3i ⇔ z 2 = 4  cos + i sin   3 3 2π 2π     z = 2  cos 3 + i sin 3  z = 1+ i 3   ⇔ ⇔ π π   z = −1 − i 3    z = −2  cos + i sin   3  3 3 ho c -1 và − 3 ó suy ra ph n th c và ph n o c a z tương ng là 1 và T ( ) Ví d 2) Tìm m t acgumen c a s ph c: z − 1 + i 3 bi t m t acgumen c a z π b ng 3 1 3 π nên z = z  +  2 2 i Gi i: z có m t acgumen b ng  3   1 3 ( ) Do ó: z − 1 + i 3 = ( z − 2)  +  2 2 i    π ( ) - Khi z > 2 , m t aacgumen c a z − 1 + i 3 là 3 4π ( ) - Khi 0 < z < 2 , m t acgumen c a z − 1 + i 3 là 3 7
  8. ( ) - Khi z = 2 thì z − 1 + i 3 =0 nên acgumen không xác nh. Ví d 3) Cho s ph c z có mô un b ng 1. Bi t m t acgumen c a z là ϕ , tìm m t acgumen c a: 1 d) z 2 + z c) z + z b) − a) 2 z 2 2z Gi i: z = 1 , z có m t acgumen là ϕ . Do ó z = cos ϕ + i sin ϕ a) z 2 = cos 2ϕ + i sin 2ϕ ⇒ 2 z 2 = 2 ( cos 2ϕ + i sin 2ϕ ) ⇒ 2 z = 2 ( cos ϕ − i sin ϕ ) V y 2z2 có m t acgumen là 2ϕ b) z = cos ϕ + i sin ϕ ⇒ z = cos ϕ − i sin ϕ ⇒ 2 z = 2 ( cos ϕ − i sin ϕ ) = ( cos ( −ϕ ) − i sin ( −ϕ ) ) = ( cos ϕ + i sin ϕ ) 11 1 ⇒ 2z 2 2 = ( − cos ϕ − i sin ϕ ) = ( cos (ϕ + π ) + i sin ϕ (ϕ + π ) ) 11 1 ⇒− 2z 2 2 1 có m t acgumen là ϕ + π Vy− 2z c) Ta có: z + z = 2 cos ϕ N u cos ϕ > 0 thì có m t acgumen là 0 N u cos ϕ < 0 thì có m t acgumen là π N u cos ϕ = 0 thì acgumen không xác nh. d) z 2 + z = cos 2ϕ + i sin 2ϕ , z = cos ϕ − i sin ϕ 3ϕ ϕ 3ϕ ϕ ⇒ z 2 + z = cos 2ϕ + cos ϕ + i ( sin 2ϕ − sin ϕ ) = 2 cos cos + i.2 cos sin 2 2 2 2 3ϕ  ϕ ϕ = 2 cos  cos + i sin  2 2 2 3ϕ 3ϕ ϕ ϕ > 0 , là + π n u cos < 0 và không xác V y acgumen z 2 + z là nh n u cos 2 2 2 2 3ϕ =0 n u cos 2 π π Ví d 4) Cho s ph c z = 1 − cos − i sin . Tính mô un, acgumen và vi t z dư i 7 7 d ng lư ng giác. Gi i: π π π 8π  4π 2    Ta có: z =  1 − cos  + sin 2 = 2 1 − cos  = 2 1 + cos  = 2 cos  7  7  7 7 7 π 8π − sin sin 7 = cot 4π = tan  − π  t ϕ = arg ( z ) thì tan ϕ = 7=   π 4π  14  7 1 − cos 2sin 2 7 7 8
  9. π Suy ra: ϕ = − + kπ , k ∈ z 14 π π π < 0 nên ch n m t acgumen là − > 0 , ph n o − sin Vì ph n th c 1 − cos 14 7 7 4π   π  π  V y z = 2 cos  cos  − 14  + i sin  − 14       7 1 Ví d 5) Vi t dư i d ng lư ng giác c a m t s ph c z sao cho z = và m t 3 3π z là − acgumen c a 1+ i 4 Gi i: 1 1 thì z = ( cos ϕ + i sin ϕ ) Theo gi thi t z = 3 3 ⇒ z = ( cos ϕ − i sin ϕ ) = ( cos ( −ϕ ) + i sin ( −ϕ ) ) 1 1 3 3 1 2 π π  Vì 1 + i = 2  + i  = 2  cos + i sin  2   4 2 4  π π  1   z  cos  −ϕ − 4  + i sin  −ϕ − 4   = Nên 1+ i 3 2      π π π 3π π 1 Do ó: −ϕ − = − + 2kπ ⇔ ϕ = + 2kπ , k ∈ Ζ. v y z =  cos + i sin  . 3 2 2 4 4 2 π z + 3i = 1 và z+1 có m t ácgumen là − Ví d 6) Tìm s ph c z sao cho: z +i 6 Gi i: T gi thi t ⇒ z + 3i = z + i ⇔ x + ( y + 3)i = x + ( y + 1)i ⇔ x 2 + ( y + 3) = x 2 + ( y + 1) 2 2 z + 3i =1 z+i ⇒ y = −2  π  π τ π ( ) t c là z + 1 = τ [cos  −  + i sin  − ] = 3 − i v i r>0. z+1 có 1 acgumen b ng −  6  6 2 6  τ3 x +1 = 2 ⇔ τ = 4  ⇒ z = 2 3 − 1 − 2i Ta có z+1=x+1-2i suy ra    −2 = − τ x = 2 3 −1    2 D ng 3) NG D NG S PH C TRONG BÀI TOÁN T H P Ví d 1) Tính các t ng sau khi n=4k+1 2− a) S = C2 n +1 − C2 n +1 + C2 n +1 − ....... + C2 nn+12 − C2 nn+1 0 2 4 2 2 n −1 2n+ b) S = C2 n +1 − C2 n +1 + C2 n+1 − ....... + C2 n +1 − C2 n+11 1 3 5 Gi i: 9
  10. Xét (1 + i ) = C20n+1 + iC2n+1 + i 2C22n+1 + ..... + i 2n +1C22nn++11 = C20n+1 − C22n+1 + ... − C22nn+1 + i(C21n+1 − C23n+1 + .. − C22nn++11 ) 2 n +1 1 M t khác ta l i có: π π (2n + 1)π (2n + 1)π   2 n +1  1 + i = 2  cos + i sin  ⇒ (1 + i ) 2 n +1 =2 + i sin cos   4   4 4 4 (2n + 1)π (2n + 1)π  (8k + 3)π (8k + 3)π    + i sin  = 2 2 cos + i sin = 2n 2 cos n      4 4 4 4 3π 3π   = 2n 2 cos + i sin  = −2n + i 2n  4 4 T ó ta có a) S=-2n b) S=2n Ví d 2) Tính các t ng h u h n sau: a) S = 1 − Cn2 + Cn − Cn + .......... 4 6 b) S = Cn − Cn + Cn − Cn + .......... 1 3 5 7 Gi i: Xét (1 + i ) = Cn + iCn + i 2Cn2 + ..... + i nCnn = 1 − Cn + Cn4 − ... + i (Cn − Cn + Cn − Cn + ....) n 0 1 2 1 3 5 7 π π nπ nπ   n 1 + i = 2  cos + i sin  ⇒ (1 + i ) = 2 cos + i sin n   4  4 4 4 T ó ta có k t qu nπ nπ n n b) S = 2 sin a) S = 2 cos 4 4 nπ  1 n Ví d 3) Ch ng minh r ng: 1 + Cn + Cn + ... =  2 + 2 cos 3 6  3 3 Gi i: Ta có 2n = Cn + Cn + Cn + Cn + ....Cnn (1) 0 1 2 3 2π 2π Xét ε = cos ⇒ ε3 =1 + i sin 3 3 Ta có (1 + ε ) = Cn + ε Cn + ε 2Cn + ......ε n Cn = Cn + ε Cn + ε 2Cn + Cn + ε Cn + ..... (2) n 0 1 2 n 0 1 2 3 4 (1 + ε ) 2n = Cn + ε 2Cn + ε 4Cn2 + ......ε 2 nCn = Cn + ε 2Cn + ε Cn + Cn + ε 2Cn + .....(3) 0 1 n 0 1 2 3 4 π π π π Ta có 1 + ε + ε 2 = 0;1 + ε 2 = cos ;1 + ε = cos − i sin + i sin 3 3 3 3 C ng (1) (2) (3) theo v ta có nπ 2n + (1 + ε ) + (1 + ε 2 ) = 3 ( Cn + Cn + Cn + ...) ⇔ 2n + 2 cos = 3 ( Cn + Cn + Cn + ...) n n 0 3 6 0 3 6 3 nπ  1 ⇔ 1 + Cn + Cn + ... =  2n + 2 cos 3 6  3 3 10
  11. M TS BÀI T P T LUY N 1) Gi i phương trình sau trên t p s ph c: c) z 2 − ( z ) = 4i 3 d )z2 + 2z +1− i = 0 b) z + z = 3 + 4i a) z 3 = z 2 g ) z 2 − 2( z + z ) + 4 = 0 e) z 2 + 4 z + 5 = 0 f )(1 + i ) z 2 + 2 + 11i = 0 2) Tìm s th c x tho mãn b t phương trình:  x + 1 + 2i − 2  1+ i 7 a) 1 + 4i − 2− x ≤ 5 c)1 − log 2  ≥0 − log 2 x ≤ 1 b) 2 −1  4  3) Tìm s ph c z sao cho A = ( z − 2)( z + i ) là s th c z + 7i 4) Tìm s ph c z tho mãn i u ki n z = 5; là s th c z +1 5) Tìm t p h p các i m M trong m t ph ng ph c bi u di n các s ph c z tho mãn i u ki n z − 2i a ) z 2 − ( z ) = 9 b) = 4 c )3 z + i = z + z − 3i d ) z + 3i − 4 = 2 e) z + 1 ≥ z + i 2 z + 2i z−2 +2 z − 2i ) >1 > 1 h)2 z − i = z − z + 2i k ) log 1 ( f ) z = z + 4 − 3i g ) 3 4 z − 2 −1 z + 2i 3 6) Trong các s ph c tho mãn i u ki n z − 2 + 3i = . Tìm s ph c z có modun l n 2 nh t,nh nh t. 7) Tìm s ph c z tho mãn i u ki n ( z − 1) ( z + 2i ) là s th c và z nh nh t. 8) Tìm m t acgumen c a s ph c z khác 0 bi t z + z i = z 9) Tìm s ph c z tho mãn z 2 + z = 2 và z = 2 10) Gi i h pt sau trong t p s ph c: z − 12 5  =  z1 + z2 = 3 − i   2 z − i = z − z + 2i   z − z2 + 1 = 0 z − 8i 3 2    b)  1 1 3 + i 1 d)  a)  2 c)  2 z + z = 5 z−4 z −z =4  z2 − z1 + 1 = 0 2    =1 1  z −8 2   z3 + 2z 2 + 2z +1 = 0  e)  2010 z + z +1 = 0 2011  11) Cho phương trình 2 z 3 − (2i + 1) z 2 + (9i − 1) z + 5i = 0 có nghi m th c. Hãy tìm t t c các nghi m c a phương trình. 1 1 + w =1 12) Tìm ph n th c ph n o c a z = 2011 + w 2011 bi t w w 13) Tìm n nguyên dương các s ph c sau là s th c, s o: n  − 2 +i 6   3 − 3i   4 + 6i   7 + 4i  n n d )z =  a) z =  b) z =  c) z =    3 − 3i        −1 + 5i   4 − 3i  3 + 3i     11
  12. 14) Cho n nguyên dương, ch ng minh r ng 2nπ C2 n − 3C2 n + 9C24n − 27C2 n + ..... + ( −3) C2 nn = 22 n cos n 0 2 6 2 3 15) Tìm s ph c z sao cho z = z − 2 và m t acgumen c a z-2 b ng m t acgumen π c a z+2 c ng v i 2 16) Gi i phương trình 2z 2z = z 2 + cot 2 120 + 6i − 7 = z 2 + tan 2 100 + 4i − 2 b) a) 0 0 sin12 cos10 M i th c m c xin vui lòng liên h th y Nguy n Trung Kiên 0988844088 www.MATHVN.com 12
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2