Tóm tắt kiến thức Toán 11 - Nguyễn Thanh Nhàn
lượt xem 3
download
Tham khảo “Tóm tắt kiến thức Toán 11 ” dành cho các bạn học sinh lớp 11 và quý thầy cô tham khảo, để hệ thống lại kiến thức học tập môn Toán lớp 11. Hi vọng với đây sẽ là tài liệu ôn tập sẽ giúp các bạn đạt kết quả tốt trong học tập.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tóm tắt kiến thức Toán 11 - Nguyễn Thanh Nhàn
- Lưu hành nội bộ Điều chỉnh, bổ sung năm 2011
- GIÁO KHOA & PP GIẢI TOÁN 11 MỤC LỤC CÔNG THỨC LƯỢNG GIÁC .................................................................... 4 1. Độ và radian .......................................................................................... 4 2. Các hệ thức cơ bản ................................................................................. 4 3. Các hệ quả cần nhớ ................................................................................ 4 4. Các cung liên kết ................................................................................... 5 5. Các công thức biến đổi ........................................................................... 6 HÀM SỐ LƯỢNG GIÁC ............................................................................ 8 1. Các hàm số lượng giác ........................................................................... 8 2. Tập xác định của hàm số ........................................................................ 9 3. Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số ..................................... 9 4. Xét tính chẵn, lẻ của hàm số ................................................................... 9 PHƯƠNG TRÌNH LƯỢNG GIÁC ........................................................... 10 1. Phương trình lượng giác cơ bản............................................................ 10 2. Phương trình bậc hai đối với một hàm số lượng giác ............................ 12 3. Phương trình bậc nhất đối với sinx và cosx ........................................... 12 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx .............................. 13 5. Phương trình đối xứng, phản đối xứng ................................................. 13 6. Phương trình lượng giác khác............................................................... 13 ĐẠI SỐ TỔ HỢP ....................................................................................... 14 1. Phép đếm ............................................................................................. 14 2. Hoán vị ................................................................................................ 14 3. Chỉnh hợp ............................................................................................ 14 4. Tổ hợp ................................................................................................. 15 5. Cách phân biệt tổ hợp và chỉnh hợp ...................................................... 15 NHỊ THỨC NEWTON .............................................................................. 15 1. Khai triển nhị thức Newton .................................................................. 15 2. Tam giác Pascal ................................................................................... 15 3. Giải phương trình................................................................................. 16 XÁC SUẤT................................................................................................. 16 DÃY SỐ...................................................................................................... 17 1. Tính đơn điệu của dãy số ..................................................................... 17 2. Tính bị chặn của dãy số ........................................................................ 17 CẤP SỐ CỘNG.......................................................................................... 18 1. Định nghĩa ........................................................................................... 18 2. Tính chất.............................................................................................. 18 3. Tổng n số hạng đầu tiên của cấp số cộng .............................................. 18 CẤP SỐ NHÂN .......................................................................................... 18 1. Định nghĩa ........................................................................................... 18 GV: NGUYỄN THANH NHÀN 1 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 2. Tính chất.............................................................................................. 18 3. Tổng n số hạng đầu tiên ....................................................................... 18 GIỚI HẠN CỦA DÃY SỐ ......................................................................... 19 1. Định nghĩa ........................................................................................... 19 2. Tính chất.............................................................................................. 19 3. Một số giới hạn cơ bản ......................................................................... 19 4. Cách tìm giới hạn ................................................................................. 19 GIỚI HẠN CỦA HÀM SỐ ........................................................................ 20 HÀM SỐ LIÊN TỤC ................................................................................. 22 1. Xét tính liên tục của hàm số y f ( x ) tại x0 ........................................ 22 2. Tìm m để hàm số y f ( x ) liên tục tại điểm đã chỉ ra .......................... 22 3. Chứng minh phương trình có nghiệm ................................................... 22 ĐẠO HÀM CỦA HÀM SỐ........................................................................ 22 1. Bảng các đạo hàm ................................................................................ 22 2. Các qui tắc tính đạo hàm ...................................................................... 23 3. Đạo hàm cấp cao.................................................................................. 23 TIẾP TUYẾN CỦA ĐƯỜNG CONG........................................................ 23 CÁC PHÉP BIẾN HÌNH TRONG MẶT PHẲNG.................................... 26 I. Các phép biến hình ............................................................................... 26 II. Vẽ ảnh của một hình qua phép biến hình ............................................. 27 III. Tìm phương trình của ảnh .................................................................. 27 ĐƯỜNG THẲNG VÀ MẶT PHẲNG........................................................ 28 1. Tìm giao tuyến của hai mặt phẳng ........................................................ 28 2. Tìm giao điểm của đường thẳng d và mặt phẳng (P) ............................. 28 3. Chứng minh 3 điểm thẳng hàng............................................................ 28 4. Tìm thiết diện ...................................................................................... 29 QUAN HỆ SONG SONG ........................................................................... 29 I. Các định nghĩa...................................................................................... 29 II. Các tính chất ....................................................................................... 29 III. Chứng minh hai đường thẳng song song ............................................. 30 IV. Chứng minh đường thẳng song song mặt phẳng ................................. 30 V. Chứng minh hai mặt phẳng song song ................................................. 31 VI. Chứng minh hai đường thẳng chéo nhau ............................................ 31 QUAN HỆ VUÔNG GÓC.......................................................................... 31 I. Chứng minh hai đường thẳng vuông góc ............................................... 31 II. Chứng minh đường thẳng vuông góc mặt phẳng .................................. 32 III. Chứng minh hai mặt phẳng vuông góc ............................................... 32 GÓC ........................................................................................................... 33 1. Góc giữa hai đường thẳng a, b ......................................................... 33 GV: NGUYỄN THANH NHÀN 2 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 2. Góc giữa đường thẳng a và mặt phẳng (P)........................................ 33 3. Góc giữa hai mặt phẳng (P) và (Q)................................................... 33 KHOẢNG CÁCH ...................................................................................... 33 1. Khoảng cách từ điểm O đến đường thẳng a .......................................... 33 2. Khoảng cách từ điểm O đến mặt phẳng (P)........................................... 33 3. Khoảng cách giữa đường thẳng a // (P) ................................................. 34 4. Khoảng cách giữa hai mặt phẳng (P) // (Q) ........................................... 34 5. Khoảng cách giữa hai đường thẳng chéo nhau ...................................... 34 HỆ THỨC LƯỢNG TRONG TAM GIÁC ............................................... 34 1. Định lí cô sin ....................................................................................... 34 2. Định lí sin ............................................................................................ 35 3. Công thức tính diện tích tam giác ......................................................... 35 4. Các hệ thức lượng trong tam giác vuông .............................................. 36 GV: NGUYỄN THANH NHÀN 3 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 CÔNG THỨC LƯỢNG GIÁC 1. Độ và radian: 0 0 180 180 (rad ) ; 0 1 180 (rad); 1(rad ) 2. Các hệ thức cơ bản: sin cos * tan cos cos 0 ; * cot sin sin 0 * sin 2 cos2 1, ; 1 * 1 tan 2 k , k Z cos2 2 1 * 1 cot 2 ( k , k Z) sin 2 k * tan .cot 1 , k Z . 2 3. Các hệ quả cần nhớ: sin( k 2 ) sin ; cos( k 2 ) cos tan( k ) tan ; cot( k ) cot tan xác định khi k , k Z 2 cot xác định khi k , k Z 1 sin 1 1 cos 1 1 * sin 4 x cos4 x 1 sin 2 2 x 2 3 * sin 6 x cos6 x 1 sin 2 2 x 4 GV: NGUYỄN THANH NHÀN 4 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 Dấu các giá trị lượng giác: Góc phần tư I II III IV GTLG sin + + – – cos + – – + tan + – + – cot + – + – 4. Các cung liên kết: a. Cung đối: và cos( ) cos ; sin( ) sin tan( ) tan ; cot( ) cot b. Cung bù: và sin( ) sin ; cos( ) cos tan( ) tan ; cot( ) cot c. Cung phụ: và 2 sin cos ; cos sin 2 2 tan cot ; cot tan 2 2 d. Cung hơn kém nhau : và tan( ) tan ; cot( ) cot sin( ) sin ; cos( ) cos e. Cung hơn kém nhau : và 2 2 sin cos ; cos sin 2 2 tan cot ; cot tan 2 2 GV: NGUYỄN THANH NHÀN 5 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 5. Các công thức biến đổi: a. Công thức cộng: sin(a b) = sina cosb cosa sinb cos(a b) = cosa cosb sina sinb tan a tan b tan(a b) = 1 tan a tan b 1 tan a tan b cot(a b) = tan a tan b b. Công thức nhân đôi: sin2a = 2 sina.cosa cos2a = cos2a – sin2a = 2cos2a – 1 = 1 – 2sin2a 2 tan a cot 2 a 1 tan2a = ; cot2a = 1 tan 2 a 2 cot a x * Công thức tính theo t tan 2 2t 2t 1 t2 tan x ;sin x ;cos x 1 t2 1 t2 1 t2 c. Công thức hạ bậc: 1 cos2 a 1 cos2a 1 cos2 a cos2a = ; sin2a = ; tan2a = 2 2 1 cos2 a Lưu ý: x * 1 cos x 2 cos2 2 x * 1 cos x 2sin 2 2 d. Công thức biến đổi tích về tổng: GV: NGUYỄN THANH NHÀN 6 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 1 sina.cosb = [sin(a b) sin(a b)] 2 1 cosa.cosb = [cos(a b) cos(a b)] 2 1 sina.sinb = [cos(a b) cos(a b)] 2 e. Công thức biến đổi tổng về tích: AB AB sinA + sinB = 2sin cos 2 2 AB AB sinA – sinB= 2cos sin 2 2 AB AB cosA + cosB = 2cos cos 2 2 AB AB cosA – cosB = –2sin sin 2 2 sin( ) tan tan = ; k , k Z cos .cos 2 Chú ý: * sin x cos x 2 sin x 2 cos x 4 4 * sin x cos x 2 sin x 2 cos x 4 4 GV: NGUYỄN THANH NHÀN 7 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 f. Giá trị lượng giác của các cung đặc biệt: 00 300 450 600 900 1200 1350 1500 1800 Góc 2 3 5 0 6 4 3 2 3 4 6 1 2 3 3 2 1 sin 0 1 0 2 2 2 2 2 2 – 3 2 1 1 3 cos 1 0 – 2 – 1 2 2 2 2 2 2 1 1 tan 0 1 3 || 3 1 – 0 3 3 1 1 cot || 3 1 0 1 – 3 || 3 3 HÀM SỐ LƯỢNG GIÁC 1. Các hàm số lượng giác: y sin x y cos x - TXĐ: D= - TXĐ: D= - Là hàm số lẻ - Là hàm số chẳn - Hàm tuần hoàn với chu kì 2 - Hàm tuần hoàn với chu kì 2 - Tập giá trị: T 1;1 - Tập giá trị: T 1;1 - Hàm số đồng biến trong - Hàm số đồng biến trong k 2 ; k 2 k 2 ; k 2 2 2 - Hàm số nghịch biến trong - Hàm số nghịch biến trong 3 k 2 ; k 2 k 2 ; k 2 2 2 GV: NGUYỄN THANH NHÀN 8 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 y tan x y cot x - TXĐ: D= \ k - TXĐ: D= \ k 2 2 - Là hàm số lẻ - Là hàm số lẻ - Hàm tuần hoàn với chu kì - Hàm tuần hoàn với chu kì - Tập giá trị: T - Tập giá trị: T - Hàm số đồng biến trong - Hàm số nghịch biến trong k ; k k ; k 2 2 - Có các đường tiệm cận x k - Có các đường tiệm cận x k 2 2. Tập xác định của hàm số: Px a) y xác định khi Q x 0 Q x b) y P x xác định khi P x 0 Px c) y xác định khi Q x 0 Q x d) y sin f x ; y cos f x xác định khi f x xác định. e) y tan f x xác định khi f x k 2 f) y cot f x xác định khi f x k 3. Tìm giá trị nhỏ nhất, giá trị lớn nhất của hàm số: a) Áp dụng các tính chất của bất đẳng thức, và với mọi x ta có: 1 sin x 1; 1 cos x 1; 0 sin 2 x 1; 0 cos2 x 1 b) Giá trị nhỏ nhất, giá trị lớn nhất của hàm số y a sin x b cos x c x ta có a 2 b2 ainx b cos x a2 b2 c a2 b2 a sin x b cos x c c a2 b 2 4. Xét tính chẵn, lẻ của hàm số: Cho hàm số y = f(x) xác định trên D. GV: NGUYỄN THANH NHÀN 9 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 x D x D * Hàm số y = f(x) được gọi là hàm số chẵn nếu f ( x ) f ( x ) x D x D * Hàm số y = f(x) được gọi là hàm số lẻ nếu f ( x ) f ( x ) PHƯƠNG TRÌNH LƯỢNG GIÁC 1. Phương trình lượng giác cơ bản: a) Phương trình sin x m * Điều kiện có nghiệm: m 1 * Tìm góc a sao cho sin a m (sử dụng MTCT: a sin 1 m ). Ta được: sin x sin a và áp dụng công thức: u v k 2 sin u sin v u v k 2 k u v k 3600 Hay 0 0 nếu trong phương trình có cho độ. u 180 v k 360 * Trường hợp đặc biệt: sin u 0 u k sin u 1 u k 2 2 sin u 1 u k 2 2 * Nếu không phải là giá trị đặc biệt thì có thể sử dụng công thức: u arcsin m k 2 sin u m arcsin m u arcsin m k 2 2 2 * sin u sin u ; cos u sin u ; cos u sin u 2 2 b) Phương trình cos x m * Điều kiện có nghiệm: m 1 * Tìm góc a sao cho cos a m (sử dụng MTCT: a cos1 m ). Ta được: cos x cos a và áp dụng công thức: GV: NGUYỄN THANH NHÀN 10 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 u v k 2 cos u cos v u v k 2 k u v k 360 0 Hay 0 nếu trong phương trình có cho độ. u v k 360 * Trường hợp đặc biệt: cos u 0 u k 2 cos u 1 u k 2 cos u 1 u k 2 * Nếu không phải là giá trị đặc biệt thì có thể sử dụng công thức: u arccos m k 2 cos u m arcsin m u arccos m k 2 2 2 * cos u cos u ; sin u cos u ; sin u cos u 2 2 c) Phương trình tan x m x k 2 * Tìm góc a sao cho tan a m (sử dụng MTCT: a tan 1 m ) Ta được: tan x tan a và áp dụng công thức tan u tan v u v k Hay u v k180 0 nếu trong phương trình có độ. * Đặc biệt: tan u 0 u k tan u 1 u k 4 * Nếu m không phải là giá trị đặc biệt có thể sử dụng công thức: tan u m u arctan m k arctan m 2 2 * tan u tan u ; cot u tan u ; cot u tan u 2 2 d) Phương trình cot x m x k 1 * Tìm góc a sao cho cot a m (sử dụng MTCT: a tan 1 ) m GV: NGUYỄN THANH NHÀN 11 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 Ta được: cot x cot a và áp dụng công thức cot u cot v u v k Hay u v k180 0 nếu trong phương trình có độ. * Đặc biệt: cot u 0 u k 2 tan u 1 u k 4 * Nếu m không phải là giá trị đặc biệt có thể sử dụng công thức: cot u m u arccot m k 0 arccot m * cot u cot u ; tan u cot u ; tan u cot u 2 2 2. Phương trình bậc hai đối với một hàm số lượng giác: Dạng Đặt Điều kiện 2 asin x b sin x c 0 t = sinx 1 t 1 a cos2 x b cos x c 0 t = cosx 1 t 1 a tan 2 x b tan x c 0 t = tanx x k ( k Z ) 2 a cot 2 x b cot x c 0 t = cotx x k ( k Z ) Giải lấy nghiệm t thích hợp sau đó áp dụng phương trình cơ bản. Chú ý: cos 2 x 2 cos2 x 1 1 2sin 2 x sin 2 x 1 cos2 x cos2 x 1 sin 2 x 3. Phương trình bậc nhất đối với sinx và cosx: a) Dạng phương trình: a sin x b cos x c b) Điều kiện có nghiệm: a2 b2 c2 c) Phương pháp giải: Chia hai về của phương trình cho a2 b2 a b c Ta được phương trình: sin x cos x a 2 b2 a2 b2 a2 b2 GV: NGUYỄN THANH NHÀN 12 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 a b Đặt cos sin . Ta được phương trình: 2 2 a b a b2 2 c c sin x cos sin cos x sin x (*) 2 2 a b a b2 2 (*) là phương trình dạng cơ bản. 4. Phương trình đẳng cấp bậc hai đối với sinx và cosx a) Dạng: a.sin 2 x b.sinx .cosx c.cos2 x d 1 b) Phương pháp giải: * Kiểm tra cosx = 0 có thoả mãn hay không? Lưu ý: cosx = 0 x k sin 2 x 1 sin x 1. 2 * Khi cos x 0 , chia hai vế phương trình (1) cho cos2 x 0 ta được: a.tan 2 x b.tan x c d (1 tan 2 x) * Đặt: t = tanx, đưa về phương trình bậc hai theo t: (a d )t 2 b.t c d 0 5. Phương trình đối xứng, phản đối xứng: a) Dạng: a.(sinx cosx ) b.sinx.cosx c 0 b) Phương pháp giải: * Đặt: t cos x sin x 2.cos x ; t 2. 4 1 t 2 1 2sin x.cos x sin x.cos x (t 2 1). 2 * Thay vào phương trình đã cho, ta được phương trình bậc hai theo t. Giải phương trình này tìm t thỏa t 2. Suy ra x. Chú ý: * cos x sin x 2 cos x 2 sin x 4 4 * cos x sin x 2 cos x 2 sin x 4 4 6. Phương trình lượng giác khác: Để giải một phương trình lượng giác chưa phải là các dạng quen thuộc ta cần sử dụng các phép biến đổi lượng giác để đưa phương trình về dạng quen GV: NGUYỄN THANH NHÀN 13 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 thuộc, có thể phân tích phương trình đã cho về dạng phương trình tích hoặc áp dụng tính chất bất đẳng thức để đưa về hệ phương trình để giải. Các phương pháp giải phương trình lượng giác thường sử dụng: * Biến đổi phương trình đã cho về một trong các dạng phương trình cơ bản đã biết (đưa về cùng một cung hoặc cùng một hàm số lượng giác,...). A 0 * Biến đổi phương trình đã cho về dạng tích: A.B 0 B 0 * Biến đổi phương trình về dạng có thể đặt ẩn số phụ (đối xứng, đặt x t tan ,…) 2 ĐẠI SỐ TỔ HỢP 1. Phép đếm: a) Qui tắc cộng: Giả sử để hoàn thành hành động (H) ta có thể thực hiện qua các trường hợp A hoặc B hoặc C ... (mỗi trường hợp đều hoàn thành công việc) Nếu A có m cách, B có n cách, C có p cách thì có m n p ... cách để hoàn thành (H). b) Qui tắc nhân: Giả sử để hoàn thành hành động (H) ta phải qua nhiều công đoạn (bước) A, B, C liên tiếp nhau. Công đoạn A có m cách, công đoạn B có n cách, công đoạn C có p cách... Khi đó để hoàn thành (H) thì có m.n. p ... cách 2. Hoán vị: a) Hoán vị: Cho tập A có n phần tử, mỗi cách sắp thứ tự n phần tử của A gọi là một hoán vị. b) Số các hoán vị n phần tử: Pn n! Chú ý: Giai thừa * n! n. n 1 ...3.2.1 * Qui ước: 0! 1 3. Chỉnh hợp: a) Chỉnh hợp: GV: NGUYỄN THANH NHÀN 14 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 Cho tập A có n phần tử, mỗi bộ sắp thứ tự gồm k phần tử lấy trong n phần tử của A ( k ,0 k n ) gọi là một chỉnh hợp chập k của n. b) Số các chỉnh hợp chập k của n: n! Ank n. n 1 ... n k 1 n k ! 4. Tổ hợp: a) Tổ hợp: Cho tập A có n phần tử, mỗi tập hợp con gồm k phần tử của A ( k ,0 k n ) gọi là một tổ hợp chập k của n. n! b) Số các tổ hợp chập k của n: Cnk k ! n k ! c) Tính chất: Cn0 Cnn 1 Cnk Cnn k Cnk Cnk 1 Cnk11 5. Cách phân biệt tổ hợp và chỉnh hợp: * Chỉnh hợp có tính đến thứ tự của k phần tử. * Tổ hợp không tính đến thứ tự của k phần tử. NHỊ THỨC NEWTON 1. Khai triển nhị thức Newton: n a b Cn0 a b Cn1a n 1b Cn2 a n 2 b2 ... Cnk a n k bk ... Cnn 1ab n 1 Cnn bn Số hạng tổng quát thứ k+1 của khai triển: Tk 1 Cnk a n k b k 2. Tam giác Pascal: (cho biết giá trị của Cnk ) n\k 0 1 2 3 4 5 6 0 1 1 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 5 1 5 10 10 5 1 6 1 6 15 20 15 6 1 Muốn tìm Cnk ta tìm số ở dòng n, cột k. Ví dụ: C63 20 (dòng 6, cột 3) GV: NGUYỄN THANH NHÀN 15 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 3. Giải phương trình: Để giải phương trình ta cần đặt điều kiện cho ẩn số và áp dụng công thức hoán vị, tổ hợp, chỉnh hợp đưa về phương trình đại số để giải. Chú ý chỉ lấy những nghiệm thỏa mãn điều kiện. XÁC SUẤT 1. Tập hợp tất cả các kết quả có thể xảy ra của phép thử được gọi là không gian mẫu. a) Gieo n con súc sắc thì 6 n b) Gieo n đồng tiền thì 2 n c) Lấy k viên bi trong hộp có n viên bi thì Cnk d) Hộp 1 có m viên bi, hộp 2 có n viên bi. Lấy k viên ở hộp 1 và h viên ở hộp 2 thì Cmk Cnh 2. Một biến cố A liên quan tới phép thử T là A . Biến cố A xảy ra khi và chỉ khi kết quả của T thuộc A . Mỗi phần tử của A gọi là kết quả thuận lợi cho A. 3. Hai biến cố A, B gọi là xung khắc nếu A, B không đồng thời xảy ra. 4. Hai biến cố A, B gọi là độc lập nếu việc xảy ra hay không xảy ra của biế cố nay không ảnh hưởng đến xác suất xảy ra của biến cố kia. A 5. Xác suất của A là P A 6. A1 , A2 ,..., Ak là các biến cố đôi một xung khắc thì P A1 A2 ... Ak P A1 P A2 ... P Ak 7. A1 , A2 ,..., Ak là các biến cố độc lập thì P A1 A2 ...Ak P A1 P A2 ...P Ak 8. A là biến cố đối của biến cố A thì: P A 1 P A 9. X là biến ngẫu nhiên rời rạc với tập giá trị là x1 , x 2 ,..., xn n a) Kỳ vọng của X là E X xi pi với pi P X xi , i 1,2,3,..., n i 1 GV: NGUYỄN THANH NHÀN 16 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 n 2 b) Phương sai của X là V X xi pi hay i 1 n V X x 2 pi 2 trong đó pi P X xi , i 1,2,..., n và E X i 1 c) Độ lệch chuẩn: X E X DÃY SỐ 1. Tính đơn điệu của dãy số: a) Định nghĩa: Cho dãy số un nếu n * ta có: * un un 1 thì dãy số un là dãy số tăng. * un un 1 thì dãy số un là dãy số giảm. * Một dãy tăng (hay giảm) gọi là dãy số đơn điệu. b) Cách xét tính đơn điệu của dãy số: Để xét tính đơn điệu của một dãy số ta có thể áp dụng tính chất bất đẳng thức để suy trực tiếp. Hoặc xét hiệu T un 1 un * Nếu T 0, n * thì un là dãy số tăng. * Nếu T 0, n * thì un là dãy số giảm. un Nếu un 0, n ta có thể xét un 1 un * 1 thì un là dãy số giảm. un 1 un * 1 thì un là dãy số tăng. un 1 2. Tính bị chặn của dãy số: a) Định nghĩa: Cho dãy số un nếu n * ta có: * M : un M thì dãy số un bị chặn trên. * m : un m thì dãy số un bị chặn dưới. * Dãy số vừa bị chặn trên vừa bị chặn dưới gọi là dãy số bị chặn. GV: NGUYỄN THANH NHÀN 17 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 CẤP SỐ CỘNG 1. Định nghĩa: u là một cấp số cộng nếu n * tồn tại số d sao cho u n n 1 un d d: công sai un : số hạng tổng quát thứ n. 2. Tính chất: a) Số hạng tổng quát thứ n: un u1 n 1 d b) un là cấp số cộng un 1 un 1 2un , n 1 3. Tổng n số hạng đầu tiên của cấp số cộng: n u1 un n 2u1 n 1 d Sn 2 2 CẤP SỐ NHÂN 1. Định nghĩa: u là một cấp số nhân nếu n * tồn tại số q sao cho u n n 1 un .q q: công bội un : số hạng tổng quát thứ n. 2. Tính chất: a) Số hạng tổng quát: un u1 .qn 1 2 b) un là cấp số nhân un 1 .un 1 un , n 1 3. Tổng n số hạng đầu tiên: * q 1 thì Sn n.u1 qn 1 * q 1 thì Sn u1 . q 1 u1 * CSN lùi vô hạn là CSN có công bội q 1 có tổng S 1 q GV: NGUYỄN THANH NHÀN 18 : 0987. 503.911
- GIÁO KHOA & PP GIẢI TOÁN 11 GIỚI HẠN CỦA DÃY SỐ 1. Định nghĩa: a) lim un 0 n, un nhỏ hơn một số dương cho trước nhỏ tùy ý kể từ một số hạng nào đó trở đi. b) lim un L lim un L 0 c) lim un n, un lớn hơn một số dương cho trước tùy ý kể từ một số hạng nào đó trở đi. d) lim un n, un nhỏ hơn một số dương cho trước tùy ý kể từ một số hạng nào đó trở đi. 2. Tính chất: a) lim un vn lim un lim vn b) lim un .vn lim un .lim vn un lim un c) lim k .un k .lim un d) lim vn lim vn lim vn 0 e) lim un L lim 3 un 3 L ;lim un L (L 0) un vn f) lim un 0 lim vn 0 3. Một số giới hạn cơ bản: 1 a) lim n 0 b) lim n * 0, q 1 1 c) lim q n e) lim 0 3 , q 1 n 4. Cách tìm giới hạn: a) Đặt thừa số chung n lũy thừa cao nhất trong cả tử số và mẫu số, sau đó đơn giản thừa số chung đó rồi áp dụng các tính chất và các giới hạn cơ bản để tính. b) Khi trong giới hạn có căn thức ta có thể nhân chia cho biểu thức liên hợp. GV: NGUYỄN THANH NHÀN 19 : 0987. 503.911
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Hệ thống lý thuyết và các dạng bài tập Vật lý 11
22 p | 653 | 210
-
Các dạng bài tập về Đạo hàm lớp 11
13 p | 408 | 64
-
Bài giảng 11 trừ đi một số: 11-5 - Toán 2 - GV.Lê Văn Hải
13 p | 361 | 46
-
Tóm tắt lí thuyết Toán 11 HKII Dãy số - Cấp số cộng - Cấp số nhân
6 p | 240 | 33
-
Tóm tắt công thức và lý thuyết môn Vật lý lớp 11
24 p | 157 | 18
-
Giải bài tập Phép tịnh tiến SGK Hình học 11
4 p | 398 | 13
-
Ôn tập Toán 11: Chương 1 - Hàm số lượng giác và phương trình lượng giác
146 p | 26 | 9
-
Đề cương ôn tập HK 1 môn Toán lớp 11 năm 2017-2018 - Liên trường THPT TP Nghệ An
12 p | 83 | 6
-
Tài liệu Toán lớp 11: Chương 6 - Cung và góc lượng giác. Công thức lượng giác
76 p | 18 | 5
-
Giải bài tập Phép vị tự SGK Hình học 11
4 p | 149 | 4
-
Hướng dẫn giải bài 1,2,3 trang 11 SGK Hình học 11
3 p | 102 | 4
-
Đề cương ôn tập HK 1 môn Toán lớp 11 năm 2017-2018 - THPT Hoàng Hoa Thám
9 p | 106 | 4
-
Giáo án Đại số lớp 11: Giới hạn của dãy số
36 p | 17 | 4
-
Hướng dẫn giải bài 1,2,3,4,5 trang 92 SGK Đại số và giải tích 11
7 p | 147 | 3
-
Hướng dẫn giải bài 16,17,18 trang 11 SGK Toán 8 tập 1
4 p | 280 | 3
-
Hướng dẫn giải bài 7,8,9,10, 11,12, 13 trang 39,40 SGK Toán 8 tập 1
5 p | 305 | 1
-
Giải bài tập 51-15 SGK Toán 2
3 p | 60 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn