Chuyên đề: cực trị
lượt xem 24
download
Tham khảo tài liệu 'chuyên đề: cực trị', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chuyên đề: cực trị
- www.laisac.page.tl C C T Ị CỰ TR Ự RỊ Chuyên Đề: Ph n 1: C C TR TRONG IS : M t s d ng toán thư ng g p: ▼ D ng 1: ưa v d ng bình phương I. Phương pháp gi : ưa v d ng A2 ≥ 0, ho c A2+ c ≥ c (v I c là h ng s ) d u b ng x y ra khi A=0 II. M t s bài t p ví d : Ví d 1: ( ) Tìm giá tr l n nh t c a P = x 1 − x L i gi i: 2 1 1 1 ( ) P = x 1− x = −x + x = − x − + ≤ 2 4 4 1 1 ng th c x y ra khi x = và x = 2 4 1 1 t khi x = Do ó giá tr l n nh t c a P là 4 4 Ví d 2: 1 Tìm giá tr c a x bi u th c có giá tr l n nh t x − 2 2x + 5 2 L i gi i: Ta có: ( ) 2 x2 − 2 2x + 5 = x − 2 +3≥ 3 1 1 ⇒ ≤ x2 − 2 2x + 5 3 1 1 Do ó, khi x = 2 thì b êu th c có giá tr l n nh t là x − 2 2x + 5 2 3 V í d 3: V I x,y không âm; tìm giá tr nh nh t c a bi u th c: P = x − 2 xy + 3 y − 2 x + 2004,5 L i gi i: t x = a, y = b v I a, b ≥ 0 ta có: 1
- P = a 2 − 2 ab + 3b 2 − 2 a + 2004, 5 = a 2 − 2 ( b + 1) a + 3b 2 + 2004,5 = a 2 − 2 ( b + 1) a + ( b + 1) + 2b 2 − 2b + 2003,5 2 1 1 = ( a − b − 1) + 2 b 2 − b + + 2003, 5 − 2 4 2 2 1 = ( a − b − 1) + 2 b − + 2003 ≥ 2003 2 2 2 1 Vì ( a − b − 1) ≥ 0 và b − 2 ≥ 0 ∀ a , b 2 3 a = b +1 a= 2 P = 2003 ⇔ ⇔ 1 1 b= b= 2 2 3 1 9 1 x= y= hay x = và y = V yP t giá tr nh nh t là 2003 khi và 2 2 4 4 III. Bài t p t gi i: 1) Tìm giá tr l n nh t c a bi u th c: P = 2 − 5 x 2 − y 2 − 4 xy + 2 x 2) Tìm giá tr nh nh t c a f ( x, y ) = x 2 − 2 xy + 6 y 2 − 12 x + 45 1 ng th c: 8 x 2 + y 2 + =4 3) Cho hai s x,y tho mãn 4 x2 Xác nh x,y tích xy t giá tr nh nh t 4) Cho a là s c nh, còn x, y là nh ng s bi n thiên. Hãy tìm giá tr nh nh t c a bi u th c: A = (x– 2y + 1)2 + (2x + ay +5)2 Hư ng d n gi I và áp s : 1)Max P = 3 khi (x,y) = (1, -2) 2) f ( x, y ) = ( x − y − 6 ) + 5 y 2 + 9 ≥ 9 2 3) Thêm 4 xy + 4 x 2 vào 2 v 1 1 t GTNN là − khi x = ± y = ±1 K t qu : xy 2 2 9 4) A ≥ 0 khi a ≠ -4, A = khi a = -4 5 2
- ▼ D ng 2: s d ng mi n giá tr c a hàm s I. Phương pháp gi : Cho y = f(x) xác nh trên D y0 ∈ f ( D ) ⇔ phương trình y0 = f ( x ) có nghi m ⇔ a ≤ y0 ≤ b Khi ó min y = a, max y = b II. M t s bài t p ví d : Ví d 1: x Tìm Max và Min c a: y = x +1 2 L i gi i: T p xác nh D = R ⇒ y0 là m t giá tr c a hàm s x ⇔ phương trình y0 = có 1 nghi m x ∈ R x +1 2 ⇔ phương trình x 2 y0 + y0 = x có nghi m x ∈ R ⇔ phương trình x 2 y0 − x + y0 = 0 có nghi m x ∈ R ⇔ ∆≥0 ⇔ 1− 4 y2 ≥ 0 ⇔ y2 ≤ 4 1 1 ⇔ − ≤ y≤ 2 2 1 1 V y Min y = − , Max y = 2 2 Ví d 2: ax + b Xác inh các tham s a, b sao cho hàm s y = t giá tr l n nh t b ng x2 + 1 4, giá tr nh nh t b ng –1 L i gi i: T p xác nh D = R ax+b y0 là m t giá tr c a hàm s ⇔ phương trình y0 = có nghi m x ∈ R x2 + 1 ⇔ phương trình y0 x 2 − ax + y0 − b = 0 có nghi m x ∈ R (1) • N u y0 = 0 thì (1) ⇔ ax = -b có nghi m a=b=0 ⇔ a≠0 • N u y0 ≠ 0 thì (1) có nghi m ⇔ ∆ ≥ 0 ⇔ a 2 − 4( y0 − b) y0 ≥ 0 3
- ⇔ −4 y0 2 + 4by0 + a 2 ≥ 0 y0 t giá tr l n nh t là 4, giá tr nh nh t là –1 nên phương Theo trình −4 y0 + 4by0 + a ph I có nghi m là –1 và 4 (do -1.4 = -4 < 0) 2 2 −a 2 = −4 a = ±4 4 ⇔ Theo nh lý Viet ta có : b=3 b=3 V y v I a = 4, b = 3 ho c a = -4, b = 3 thì min y = -1, max y = 4 Ví d 3: 3 12 x( x − a ) 4 Tìm giá tr l n nh t c a hàm s : y = 2 x + 36 L i gi i: Hàm s ã cho xác nh khi x ( x − a ) ≥ 0 12 x( x − a ) (1) thì y = z , z ≥ 0 t z= 2 43 x + 36 12 x( x − a ) z0 là m t giá tr c a hàm s (1) ⇔ phương trình z0 = có nghi m x 2 + 36 hay phương trình (12 − z0 ) x 2 − 12ax − 36 z0 = 0 có nghi m (2) • z0 =12 : (2) ⇔ ax = -36 có nghi m khi a ≠ 0 • z0 ≠ 12 : (2) có nghi m ⇔ ∆ = 36a 2 + 36 z0 (12 − z0 ) ≥ 0 ⇔ a 2 + 12 z0 − z0 2 ≥ 0 ⇔ z0 2 − 12 z0 − a 2 ≤ 0 ⇔ 6 − a 2 + 36 ≤ z0 ≤ 6 + a 2 + 36 Vì z0 ≥ 0 nên 0 ≤ z0 ≤ 6 + a 2 + 36 V y max z = 6 + a 2 + 36 ; max y = 4 (6 + a 2 + 36)3 III. Bài t p t gi i: x2 − 2x + 2 1) Tìm giá tr l n nh t, nh nh t c a bi u th c: y = x2 + 2x + 2 3 x + 3 + 4 1− x +1 2) Tìm giá tr l n nh t, nh nh t c a bi u th c: y = 4 x + 3 + 3 1− x +1 1 f ( x) = x + x 2 + 3) Tìm giá tr nh nh t c a hàm s : ,x>0 x Hư ng d n gi I và áp s : 4
- 1) Max y = 3 + 2 2 , Min y = 3 − 2 2 2) k: − 3 ≤ x ≤ 1 ϕ 1− t2 2t v I t = tg ∈ [0;1] t x + 3 = 2. ; 1 + x = 2. 1+ t 1+ t 2 2 2 7t + 12t + 9 2 Ta có y = − 2 −5t + 16 + 7 9 7 Max y y = khi x = -3; min y = khi x = 1 7 9 0 < x ≤ y0 (1) 1 ⇔ y0 = x + x 2 + 3)Tìm nghi m c a h x 2 y0 x 2 − y0 2 x + 1 = 0 x>0 (2) i u ki n (2) có nghi m là y0 ≥ 2 Áp d ng Vi-et ta ch ng minh ư c x1 < x2 < y0 V y min f(x) = 2 v I x >0 ▼ Dang 3: S d ng m t s b t ng th c quen thu c B t ng th c Cauchy ► I. Ki n th c c n n m: • Cho hai s a, b ≥ 0, ta coù: a+b ≥ ab 2 D u “ =” x y ra khi ⇔ a = b • Cho n s a1, a2, … , an ≥ 0, ta có: a1 + a 2 + ... + a n n ≥ a1 a 2 ...a n n D u “=” x y ra ⇔ a1 = a2 = … = an II. M t s bài t p ví d : ◦ Bi n pháp 1: Áp d ng b t ng th c tr c ti p. Ví d 1: 111 + = . Tìm giá tr nh nh t c a bi u Cho x > 0 ; y > 0 tho mãn i u ki n xy2 x+ y th c A = L i gi i: 5
- 1 1 x > 0; y > 0 , theo b t Cauchy có: Vì x > 0 ; y > 0 nên >0; >0; x y 1 1 11 1 .≤+ x y 2 x y 1 1 ≤ => xy ≥ 4 => 4 xy x và V n d ng b t Cauchy v i hai s dương y ta ư c A = x + y ≥ 2 x . y ≥ 2 4 = 4 ( D u “=” x y ra ⇔ x = y = 4) V y min A = 4 ( khi và ch khi x = y = 4). Nh n xét: không ph i lúc nào ta cũng có th dùng tr c ti p b t Cauchy i v i các s trong bài. Dư i ây ta s nghiên c u m t s bi n pháp bi n i m t bi u th c có th v n d ng b t Cauchy r i tìm c c tr c a nó. Bi n pháp 1 : tìm c c tr c a m t bi u th c ta tìm c c tr c a bình phương bi u th c ó. Ví d 2: Tìm giá tr l n nh t c a bi u th c : A = 3 x − 5 + 7 − 3 x. L i gi i: 5 7 KX : ≤ x ≤ . 3 3 A = (3x – 5) + (7- 3x) + 2 (3 x − 5).(7 − 3 x) 2 A2 ≤ 2 + ( 3x – 5 + 7 – 3x) = 4 ( d u “=” x y ra ⇔ 3x – 5 = 7 – 3x ⇔ x = 2). V y max A2 = 4 => max A = 2 ( khi và ch khi x = 2). Nh n xét: Bi u th c A ư c cho dư i d ng t ng c a hai căn th c. Hai bi u th c l y căn có t ng không i (b ng 2). Vì v y, n u ta bình phương bi u th c A thì s xu t hi n h ng t là hai l n tích c a căn th c. n ây có th v n d ng b t ng th c Cauchy. ◦ Bi n pháp 2: Nhân và chia bi u th c v i cùng m t s khác 0. Ví d 3: x−9 Tìm giá tr l n nh t c a bi u th c A = 5x L i gi i: KX : x ≥ 9 6
- 1 x−9 x−9 + 3 x − 9 + 9 .3 x −9 ≤ = 1 23 3 3 = A= = 5x 5x 5x 10 x 30 x−9 = 3 ⇔ x = 18 ). (d u “ =” x y ra khi và ch khi 3 1 V y max A = ( khi và ch khi x = 18). 30 x−9 Nh n xét: Trong cách gi i trên, x – 9 ư c bi u di n thành .3 và khi vân 3 x −9 x−9 1 + 3 = x có .3 ư c làm tr i tr thành t ng d ng b t Cauchy, tích 3 3 3 d ng kx có th rút g n cho x m u, k t qu là m t h ng s . Con s 3 tìm ư c b ng cách l y căn b c hai c a 9, s 9có trong bài. Bi n pháp 3: Bi n i bi u th c ã cho thành t ng c a các bi u th c sao cho tích c a chúng là m t h ng s . 1. Tách m t h ng t thành t ng c a nhi u h ng t b ng nhau. Ví d 4 : 3 x 4 + 16 . Cho x > 0, tìm giá tr nh nh t c a bi u th c : A = x3 L i gi i: 16 16 16 = x + x + x + 3 ≥ 4.4 x.x.x. 3 A = 3x + 3 x x x 16 A ≥ 4.2 = 8 ( d u “ =” x y ra khi và ch khi x = ⇔ x=2 x3 V y min A = 8 ( khi và ch khi x = 2). 16 Nh n xét: Hai s dương 3x và có tích không ph i là m t h ng s .Mu n kh 3x ư c x3 thì ph i có x3 = x.x.x do ó ta ph i bi u di n 3x = x + x + x r i dùng b t Cauchy v i 4 s dương. 2. Tách m t h ng t ch a bi n thành t ng c a m t h ng s v i m t h ng t ch a bi n sao cho h ng t này là ngh ch o c a h ng t khác có trong bi u th c ã cho ( có th sai khác m t h ng s ). Ví d 5: 9x 2 +. Cho 0 < x < 2, tìm giá tr nh nh t c a bi u th c A = 2− x x 7
- L i gi i: 2−x 9x + +1 A= 2− x x 9x 2 − x A ≥ 2. +1 = 2 9 +1 = 7 . 2− x x 2− x 9x 1 ( d u “=” x y ra ⇔ = ⇔ x = ). 2−x x 2 1 V y min A = 7 ( khi và ch khi x =). 2 ◦ Bi n pháp 4: Thêm m t h ng t vào bi u th c ã cho. Ví d 6: Cho ba s dương x, y, z tho mãn i u ki n x + y + z = 2. Tìm giá tr nh nh t c a bi u th c : x2 y2 z2 + + . P= y+z z+x x+ y L i gi i: y+z x2 Áp d ng b t Cauchy i v i hai s dương và ta ư c: y+z 4 y+z x2 y + z x2 x + ≥ 2. = 2. = x . y+z y+z 4 4 2 Tương t : z+x y2 + ≥y z+x 4 x+ y z2 + ≥z x+ y 4 x2 z2 x + y + z y2 y+ z z+ x x+ y+ + + ≥ x+ y+z Vy 2 x+ y+z 2 P ≥ (x + y + z ) − = 1 (d u “=” x y ra ⇔ x = y = z = ). 3 2 III. Bài t p t gi i: 1) Cho x + y = 15, tìm gía tr nh nh t, giá tr l n nh t c a bi u th c: B = x−4 + y −3 2) Cho x, y, z ≥ 0 tho mãn i u ki n x + y + z = a. Tìm giá tr l n nh t c a bi u th c A = xy + yz + xz. Tìm giá tr nh nh t c a bi u th c B = x2 + y2 + z2. 8
- 3) Cho x, y, z là các s dương tho mãn i u ki n x + y + z ≥ 12. Tìm giá tr x y z + + nh nh t c a bi u th c P = . y z x 4) Cho a, b, c là các s dương tho mãn i u ki n a + b + c = 1. Tìm giá tr (1 + a)(1 + b)(1 + c) nh nh t c a bi u th c A = . (1 − a)(1 − b)(1 − c) 5) Cho x, y tho mãn i u ki n x + y = 1 và x > 0. Tìm giá tr l n nh t c a bi u th c B = x2y3. xy yz zx 6) Tìm giá tr nh nh t c a A = + + v i x, y, z là các s dương và: z x y a) x + y + z = 1 b) x 2 + y 2 + z 2 = 1 1 1 1 7) Tìm giá tr l n nh t c a A = 3 +3 +3 v i a, b, c là a + b + 1 b + c + 1 c + a3 + 1 3 3 các s dương và abc = 1. 8)Tìm giá tr nh nh t, giá tr l n nh t c a A = x + y + z + xy + yz + zx bi t r ng x 2 + y 2 + z 2 = 3 . 9) Tìm giá tr nh nh t c a A = 3x + 3 y v i x + y = 4. 10) Tìm giá tr nh nh t c a A = x 4 − 4 x + 1 Hư ng d n gi i và áp s : 1. KX : x ≥ 4, y ≥ 3 B ≥ 8 ⇒ min B = 8 ( khi và ch khi x = 4, y = 11 ho c x = 12, y = 3). max B2 = 16 nên max B = 4 ( khi và ch khi x = 8, y = 7). 2 .a. xy + yz + xz ≤ x2 + y2 + z2 (áp d ng b t Cauchy cho 2 s , r i c ng l i theo v ). Suy ra: 3(xy + yz + xz) ≤ ( x + y + z )2 Hay 3A ≤ a2 b. B = x2 + y2 + z2 = ( x + y + z )2 – 2( x + y + z ) B = a2 – 2A B min ⇔ A max. 3. x 2 y 2 z 2 2x y 2 y z 2z x P2 = + + + + + . y z x z x y Áp d ng b t Cauchy cho 4 s dương: x2 x y x y x 2 .x 2 . y.z + + + z ≥ 44 = 4 x. y yz z z Còn l i: tương t C ng v v i v l i, ta ư c P2 ≥ 4(x + y + z) – (x + y + z) = 3(x + y + z) 9
- P2 ≥ 3.12 = 36 Min P = 6.( khi và ch khi x = y = z = 4). 4. a + b + c = 1 ⇒ 1 – a = b + c > 0. Tương t 1 – b > 0, 1 – c > 0. Có: 1 + a = 1 + (1 – b – c) = (1 – b) + (1 – c) ≥ 2 (1 − b )(1 − c ) Suy ra (1 + a)(1 + b)(1 + c) ≥ 8 (1 − a ) (1 − b ) (1 − c ) 2 2 2 A≥8 V y min A = 8. 5. N u y ≤ 0 thì B ≤ 0. N u y > 0 thì x2 y3 xxyyy 108 1 = x + y = + + + + ≥ 55 ⇒ x2 y3 ≤ 22333 108 3125 108 B≤ hay 3125 108 Suy ra max B = . 3125 6. Theo b t ng th c Cô-si xy yz xy yz yz zx zx xy + ≥ 2. = 2y + ≥ 2z ; + ≥ 2x . tương t z x zx x y y z 1 2A ≥ 2(x+y+z) = 2 ; min A = 1 v i x = y = z = Suy ra 3 x2 y 2 y2 z 2 z 2 x2 b) Ta có A = 2 + 2 + 2 + 2 2 z x y Hãy ch ng t A2 ≥ 3 . 3 Min A = 3 v ix=y=z= . 3 7. D ch ng minh a 3 + b3 ≥ ab ( a + b ) v i a > 0, b > 0. Do ó: a 3 + b3 + 1 ≥ ab ( a + b ) + abc = ab(a + b + c). a+b+c 1 1 1 A≤ + + = =1 ab(a + b + c) bc(a + b + c) ca (a + b + c) abc(a + b + c) max A = 1 ⇔ a = b = c = 1 8. ◦ Tìm giá tr l n nh t: ng th c ( x + y + z ) ≤ 3 ( x 2 + y 2 + z 2 ) ,ta ư c ( x + y + z ) ≤ 9 nên 2 2 Áp d ng b t 10
- x+ y+z ≤3 (1) ng th c xy + yz + zx ≤ x + y + z mà x + y + z 2 ≤ 3 nên 2 2 2 2 2 Ta có b t xy + yz + zx ≤ 3 (2) T (1) và (2) suy ra A ≤ 6 . Ta có max A = 6 ⇔ x = y = z = 1 . ◦ Tìm giá tr nh nh t : t x + y + z = m thì m 2 = x 2 + y 2 + z 2 + 2 ( xy + yz + zx ) = 3 + 2 ( xy + yz + zx ) m2 − 3 m2 − 3 Do ó xy + yz + xz = . Ta có A = m + nên 2 2 2 A = m 2 + 2m − 3 = ( m + 1) − 4 ≥ −4. 2 ⇒ A ≥ −2. x + y + z = 1 min A = −2 ⇔ 2 , ch ng h n x = -1, y = -1, z = 1. x + y + z = 3 2 2 9. A = 3x + 3 y ≥ 2 3x 3 y = 2 3x + y = 2 34 10. Ta có x ≤ x (x y ra d u b ng khi và ch khi x ≥ 0 ) nên −4 x ≥ −4 x . Do ó A ≥ x4 − 4 x + 1 . Áp d ng b t ng th c côsi v i b n s không âm x 4 + 1 + 1 + 1 ≥ 4 4 x 4 = 4 x ⇒ x 4 − 4 x + 1 ≥ −2. min A = −2 ⇔ x 4 = 1 và x ≥ 0 ⇔ x = 1 . ► B t ng th c Bunhiacopski: I. Ki n th c c n n m: • Cho a, b, c, d tuỳ ý, ta có (a2 + b2)(c2 + d2) ≥ (ac + bd)2 D u b ng x y ra khi: ad = bc. • Cho a1, … , an và b1, … , bn tuỳ ý, ta có: (a12 + … + an2)(b12 + … + bn2) ≥ ( a1b1 + … + anbn)2 a a1 = ... = n D u b ng x y ra khi: b1 bn II. M t s bài t p ví d : Ví d 1: Tìm giá tr l n nh t c a : P = 3 x − 1 + 4 5 − x L i gi i: KX : 1 ≤ x ≤ 5 Áp d ng b t Bunhiacopski có: 11
- P2 ≤ ( 32 + 42)(x – 1 + 5 – x) = 100 x −1 5− x 61 = ⇔ x= Suy ra max P = 10 khi . 25 3 4 Ví d 2: 5a 4b 3c + + Cho a, b, c > 0. Tìm min P = . b+c c+a a+b L i gi i: P= 5 3 5a 4b 3c 4 + 3 − (5 + 4 + 3) = (a + b + c ) +5+ +4+ + + − (5 + 4 + 3) b+c a+c a+b b+c a+c a+b [(a + b ) + (b + c ) + (c + a )]. 5 + 4 + 3 − (5 + 4 + 3) 1 = b+c a +c a +b 2 ( ) 1 5 + 4 + 3 − (5 + 4 + 3) ( theo b t Bunhiacopski). 2 ≥ 2 ( ) b+c a+c a+b 1 5 + 4 + 3 − (5 + 4 + 3) khi và ch khi 2 = = Vaäy min P = . 2 5 4 3 T ng quát: Cho a, b, c > 0. Ch ng minh r ng: ( ) a b c 1 z 2 ≥ ( xy + yz + xz ) − x 2 + y 2 + z 2 . x2 + y2 + b+c a+c a+b 2 (c ng vào v trái (x2 + y2 +z2) r i tr i (x2 + y2 +z2), sau ó áp d ng b t Bunhicopski). Ví d 3: a + 3c c + 3b 4b + + Cho a, b, c > 0. Tìm min P = a+b b+c c+a L i gi i: a + 3c c + 3a 4b + 2 + + 2 + + 6 − 10 P= a+b b+c c+a 3a + 2b + 3c 2b + 3c + 3a 4b + 6c + 6a + + − 10 P= a+b b+c c+a 1 2 1 P = (3a + 2b + 3c ) + + − 10 a+b b+c c+a ( ) 1 2 1 P = [(a + b ) + (b + c ) + 2(a + c )]. 2 + + − 10 ≥ 1 + 1 + 2 . 2 − 10 = 6 a+b b+c c+a V y min P = 6 khi và ch khi (a + b)2 = (b + c)2 = (c + a)2 hay a = b = c. Cơ s : 12
- Ch n α , β , γ sao cho: a + 3c + α (a + b) = c + 3a + β (b + c) = 4b + γ (c + a ) = m(3a + 2b + 3c) . T ó suy ra α = β = 2, γ = 6, m = 2 . III. Bài t p t gi i: 1. Cho a, b, c > 0. Tìm giá tr nh nh t c a: 3b + 9c 8a + 4b a + 5b + + a) P= . a+b b+c c+a b + 3c 4a + 2b a + 5b + + b) Q= . a+b b+c c+a a + 3c 4b 8c + − c) R= . a + 2b + c a + b + 2c a + b + 3c 2. Tìm giá tr nh nh t, giá tr l n nh t c a A = x 2 + y 2 bi t r ng x 2 ( x 2 + 2 y 2 − 3) + ( y 2 − 2 ) = 1. 2 3. Tìm giá tr nh nh t c a : a2 b2 c2 A= + + v i a, b, c là các s dương và a + b + c =6. b+c c+a a+b 2 1 4. Tìm giá tr nh nh t c a A = + v i 0 < x < 2. 2− x x 5. Cho a, b, c > 0 và abc = 1 1 1 1 Tìm giá tr nh nh t c a A = 3 +3 +3 a (b + c ) b ( a + c ) c ( a + b) Hư ng d n gi và áp s : 1. Câu a và câu b làm tương t ví d 3 Câu c không th làm như ví d 3 ư c, ta làm như sau: t a + 2b + c = x a + b + 2c = y a + b + 3c = z t ó suy ra c = z – y; b = x + y – 2y; a = 5y – x – 3z. 2 y − x 4 x + 4 z − 8 y 8z − 8 y 2 y 4x 4z 8y + + = −1+ + −8−8+ khi ó R = . x y z x y y z R i áp d ng b t ta tìm ư c min R. 2. T gi thi t suy ra (x + y 2 ) − 4 ( x 2 + y 2 ) + 3 = − x 2 ≤ 0. 2 2 Do ó A2 − 4 A + 3 ≤ 0 ⇔ ( A − 1) ( A − 3) ≤ 0 ⇔ 1 ≤ A ≤ 3. min A = 1 ⇔ x = 0, y = ±1. max A = 3 ⇔ x = 0, y = ± 3. 3. 13
- Áp d ng b t ng th c Bunhiacópki cho 3 c p s Ta có a 2 b 2 c 2 ( )( )( ) a+b 2 2 2 + + b+c + a+c + b + c a + c a + b 2 a b c ≥ b+c + a+c + a+b b+c a+c a+b a2 c2 b2 2 ( a + b + c ) ≥ ( a + b + c ) 2 ⇒ + + b+c a+c a+b a+b+c a2 b2 c2 ⇒ + + ≥ . b+c a+c a+b 2 Suy ra min A = 3. 4. Áp d ng b t ng th c Bunhiacopski ( a 2 + b2 ) ( m2 + n2 ) ≥ ( am + bn )2 Ta có: 2 1 2 2 2 1 ( ) +( ) x ≥ 2 2 2 (2 − x) + x 2 A = + 2− x 2 − x x 2− x x ( ) 2 ⇒ 2A ≥ 2 +1 = 3 + 2 2. 2 1 min 2 A = 3 + 2 2 ⇔ 2 − x = x ⇔ 2 1 = 2 ⇔ 2x2 = x2 − 4x + 4 (2 − x) x 2− x x 2 ⇔ x 2 + 4 x + 4 = 8 ⇔ ( x + 2 ) = 8 ⇔ x = 2 2 − 2 (chú ý x > 0). 2 3 V y min A = + 2 2 ⇔ x = 2 2 − 2. 2 5. 1 1 1 t a= ,b = ,c = x y z x, y , z > 0 thì xyz = 1 x2 y2 z2 Khi ó A = + + y+z z+x x+ y Áp d ng b t ng th c Bunhiacopski, bi n i tương ương ta ư c: (x + y + z) 2 x+ y+z A≥ = ( y + z ) + ( z + x) + ( x + y) 2 M t khác theo BDT côsi ta có: x + y + z ≥ 3 3 xyz = 3 Vy 14
- x y z y+ z = z+ x = x+ y 3 min A = ⇔ x = y = z 2 xyz = 1 ⇔ x = y = z = 1 ⇔ a = b = c. ► B t ng th c Bernoulli I. Ki n th c c n n m α x ≥ 1 − α + αx (1) (α ≥ 1, x > 0) D u “ =” x y ra khi x =1 II. M t s bài t p ví d : Ví d 1: Cho x, y > 0 sao cho x + y = 1. Tim giá tr nh nh t : a. P = x2 + y2 b. Q = x5 + y5 L i gi i: a. Áp d ng b t Bernoulli ta có: (2x)2 ≥ 1 – 2 + 2(2x) (2y)2 ≥ 1 – 2 + 2(2y) C ng v theo v : 4P ≥ -2 + 4(x + y) = 2 1 P≥ . 2 1 1 V y min P = khi và ch khi x = y = . 2 2 b. Áp d ng b t Bernoulli ta có: (2x)5 ≥ 1 – 5 + 5(2x) (2y)5 ≥ 1 – 5 + 5(2y) C ng v theo v ta có: 32Q ≥ -8 + 10(x + y) = 2 1 Q≥ 16 1 1 V y min Q = . Khi và ch x = y = . 16 2 T ng quát: S = xm + ym , m ≥ 1 v i x + y = 1. 15
- *. Theo (1), v i m i α ≥ β > 0 , ta có: α αα x β ≥ 1− +x (1’) ββ 1 t t = x ⇔ tβ = x β (1’) ⇔ α αβ tα ≥ 1− +t (2) ββ D u “=” x y ra khi t = 1. Ví d 2: 10 10 Cho x, y > 0, sao cho x3 + y3 = 1. Tìm min P = x 3 + y 3 . L i gi i: Theo (2), ta có: ( 2x) () 10 10 10 3 3 ≥ 1− + 3 2x 3 9 9 () () 10 10 10 3 3 2y 3 ≥ 1− + 3 2y 9 9 () 10 2 10 ⇒ 3 2 3 P ≥ − + .2 ( x 3 + y 3 ) = 2 99 1 V yP≥ 9 2 1 1 Hay min P = khi và ch khi x = y = 9 3 2 2 t *. T (2) thay t b i , ta ư c: t0 α α α α −β β t α ≥ 1 − t 0 + .t 0 .t (3) β β D u “=” x y ra khi t = t0 v i t0 là i m t giá tr nh nh t. Bài toán: Cho a.x β + b. y β = 1.(α ≥ β ; a, b, c, d > 0 ) Tìm min P = c.x α + d . y α 16
- α cx = X t α dy =Y Bài toán tr thành : Cho m.x β + n. y β = p (m,n > 0) Tìm min A = x α + y α L i gi i: Theo b t (3), ta có: α α α α x α ≥ 1 − x 0 + x 0 − β . x β β β α α α α y α ≥ 1 − y 0 + y 0 − β . y β β β α α αα (x0 + y 0 ) + (x0 − β .x β + y 0 − β . y β ). α α C ng l i : A ≥ 1 − β β Ch n (x0 , y0) tho mãn: m.x β + n. y β = p x0 − β α y α −β =0 . m n α xα −β α α (x 0 + y 0 ) + . 0 . p. α Khi ó: A ≥ 1 − β βm α xα −β α α ( ) α V y min A = 1 − x 0 + y 0 + . 0 . p khi và ch khi x = x0, y = y0. β βm ▼ D ng 4: Áp d ng b t ng th c trong tam giác và phuơng pháp t a , vectơ. I. Phương pháp gi i: V i 3 i m A, B, C, b t kì trong m t ph ng ta có: AB + BC ≥ AC ( ng th c khi B n m gi a A và C). • V i hai véc tơ b t kì a và b ta có: ng th c khi a và b cùng hư ng (1) a±b ≤ a + b . • N u a = ( a1 , a2 ) và b = ( b1 + b2 ) (1) ⇔ ( a1 ± b1 ) + ( a2 ± b2 ) 2 2 ≤ a12 + a2 2 + b12 + b2 2 17
- a1 = k .b1 (k ∈ R) ng th c x y ra khi a2 = k .b2 D ng toán tìm giá tr l n nh t c a hàm s : a, b ≠ 0 f 2 ( x ) + a2 + g 2 ( x ) + b2 v i y= f ( x) ± g ( x) = k (k ∈ R) f ( x) − g ( x) = k . S d ng b t ng th c tam giác: gi s Trong m t ph ng Oxy xét i m: M ( f ( x ) , a ) ⇒ OM = f 2 ( x ) + a 2 và N ( g ( x), − b ) ⇒ ON = g ( x) 2 + b 2 . f ( x) − g ( x) + ( a + b ) 2 = k 2 + ( a + b ) . 2 2 Ta có: MN = OM + ON ≥ MN ⇔ y ≥ k 2 + ( a + b ) 2 . Vì ng th c x y ra khi M, N, O th ng hàng ⇔ a . f ( x) + b .g ( x) = 0 . V y Min y = k 2 + ( a + b ) 2 . II. M t s bài t p ví d : Ví d 1: Tìm giá tr nh nh t c a bi u th c A = a 2 + a + 1 + a 2 − a + 1, ⊥ ∀a ∈ R. L i gi i: D th y bi u th c không thay i khi thay a b i −a , do ó ch c n gi i v i a ≥ 0 . • Khi a = 0 : A = 2 . A AB AM = MB = 2 = 1 π • M Khi a > 0 : Xét ∆ABC có: CM = a 3 π AMC = 3 C B Theo nh lí hàm côsi: π AC 2 = 1 + a 2 − 2.1.a.cos = a 2 + 1 − a. 3 ⇒ AC = a − a + 1. 2 Tương t BC = a 2 + a + 1 , AB = 2. Khi ó: AC + BC ≥ AB ⇒ a 2 + a + 1 + a 2 − a + 1 ≥ 2 ⇔ A ≥ 2. ng th c x y x y ra khi a = 0 . V y MinA = 2 khi a = 0. Ví d 2: Tìm giá tr nh nh t c a: y = x 2 − 2 px + 2 p 2 + x 2 − 2qx + 2q 2 . L i gi i: 18
- y = ( x − p)2 + p 2 ( x − q) 2 + q 2 . Ta có: M ( x − p, p ); N ( x − q, q ). Xét i m MN = ( p − q ) 2 + ( p + q ) 2 . Ta có: OM + ON ≥ MN ⇔ y ≥ ( p − q )2 + ( p + q )2 . Vì ⇒ Min y = ( p − q ) 2 + ( p + q ) 2 . p q +q p Khi M , N , O th ng hàng ⇔ q ( x − p ) + q ( x − q ) = 0 ⇔ x = . p+q Ví d 3: Tìm giá tr nh nh t c a: y = cos 2 x − 2.cos x + 5 + cos 2 x + 4.cos x + 8. L i gi i: Trong m t ph ng Oxy , xét i m M (2;1 − cos x); N (4, 3) Ta có: MN = (2, 2 + cos x) như v y y = OM + MN . Do 0 ≤ 1 − cos x ≤ 2 nên M ∈ [ AB ] v i A(2, 0) và B (2, 2) . Ta có: OM + MN ≥ ON = 42 + 32 = 5. ng th c x y ra khi O, M , N th ng hàng ⇔ 6 − 4.(1 − cos x) = 0 2π 1 + 2 kπ . ⇔ cos x = − ⇔ x=± 2 3 2π + 2 kπ . V y Min y = 5 khi x = ± 3 Ví d 4: (1) a 2 + c 2 = 1 Cho 3 s th c a, b, c tho mãn h sau b + 2b(a + c) = 6 ( 2 ) 2 Tìm giá tr nh nh t c a M = b(c − a ). L i gi i: T gi thi t ta có: 2a 2 + 2c 2 + b 2 + 2ab + 2bc = 8 b b ⇔ ( a + ) 2 + ( + c) 2 = 4 2 2 Do (1) ⇔ ( 2c ) + (−2a ) 2 = 4 2 bb Xét x(a + ; + c); y (2c; −2a ) 22 19
- Ta có: x = 2 , y = 2 , x. y = b.(c − a). Mà x. y ≤ x . y cùng hư ng: b.(a + c) = −2 bb a+ +c 2=2 ⇔ ⇔ b.(a + c) = −2.(a 2 + c 2 ) ⇒ a 2 + c 2 = 1 − 2c 2c b 2 = 10 (do (1) và (2) ) b = 10 a + c = − 2 10 2 2 a + c = 1 3 1 3 1 ⇔ ⇒ (a, b, c) = (− , − 10, − , 10, );( ) b = − 10 10 10 10 10 a + c = 2 10 2 2 a + c = 1 ⇒ Max M = b(c − a ) = 4 khi (a, b, c) như trên. III. Bài t p t gi i: 1)Tìm giá tr l n nh t và giá tr nh nh t c a hàm s y = 1 + sin 4 x + cos 4 x + 2 cos 2 x + 2 y = x 2 − x + 1 + x 2 − 3x + 1 2)Tìm giá tr nh nh t c a hàm s : 3)Tìm giá tr l n nh t và giá tr nh nh t c a hàm s : x4 y 4 x2 y2 y = 4 + 4 − 2 2 + 2 −1 y x y x 4)Tìm giá tr nh nh t c a hàm s : ( ) ( ) f ( x ) = 2 x2 − 2 x + 1 + 2 x2 + 3 + 1 x + 1 + 2 x2 − 3 −1 x +1 y Hư ng d n gi và áp s : N 2 1. y = 1 + (1 − cos 2 x ) + 1 + (1 + cos 2 x ) 2 2 Ta có: 1 B M A O x 2 1 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chuyên Đề Cực Trị Trong Đại Số
115 p | 2548 | 972
-
Chuyên đề cực trị - giá trị lớn nhất - giá trị nhỏ nhất
115 p | 1746 | 562
-
Chuyên đề cực trị - tìm giá trị lớn nhất - giá trị nhỏ nhất
115 p | 1649 | 502
-
Hình học lớp 9: Chuyên đề cực trị
11 p | 996 | 222
-
CHUYÊN ĐỀ cực trị đại số
4 p | 800 | 185
-
Toán 9 - Chuyên đề: Cực trị hình học
22 p | 996 | 163
-
Chuyên đề Giá trị cực trị của hàm số
18 p | 625 | 140
-
Toán 9 - Chuyên đề 5: Cực trị
26 p | 289 | 108
-
Chuyên đề cực trị - tiếp tuyến (Nguyễn Phú Khánh – Đà Lạt)
24 p | 234 | 64
-
Tài liệu ôn thi Đại học: Chuyên đề về cực trị
17 p | 224 | 39
-
Bài toán về cực trị - GV. Nguyễn Vũ Minh
8 p | 247 | 30
-
Luyện thi Đại học - Chuyên đề Cực trị hàm số
12 p | 230 | 27
-
Luyện thi Đại học Toán chuyên đề: Cực trị hàm bậc ba - Thầy Đặng Việt Hùng
11 p | 133 | 20
-
Chuyên đề Cực trị hình học không gian và các khối lồng nhau Toán 11
30 p | 130 | 9
-
Chuyên đề hàm số - Cực trị của hàm số
108 p | 65 | 5
-
Một số chuyên đề vận dụng và vận dụng cao VTED có lời giải chi tiết
822 p | 53 | 4
-
Sáng kiến kinh nghiệm THPT: Dạy học theo chuyên đề: Cực trị hình học và ứng dụng
51 p | 39 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn