Chuyên đề cực trị - giá trị lớn nhất - giá trị nhỏ nhất
lượt xem 562
download
Tài liệu ôn thi môn Toán tham khảo về Chuyên đề cực trị - giá trị lớn nhất - giá trị nhỏ nhất. Đây là một số dạng toán thường gặp trong phần cực trị - giá trị lớn nhất - giá trị nhỏ nhất. Tài liệu ôn tập dành cho học sinh ôn thi đại học - cao đẳng hệ Trung học phổ thông. Hy vọng tài liệu cung cấp kiến thức bổ ích cho các bạn.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chuyên đề cực trị - giá trị lớn nhất - giá trị nhỏ nhất
- Chuyên đề cực trị Giá trị lớn nhất - giá trị nhỏ nhất
- Ph n 1: C C TR TRONG IS : M t s d ng toán thư ng g p: ▼ D ng 1: ưa v d ng bình phương I. Phương pháp gi : ưa v d ng A2 ≥ 0, ho c A2+ c ≥ c (v I c là h ng s ) d u b ng x y ra khi A=0 II. M t s bài t p ví d : Ví d 1: Tìm giá tr l n nh t c a P = x 1 − x ( ) L i gi i: 2 1 1 1 ( ) P = x 1− x = −x + x = − x − + ≤ 2 4 4 1 1 ng th c x y ra khi x = và x = 2 4 1 1 Do ó giá tr l n nh t c a P là t khi x = 4 4 Ví d 2: 1 Tìm giá tr c a x bi u th c có giá tr l n nh t x − 2 2x + 5 2 L i gi i: Ta có: ( ) 2 x2 − 2 2x + 5 = x − 2 +3≥ 3 1 1 ⇒ ≤ x2 − 2 2x + 5 3 1 1 Do ó, khi x = 2 thì b êu th c có giá tr l n nh t là x − 2 2x + 5 2 3 V í d 3: V I x,y không âm; tìm giá tr nh nh t c a bi u th c: P = x − 2 xy + 3 y − 2 x + 2004,5 L i gi i: t x = a, y = b v I a, b ≥ 0 ta có: 1
- P = a 2 − 2 ab + 3b 2 − 2 a + 2004, 5 = a 2 − 2 ( b + 1) a + 3b 2 + 2004,5 = a 2 − 2 ( b + 1) a + ( b + 1) + 2b 2 − 2b + 2003,5 2 1 1 = ( a − b − 1) + 2 b 2 − b + + 2003, 5 − 2 4 2 2 1 = ( a − b − 1) + 2 b − + 2003 ≥ 2003 2 2 2 1 Vì ( a − b − 1) ≥ 0 và b − 2 ≥ 0 ∀ a , b 2 3 a = b +1 a= 2 P = 2003 ⇔ ⇔ 1 1 b= b= 2 2 3 1 9 1 V yP t giá tr nh nh t là 2003 khi x= và y= hay x = và y = 2 2 4 4 III. Bài t p t gi i: 1) Tìm giá tr l n nh t c a bi u th c: P = 2 − 5 x 2 − y 2 − 4 xy + 2 x 2) Tìm giá tr nh nh t c a f ( x, y ) = x 2 − 2 xy + 6 y 2 − 12 x + 45 1 3) Cho hai s x,y tho mãn ng th c: 8 x 2 + y 2 + =4 4 x2 Xác nh x,y tích xy t giá tr nh nh t 4) Cho a là s c nh, còn x, y là nh ng s bi n thiên. Hãy tìm giá tr nh nh t c a bi u th c: A = (x– 2y + 1)2 + (2x + ay +5)2 Hư ng d n gi I và áp s : 1)Max P = 3 khi (x,y) = (1, -2) 2) f ( x, y ) = ( x − y − 6 ) + 5 y 2 + 9 ≥ 9 2 3) Thêm 4 xy + 4 x 2 vào 2 v 1 1 K t qu : xy t GTNN là − khi x = ± y = ±1 2 2 9 4) A ≥ 0 khi a ≠ -4, A = khi a = -4 5 2
- ▼ D ng 2: s d ng mi n giá tr c a hàm s I. Phương pháp gi : Cho y = f(x) xác nh trên D y0 ∈ f ( D ) ⇔ phương trình y0 = f ( x ) có nghi m ⇔ a ≤ y0 ≤ b Khi ó min y = a, max y = b II. M t s bài t p ví d : Ví d 1: x Tìm Max và Min c a: y = x +1 2 L i gi i: T p xác nh D = R ⇒ y0 là m t giá tr c a hàm s x ⇔ phương trình y0 = có 1 nghi m x ∈ R x +1 2 ⇔ phương trình x 2 y0 + y0 = x có nghi m x ∈ R ⇔ phương trình x 2 y0 − x + y0 = 0 có nghi m x ∈ R ⇔ ∆≥0 ⇔ 1− 4 y2 ≥ 0 ⇔ y2 ≤ 4 1 1 ⇔ − ≤ y≤ 2 2 1 1 V y Min y = − , Max y = 2 2 Ví d 2: ax + b Xác inh các tham s a, b sao cho hàm s y = t giá tr l n nh t b ng x2 + 1 4, giá tr nh nh t b ng –1 L i gi i: T p xác nh D = R ax+b y0 là m t giá tr c a hàm s ⇔ phương trình y0 = có nghi m x ∈ R x2 + 1 ⇔ phương trình y0 x 2 − ax + y0 − b = 0 có nghi m x ∈ R (1) • N u y0 = 0 thì (1) ⇔ ax = -b có nghi m a=b=0 ⇔ a≠0 • N u y0 ≠ 0 thì (1) có nghi m ⇔ ∆ ≥ 0 ⇔ a 2 − 4( y0 − b) y0 ≥ 0 3
- ⇔ −4 y0 2 + 4by0 + a 2 ≥ 0 Theo y0 t giá tr l n nh t là 4, giá tr nh nh t là –1 nên phương trình −4 y0 + 4by0 + a ph I có nghi m là –1 và 4 (do -1.4 = -4 < 0) 2 2 −a 2 = −4 a = ±4 4 Theo nh lý Viet ta có : ⇔ b=3 b=3 V y v I a = 4, b = 3 ho c a = -4, b = 3 thì min y = -1, max y = 4 Ví d 3: 3 12 x( x − a ) 4 Tìm giá tr l n nh t c a hàm s : y = 2 x + 36 L i gi i: Hàm s ã cho xác nh khi x ( x − a ) ≥ 0 12 x( x − a ) t z= 2 (1) thì y = z , z ≥ 0 4 3 x + 36 12 x( x − a ) z0 là m t giá tr c a hàm s (1) ⇔ phương trình z0 = có nghi m x 2 + 36 hay phương trình (12 − z0 ) x 2 − 12ax − 36 z0 = 0 có nghi m (2) • z0 =12 : (2) ⇔ ax = -36 có nghi m khi a ≠ 0 • z0 ≠ 12 : (2) có nghi m ⇔ ∆ = 36a 2 + 36 z0 (12 − z0 ) ≥ 0 ⇔ a 2 + 12 z0 − z0 2 ≥ 0 ⇔ z0 2 − 12 z0 − a 2 ≤ 0 ⇔ 6 − a 2 + 36 ≤ z0 ≤ 6 + a 2 + 36 Vì z0 ≥ 0 nên 0 ≤ z0 ≤ 6 + a 2 + 36 V y max z = 6 + a 2 + 36 ; max y = 4 (6 + a 2 + 36)3 III. Bài t p t gi i: x2 − 2x + 2 1) Tìm giá tr l n nh t, nh nh t c a bi u th c: y = x2 + 2x + 2 3 x + 3 + 4 1− x +1 2) Tìm giá tr l n nh t, nh nh t c a bi u th c: y = 4 x + 3 + 3 1− x +1 1 3) Tìm giá tr nh nh t c a hàm s : f ( x) = x + x 2 + ,x>0 x Hư ng d n gi I và áp s : 4
- 1) Max y = 3 + 2 2 , Min y = 3 − 2 2 2) k: −3 ≤ x ≤ 1 2t 1− t2 ϕ t x + 3 = 2. ; 1 + x = 2. v I t = tg ∈ [0;1] 1+ t 2 1+ t 2 2 7t + 12t + 9 2 Ta có y = − 2 −5t + 16 + 7 9 7 Max y y = khi x = -3; min y = khi x = 1 7 9 0 < x ≤ y0 (1) 1 y0 = x + x 2 + ⇔ 3)Tìm nghi m c a h x x>0 2 y0 x 2 − y0 2 x + 1 = 0 (2) i u ki n (2) có nghi m là y0 ≥ 2 Áp d ng Vi-et ta ch ng minh ư c x1 < x2 < y0 V y min f(x) = 2 v I x >0 ▼ Dang 3: S d ng m t s b t ng th c quen thu c ► B t ng th c Cauchy I. Ki n th c c n n m: • Cho hai s a, b ≥ 0, ta coù: a+b ≥ ab 2 D u “ =” x y ra khi ⇔ a = b • Cho n s a1, a2, … , an ≥ 0, ta có: a1 + a 2 + ... + a n n ≥ a1 a 2 ...a n n D u “=” x y ra ⇔ a1 = a2 = … = an II. M t s bài t p ví d : ◦ Bi n pháp 1: Áp d ng b t ng th c tr c ti p. Ví d 1: 1 1 1 Cho x > 0 ; y > 0 tho mãn i u ki n + = . Tìm giá tr nh nh t c a bi u x y 2 th c A = x+ y L i gi i: 5
- 1 1 Vì x > 0 ; y > 0 nên >0; >0; x > 0; y > 0 , theo b t Cauchy có: x y 1 1 11 1 . ≤ + x y 2 x y 1 1 => ≤ => xy ≥ 4 xy 4 V n d ng b t Cauchy v i hai s dương x và y ta ư c A = x + y ≥ 2 x . y ≥ 2 4 = 4 ( D u “=” x y ra ⇔ x = y = 4) V y min A = 4 ( khi và ch khi x = y = 4). Nh n xét: không ph i lúc nào ta cũng có th dùng tr c ti p b t Cauchy i v i các s trong bài. Dư i ây ta s nghiên c u m t s bi n pháp bi n i m t bi u th c có th v n d ng b t Cauchy r i tìm c c tr c a nó. Bi n pháp 1 : tìm c c tr c a m t bi u th c ta tìm c c tr c a bình phương bi u th c ó. Ví d 2: Tìm giá tr l n nh t c a bi u th c : A = 3 x − 5 + 7 − 3 x. L i gi i: 5 7 KX : ≤ x ≤ . 3 3 A = (3x – 5) + (7- 3x) + 2 (3 x − 5).(7 − 3 x) 2 A2 ≤ 2 + ( 3x – 5 + 7 – 3x) = 4 ( d u “=” x y ra ⇔ 3x – 5 = 7 – 3x ⇔ x = 2). V y max A2 = 4 => max A = 2 ( khi và ch khi x = 2). Nh n xét: Bi u th c A ư c cho dư i d ng t ng c a hai căn th c. Hai bi u th c l y căn có t ng không i (b ng 2). Vì v y, n u ta bình phương bi u th c A thì s xu t hi n h ng t là hai l n tích c a căn th c. n ây có th v n d ng b t ng th c Cauchy. ◦ Bi n pháp 2: Nhân và chia bi u th c v i cùng m t s khác 0. Ví d 3: x−9 Tìm giá tr l n nh t c a bi u th c A = 5x L i gi i: KX : x ≥ 9 6
- x−9 1 x−9 .3 + 3 x − 9 + 9 x −9 ≤ = 3 2 3 3 1 A= = = 5x 5x 5x 10 x 30 x−9 (d u “ =” x y ra khi và ch khi = 3 ⇔ x = 18 ). 3 1 V y max A = ( khi và ch khi x = 18). 30 x−9 Nh n xét: Trong cách gi i trên, x – 9 ư c bi u di n thành .3 và khi vân 3 x −9 x−9 1 d ng b t Cauchy, tích .3 ư c làm tr i tr thành t ng + 3 = x có 3 3 3 d ng kx có th rút g n cho x m u, k t qu là m t h ng s . Con s 3 tìm ư c b ng cách l y căn b c hai c a 9, s 9có trong bài. Bi n pháp 3: Bi n i bi u th c ã cho thành t ng c a các bi u th c sao cho tích c a chúng là m t h ng s . 1. Tách m t h ng t thành t ng c a nhi u h ng t b ng nhau. Ví d 4 : 3 x 4 + 16 Cho x > 0, tìm giá tr nh nh t c a bi u th c : A = . x3 L i gi i: 16 16 16 A = 3x + 3 = x + x + x + 3 ≥ 4.4 x.x.x. 3 x x x 16 A ≥ 4.2 = 8 ( d u “ =” x y ra khi và ch khi x = ⇔ x=2 x3 V y min A = 8 ( khi và ch khi x = 2). 16 Nh n xét: Hai s dương 3x và có tích không ph i là m t h ng s .Mu n kh 3x ư c x3 thì ph i có x3 = x.x.x do ó ta ph i bi u di n 3x = x + x + x r i dùng b t Cauchy v i 4 s dương. 2. Tách m t h ng t ch a bi n thành t ng c a m t h ng s v i m t h ng t ch a bi n sao cho h ng t này là ngh ch o c a h ng t khác có trong bi u th c ã cho ( có th sai khác m t h ng s ). Ví d 5: 9x 2 Cho 0 < x < 2, tìm giá tr nh nh t c a bi u th c A = + . 2− x x 7
- L i gi i: 9x 2−x A= + +1 2− x x 9x 2 − x A ≥ 2. . +1 = 2 9 +1 = 7 2− x x 9x 2− x 1 ( d u “=” x y ra ⇔ = ⇔ x = ). 2−x x 2 1 V y min A = 7 ( khi và ch khi x =). 2 ◦ Bi n pháp 4: Thêm m t h ng t vào bi u th c ã cho. Ví d 6: Cho ba s dương x, y, z tho mãn i u ki n x + y + z = 2. Tìm giá tr nh nh t c a bi u th c : x2 y2 z2 P= + + . y+z z+x x+ y L i gi i: x2 y+ z Áp d ng b t Cauchy i v i hai s dương và ta ư c: y+z 4 x2 y+z x2 y + z x + ≥ 2. . = 2. = x y+z 4 y+z 4 2 Tương t : y2 z+x + ≥y z+x 4 z2 x+ y + ≥z x+ y 4 x2 y2 z2 x + y + z V y y+ z z+ x x+ y+ + + ≥ x+ y+z 2 x+ y+z 2 P ≥ (x + y + z ) − = 1 (d u “=” x y ra ⇔ x = y = z = ). 2 3 III. Bài t p t gi i: 1) Cho x + y = 15, tìm gía tr nh nh t, giá tr l n nh t c a bi u th c: B = x−4 + y −3 2) Cho x, y, z ≥ 0 tho mãn i u ki n x + y + z = a. Tìm giá tr l n nh t c a bi u th c A = xy + yz + xz. Tìm giá tr nh nh t c a bi u th c B = x2 + y2 + z2. 8
- 3) Cho x, y, z là các s dương tho mãn i u ki n x + y + z ≥ 12. Tìm giá tr x y z nh nh t c a bi u th c P = + + . y z x 4) Cho a, b, c là các s dương tho mãn i u ki n a + b + c = 1. Tìm giá tr (1 + a)(1 + b)(1 + c) nh nh t c a bi u th c A = . (1 − a)(1 − b)(1 − c) 5) Cho x, y tho mãn i u ki n x + y = 1 và x > 0. Tìm giá tr l n nh t c a bi u th c B = x2y3. xy yz zx 6) Tìm giá tr nh nh t c a A = + + v i x, y, z là các s dương và: z x y a) x + y + z = 1 b) x 2 + y 2 + z 2 = 1 1 1 1 7) Tìm giá tr l n nh t c a A = 3 + 3 + 3 v i a, b, c là a + b + 1 b + c + 1 c + a3 + 1 3 3 các s dương và abc = 1. 8)Tìm giá tr nh nh t, giá tr l n nh t c a A = x + y + z + xy + yz + zx bi t r ng x 2 + y 2 + z 2 = 3 . 9) Tìm giá tr nh nh t c a A = 3x + 3 y v i x + y = 4. 10) Tìm giá tr nh nh t c a A = x 4 − 4 x + 1 Hư ng d n gi i và áp s : 1. KX : x ≥ 4, y ≥ 3 B ≥ 8 ⇒ min B = 8 ( khi và ch khi x = 4, y = 11 ho c x = 12, y = 3). max B2 = 16 nên max B = 4 ( khi và ch khi x = 8, y = 7). 2 .a. xy + yz + xz ≤ x2 + y2 + z2 (áp d ng b t Cauchy cho 2 s , r i c ng l i theo v ). Suy ra: 3(xy + yz + xz) ≤ ( x + y + z )2 Hay 3A ≤ a2 b. B = x2 + y2 + z2 = ( x + y + z )2 – 2( x + y + z ) B = a2 – 2A B min ⇔ A max. 3. x 2 y 2 z 2 2x y 2 y z 2z x P2 = + + + + + . y z x z x y Áp d ng b t Cauchy cho 4 s dương: x2 x y x y x 2 .x 2 . y.z + + + z ≥ 44 = 4 x. y z z yz Còn l i: tương t C ng v v i v l i, ta ư c P2 ≥ 4(x + y + z) – (x + y + z) = 3(x + y + z) 9
- P2 ≥ 3.12 = 36 Min P = 6.( khi và ch khi x = y = z = 4). 4. a + b + c = 1 ⇒ 1 – a = b + c > 0. Tương t 1 – b > 0, 1 – c > 0. Có: 1 + a = 1 + (1 – b – c) = (1 – b) + (1 – c) ≥ 2 (1 − b )(1 − c ) Suy ra (1 + a)(1 + b)(1 + c) ≥ 8 (1 − a ) (1 − b ) (1 − c ) 2 2 2 A≥8 V y min A = 8. 5. N u y ≤ 0 thì B ≤ 0. N u y > 0 thì x x y y y x2 y3 108 1 = x + y = + + + + ≥ 55 ⇒ x2 y3 ≤ 2 2 3 3 3 108 3125 108 hay B ≤ 3125 108 Suy ra max B = . 3125 6. Theo b t ng th c Cô-si xy yz xy yz yz zx zx xy + ≥ 2. . = 2y tương t + ≥ 2z ; + ≥ 2x z x z x x y y z 1 Suy ra 2A ≥ 2(x+y+z) = 2 ; min A = 1 v i x = y = z = 3 x2 y 2 y2 z 2 z 2 x2 b) Ta có A = 2 + 2 + 2 + 2 2 z x y Hãy ch ng t A2 ≥ 3 . 3 Min A = 3 v ix=y=z= . 3 7. D ch ng minh a 3 + b3 ≥ ab ( a + b ) v i a > 0, b > 0. Do ó: a 3 + b3 + 1 ≥ ab ( a + b ) + abc = ab(a + b + c). 1 1 1 a+b+c A≤ + + = =1 ab(a + b + c) bc(a + b + c) ca (a + b + c) abc(a + b + c) max A = 1 ⇔ a = b = c = 1 8. ◦ Tìm giá tr l n nh t: ng th c ( x + y + z ) ≤ 3 ( x 2 + y 2 + z 2 ) ,ta ư c ( x + y + z ) ≤ 9 nên 2 2 Áp d ng b t 10
- x+ y+z ≤3 (1) Ta có b t ng th c xy + yz + zx ≤ x + y + z mà x + y + z 2 ≤ 3 nên 2 2 2 2 2 xy + yz + zx ≤ 3 (2) T (1) và (2) suy ra A ≤ 6 . Ta có max A = 6 ⇔ x = y = z = 1 . ◦ Tìm giá tr nh nh t : t x + y + z = m thì m 2 = x 2 + y 2 + z 2 + 2 ( xy + yz + zx ) = 3 + 2 ( xy + yz + zx ) m2 − 3 m2 − 3 Do ó xy + yz + xz = . Ta có A = m + nên 2 2 2 A = m 2 + 2m − 3 = ( m + 1) − 4 ≥ −4. 2 ⇒ A ≥ −2. x + y + z = 1 min A = −2 ⇔ 2 , ch ng h n x = -1, y = -1, z = 1. x + y + z = 3 2 2 9. A = 3x + 3 y ≥ 2 3x 3 y = 2 3x + y = 2 34 10. Ta có x ≤ x (x y ra d u b ng khi và ch khi x ≥ 0 ) nên −4 x ≥ −4 x . Do ó A ≥ x4 − 4 x + 1 . Áp d ng b t ng th c côsi v i b n s không âm x 4 + 1 + 1 + 1 ≥ 4 4 x 4 = 4 x ⇒ x 4 − 4 x + 1 ≥ −2. min A = −2 ⇔ x 4 = 1 và x ≥ 0 ⇔ x = 1 . ► B t ng th c Bunhiacopski: I. Ki n th c c n n m: • Cho a, b, c, d tuỳ ý, ta có (a2 + b2)(c2 + d2) ≥ (ac + bd)2 D u b ng x y ra khi: ad = bc. • Cho a1, … , an và b1, … , bn tuỳ ý, ta có: (a12 + … + an2)(b12 + … + bn2) ≥ ( a1b1 + … + anbn)2 a1 a D u b ng x y ra khi: = ... = n b1 bn II. M t s bài t p ví d : Ví d 1: Tìm giá tr l n nh t c a : P = 3 x − 1 + 4 5 − x L i gi i: KX : 1 ≤ x ≤ 5 Áp d ng b t Bunhiacopski có: 11
- P2 ≤ ( 32 + 42)(x – 1 + 5 – x) = 100 x −1 5− x 61 Suy ra max P = 10 khi = ⇔ x= . 3 4 25 Ví d 2: 5a 4b 3c Cho a, b, c > 0. Tìm min P = + + . b+c c+a a+b L i gi i: P= 5a 4b 3c 5 4 3 +5+ +4+ + 3 − (5 + 4 + 3) = (a + b + c ) + + − (5 + 4 + 3) b+c a+c a+b b+c a+c a+b = 1 [(a + b ) + (b + c ) + (c + a )]. 5 + 4 + 3 − (5 + 4 + 3) 2 b+c a +c a +b ≥ 1 2 ( ) 5 + 4 + 3 − (5 + 4 + 3) ( theo b t Bunhiacopski). 2 Vaäy min P = 1 2 ( ) 5 + 4 + 3 − (5 + 4 + 3) khi và ch khi 2 b+c a+c a+b 5 = 4 = 3 . T ng quát: Cho a, b, c > 0. Ch ng minh r ng: a b+c x2 + b a+c y2 + c a+b 1 ( z 2 ≥ ( xy + yz + xz ) − x 2 + y 2 + z 2 . 2 ) (c ng vào v trái (x2 + y2 +z2) r i tr i (x2 + y2 +z2), sau ó áp d ng b t Bunhicopski). Ví d 3: a + 3c c + 3b 4b Cho a, b, c > 0. Tìm min P = + + a+b b+c c+a L i gi i: a + 3c c + 3a 4b P= + 2 + + 2 + + 6 − 10 a+b b+c c+a 3a + 2b + 3c 2b + 3c + 3a 4b + 6c + 6a P= + + − 10 a+b b+c c+a 1 1 2 P = (3a + 2b + 3c ) + + − 10 a+b b+c c+a 1 P = [(a + b ) + (b + c ) + 2(a + c )]. + 1 + 2 ( − 10 ≥ 1 + 1 + 2 . 2 ) 2 − 10 = 6 a+b b+c c+a V y min P = 6 khi và ch khi (a + b)2 = (b + c)2 = (c + a)2 hay a = b = c. Cơ s : 12
- Ch n α , β , γ sao cho: a + 3c + α (a + b) = c + 3a + β (b + c) = 4b + γ (c + a ) = m(3a + 2b + 3c) . T ó suy ra α = β = 2, γ = 6, m = 2 . III. Bài t p t gi i: 1. Cho a, b, c > 0. Tìm giá tr nh nh t c a: 3b + 9c 8a + 4b a + 5b a) P= + + . a+b b+c c+a b + 3c 4a + 2b a + 5b b) Q= + + . a+b b+c c+a a + 3c 4b 8c c) R= + − . a + 2b + c a + b + 2c a + b + 3c 2. Tìm giá tr nh nh t, giá tr l n nh t c a A = x 2 + y 2 bi t r ng x 2 ( x 2 + 2 y 2 − 3) + ( y 2 − 2 ) = 1. 2 3. Tìm giá tr nh nh t c a : a2 b2 c2 A= + + v i a, b, c là các s dương và a + b + c =6. b+c c+a a+b 2 1 4. Tìm giá tr nh nh t c a A = + v i 0 < x < 2. 2− x x 5. Cho a, b, c > 0 và abc = 1 1 1 1 Tìm giá tr nh nh t c a A = 3 + 3 + 3 a (b + c ) b ( a + c ) c ( a + b) Hư ng d n gi và áp s : 1. Câu a và câu b làm tương t ví d 3 Câu c không th làm như ví d 3 ư c, ta làm như sau: t a + 2b + c = x a + b + 2c = y a + b + 3c = z t ó suy ra c = z – y; b = x + y – 2y; a = 5y – x – 3z. 2 y − x 4 x + 4 z − 8 y 8z − 8 y 2 y 4x 4z 8y khi ó R = + + = −1+ + −8−8+ . x y z x y y z R i áp d ng b t ta tìm ư c min R. 2. T gi thi t suy ra (x + y 2 ) − 4 ( x 2 + y 2 ) + 3 = − x 2 ≤ 0. 2 2 Do ó A2 − 4 A + 3 ≤ 0 ⇔ ( A − 1)( A − 3) ≤ 0 ⇔ 1 ≤ A ≤ 3. min A = 1 ⇔ x = 0, y = ±1. max A = 3 ⇔ x = 0, y = ± 3. 3. 13
- Áp d ng b t ng th c Bunhiacópki cho 3 c p s Ta có a 2 b 2 c 2 ( ) ( ) ( ) a+b 2 2 2 + + b+c + a+c + b + c a + c a + b 2 a b c ≥ b+c + a+c + a+b b+c a+c a+b a2 b2 c2 2 ( a + b + c ) ≥ ( a + b + c ) 2 ⇒ + + b+c a+c a+b a2 b2 c2 a+b+c ⇒ + + ≥ . b+c a+c a+b 2 Suy ra min A = 3. 4. Áp d ng b t ng th c Bunhiacopski ( a 2 + b2 )( m2 + n2 ) ≥ ( am + bn )2 Ta có: 2 1 2 2 1 2 ( ) +( ) x ≥ 2 2 2 2 A = + 2− x (2 − x) + x 2 − x x 2− x x ( ) 2 ⇒ 2A ≥ 2 +1 = 3 + 2 2. 2 1 min 2 A = 3 + 2 2 ⇔ 2 − x = x ⇔ 2 1 = 2 ⇔ 2x2 = x2 − 4x + 4 2− x x (2 − x) x 2 ⇔ x 2 + 4 x + 4 = 8 ⇔ ( x + 2 ) = 8 ⇔ x = 2 2 − 2 (chú ý x > 0). 2 3 V y min A = + 2 2 ⇔ x = 2 2 − 2. 2 5. 1 1 1 t a= ,b = ,c = x y z x, y , z > 0 thì xyz = 1 x2 y2 z2 Khi ó A = + + y+z z+x x+ y Áp d ng b t ng th c Bunhiacopski, bi n i tương ương ta ư c: (x + y + z) 2 x+ y+z A≥ = ( y + z ) + ( z + x) + ( x + y) 2 M t khác theo BDT côsi ta có: x + y + z ≥ 3 3 xyz = 3 V y 14
- x y z y+ z = z+ x = x+ y 3 min A = ⇔ x = y = z 2 xyz = 1 ⇔ x = y = z = 1 ⇔ a = b = c. ► B t ng th c Bernoulli I. Ki n th c c n n m α x ≥ 1 − α + αx (1) (α ≥ 1, x > 0) D u “ =” x y ra khi x =1 II. M t s bài t p ví d : Ví d 1: Cho x, y > 0 sao cho x + y = 1. Tim giá tr nh nh t : a. P = x2 + y2 b. Q = x5 + y5 L i gi i: a. Áp d ng b t Bernoulli ta có: (2x)2 ≥ 1 – 2 + 2(2x) (2y)2 ≥ 1 – 2 + 2(2y) C ng v theo v : 4P ≥ -2 + 4(x + y) = 2 1 P≥ . 2 1 1 V y min P = khi và ch khi x = y = . 2 2 b. Áp d ng b t Bernoulli ta có: (2x)5 ≥ 1 – 5 + 5(2x) (2y)5 ≥ 1 – 5 + 5(2y) C ng v theo v ta có: 32Q ≥ -8 + 10(x + y) = 2 1 Q≥ 16 1 1 V y min Q = . Khi và ch x = y = . 16 2 T ng quát: S = xm + ym , m ≥ 1 v i x + y = 1. 15
- *. Theo (1), v i m i α ≥ β > 0 , ta có: α α α x β ≥ 1− + x (1’) β β 1 t t = x ⇔ tβ = x β (1’) ⇔ α α β tα ≥ 1− + t (2) β β D u “=” x y ra khi t = 1. Ví d 2: 10 10 Cho x, y > 0, sao cho x3 + y3 = 1. Tìm min P = x 3 + y 3 . L i gi i: Theo (2), ta có: ( 2x) ( ) 10 10 10 3 3 3 3 ≥ 1− + 2x 9 9 ( ) ( ) 10 10 10 3 3 3 2y 3 ≥ 1− + 2y 9 9 ( ) 10 2 10 ⇒ 3 2 3 P ≥ − + .2 ( x 3 + y 3 ) = 2 9 9 1 V yP≥ 9 2 1 1 Hay min P = 9 khi và ch khi x = y = 3 2 2 t *. T (2) thay t b i , ta ư c: t0 α α α α −β β t α ≥ 1 − β t 0 + .t 0 .t (3) β D u “=” x y ra khi t = t0 v i t0 là i m t giá tr nh nh t. Bài toán: Cho a.x β + b. y β = 1.(α ≥ β ; a, b, c, d > 0 ) Tìm min P = c.x α + d . y α 16
- α cx = X t α dy =Y Bài toán tr thành : Cho m.x β + n. y β = p (m,n > 0) Tìm min A = x α + y α L i gi i: Theo b t (3), ta có: α α α α x α ≥ 1 − x 0 + x 0 − β . x β β β α α α α y α ≥ 1 − y 0 + y 0 − β . y β β β α α α α C ng l i : A ≥ 1 − (x0 + y 0 ) + (x0 − β .x β + y 0 − β . y β ). α α β β Ch n (x0 , y0) tho mãn: m.x β + n. y β = p x0 − β α y α −β = 0 . m n α α α xα −β Khi ó: A ≥ 1 − (x 0 + y 0 ) + . 0 . p. α β β m α α α xα −β V y min A = 1 − β ( ) α x 0 + y 0 + . 0 . p khi và ch khi x = x0, y = y0. β m ▼ D ng 4: Áp d ng b t ng th c trong tam giác và phuơng pháp t a , vectơ. I. Phương pháp gi i: V i 3 i m A, B, C, b t kì trong m t ph ng ta có: AB + BC ≥ AC ( ng th c khi B n m gi a A và C). • V i hai véc tơ b t kì a và b ta có: a±b ≤ a + b . ng th c khi a và b cùng hư ng (1) • N u a = ( a1 , a2 ) và b = ( b1 + b2 ) (1) ⇔ ( a1 ± b1 ) + ( a2 ± b2 ) 2 2 ≤ a12 + a2 2 + b12 + b2 2 17
- a1 = k .b1 ng th c x y ra khi (k ∈ R) a2 = k .b2 D ng toán tìm giá tr l n nh t c a hàm s : a, b ≠ 0 y= f 2 ( x ) + a2 + g 2 ( x ) + b2 v i f ( x) ± g ( x) = k (k ∈ R) S d ng b t ng th c tam giác: gi s f ( x) − g ( x) = k . Trong m t ph ng Oxy xét i m: M ( f ( x ) , a ) ⇒ OM = f 2 ( x ) + a 2 và N ( g ( x), − b ) ⇒ ON = g ( x) 2 + b 2 . f ( x) − g ( x) + ( a + b ) 2 = k 2 + ( a + b ) . 2 2 Ta có: MN = Vì OM + ON ≥ MN ⇔ y ≥ k 2 + ( a + b ) 2 . ng th c x y ra khi M, N, O th ng hàng ⇔ a . f ( x) + b .g ( x) = 0 . V y Min y = k 2 + ( a + b ) 2 . II. M t s bài t p ví d : Ví d 1: Tìm giá tr nh nh t c a bi u th c A = a 2 + a + 1 + a 2 − a + 1, ⊥ ∀a ∈ R. L i gi i: D th y bi u th c không thay i khi thay a b i −a , do ó ch c n gi i v i a ≥ 0 . • Khi a = 0 : A = 2 . A AB AM = MB = 2 = 1 π • Khi a > 0 : Xét ∆ABC có: CM = a M 3 π AMC = 3 B C Theo nh lí hàm côsi: π AC 2 = 1 + a 2 − 2.1.a.cos = a 2 + 1 − a. 3 ⇒ AC = a − a + 1. 2 Tương t BC = a 2 + a + 1 , AB = 2. Khi ó: AC + BC ≥ AB ⇒ a 2 + a + 1 + a 2 − a + 1 ≥ 2 ⇔ A ≥ 2. ng th c x y x y ra khi a = 0 . V y MinA = 2 khi a = 0. Ví d 2: Tìm giá tr nh nh t c a: y = x 2 − 2 px + 2 p 2 + x 2 − 2qx + 2q 2 . L i gi i: 18
- Ta có: y = ( x − p)2 + p 2 ( x − q) 2 + q 2 . Xét i m M ( x − p, p ); N ( x − q, q ). Ta có: MN = ( p − q ) 2 + ( p + q ) 2 . Vì OM + ON ≥ MN ⇔ y ≥ ( p − q )2 + ( p + q )2 . ⇒ Min y = ( p − q ) 2 + ( p + q ) 2 . p q +q p Khi M , N , O th ng hàng ⇔ q ( x − p ) + q ( x − q ) = 0 ⇔ x = . p+q Ví d 3: Tìm giá tr nh nh t c a: y = cos 2 x − 2.cos x + 5 + cos 2 x + 4.cos x + 8. L i gi i: Trong m t ph ng Oxy , xét i m M (2;1 − cos x); N (4, 3) Ta có: MN = (2, 2 + cos x) như v y y = OM + MN . Do 0 ≤ 1 − cos x ≤ 2 nên M ∈ [ AB ] v i A(2, 0) và B (2, 2) . Ta có: OM + MN ≥ ON = 42 + 32 = 5. ng th c x y ra khi O, M , N th ng hàng ⇔ 6 − 4.(1 − cos x) = 0 1 2π ⇔ cos x = − ⇔ x=± + 2 kπ . 2 3 2π V y Min y = 5 khi x = ± + 2 kπ . 3 Ví d 4: a 2 + c 2 = 1 (1) Cho 3 s th c a, b, c tho mãn h sau b + 2b(a + c) = 6 ( 2 ) 2 Tìm giá tr nh nh t c a M = b(c − a ). L i gi i: T gi thi t ta có: 2a 2 + 2c 2 + b 2 + 2ab + 2bc = 8 b b ⇔ ( a + ) 2 + ( + c) 2 = 4 2 2 Do (1) ⇔ ( 2c ) + (−2a ) 2 = 4 2 b b Xét x(a + ; + c); y (2c; −2a ) 2 2 19
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Ôn thi chuyên đề: Khảo sát hàm số
15 p | 955 | 412
-
Hình học lớp 9: Chuyên đề cực trị
11 p | 996 | 222
-
Toán 9 - Chuyên đề: Cực trị hình học
22 p | 996 | 163
-
Chuyên đề cực trị - tiếp tuyến (Nguyễn Phú Khánh – Đà Lạt)
24 p | 234 | 64
-
Tài liệu ôn thi Đại học: Chuyên đề về cực trị
17 p | 224 | 39
-
Bài toán về cực trị - GV. Nguyễn Vũ Minh
8 p | 247 | 30
-
Luyện thi Đại học - Chuyên đề Cực trị hàm số
12 p | 230 | 27
-
Luyện thi Đại học Toán chuyên đề: Cực trị hàm bậc ba - Thầy Đặng Việt Hùng
11 p | 133 | 20
-
Luyện thi Đại học môn Toán: Cực trị tọa độ không gian (Phần 2 Nâng cao) - Thầy Đặng Việt Hùng
2 p | 105 | 20
-
Ôn thi trung phổ thông môn toán: Chuyên đề Tìm tiếp tuyến và cực trị ( Phần 1)
5 p | 84 | 13
-
Chuyên đề LTĐH môn Vật lý: UL trong bài toán cực trị của mạch RLC khi F biến thiên
2 p | 116 | 13
-
Chuyên đề LTĐH môn Vật lý: UL trong bài toán cực trị của mạch RLC khi L biến thiên
3 p | 130 | 12
-
Chuyên đề LTĐH môn Vật lý: UC trong bài toán cực trị của mạch RLC khi C biến thiên
5 p | 105 | 12
-
Chuyên đề hình học không gian: Cực trị hình học không gian và các khối lồng nhau
31 p | 114 | 9
-
Chuyên đề LTĐH môn Vật lý: UC trong bài toán cực trị của mạch RLC khi F biến thiên
2 p | 93 | 6
-
Chuyên đề: Phương pháp giải bài tập cực trị của môn Vật lý cấp THCS
11 p | 97 | 6
-
Chuyên đề hàm số - Cực trị của hàm số
108 p | 65 | 5
-
Một số chuyên đề vận dụng và vận dụng cao VTED có lời giải chi tiết
822 p | 53 | 4
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn