Đề thi học sinh giỏi lớp 9 cấp huyện có đáp án môn: Toán - Trường THCS Kim Thư (Năm học 2015-2016)
lượt xem 161
download
Mời các bạn cùng tham khảo đề thi học sinh giỏi lớp 9 cấp huyện có đáp án môn "Toán - Trường THCS Kim Thư" năm học 2015-2016, với đề thi này sẽ giúp các bạn ôn tập lại kiến thức đã học, có cơ hội đánh giá được năng lực của mình. Chúc bạn thành công trong kỳ thi sắp tới.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi học sinh giỏi lớp 9 cấp huyện có đáp án môn: Toán - Trường THCS Kim Thư (Năm học 2015-2016)
- phßng Gd & §t Thanh oai ĐỀ THI HỌC SINH GIỎI CẤP HUYỆN LỚP 9 TRƯỜNG THCS KIM THƯ Môn : Toán Năm học : 20152016 ( Đề gồm 01trang) Thời gian 150 phút ( không kể thời gian giao đề) Bài 1(6đ): 1, Cho biểu thức: 2 5 x 1 x −1 A = 1 − ( − − ): 1 + 2 x 4x −1 1 − 2 x 4x + 4 x +1 a/ Rút gọn A b/ Tìm giá trị nguyên của x để A đạt giá trị nguyên 2, Tính giá trị của biểu thức B = x3 - 3x + 2000 víi x = 3 3 2 2 + 3 3 2 2. Bài 2: (4đ) 1 1 1 a) Cho ba số dương x, y, z thoả mãn + + = 1. Chứng minh rằng: x y z x + yz + y + zx + z + xy xyz + x + y + z . b)Tim sô t ̀ ́ ự nhiên n sao cho A = n 2 + n + 6 la sô chinh ph ̀ ́ ́ ương Bài 3 : (4đ) a , Giải phương trình : 3x 2 + 4 x + 10 = 2 14 x 2 − 7 . b, Tìm nghiệm của phương trình: x2+ 2y2 + 2xy + 3y - 4 =0 . Bài 4: (5 đ) Cho đường tròn (O,R) và một điểm A ở ngoài đường tròn, từ một điểm M di động trên đường thẳng d OA tại A, vẽ các tiếp tuyến MB,MC với đường tròn (B,C là tiếp điểm). Dây BC cắt OM và OA lần lượt tại H và K. a) Chứng minh OA.OK không đổi từ đó suy ra BC luôn đi qua một điểm cố định. b) Chứng minh H di động trên một đường tròn cố định. c) Cho biết OA= 2R. Hãy xác định vị trí của M để diện tích tứ giác MBOC nhỏ nhất. Tính giá trị nhỏ nhất đó. Câu 5 ( 1.0 đ):T×m a,b lµ c¸c sè nguyªn dư¬ng sao cho: a + b2 chia hÕt cho a2b - 1 Hết ( Cán bộ coi thi không giải thích gì thêm)
- phßng Gi¸o dôc & §µo t¹o HƯỚNG dÉn chÊm thi häc sinh giái líp9 Thanh oai TRƯỜNG THCS KIM THƯ N¨m häc 2015 - 2016 M«n thi : To¸n CÂU Ý NỘI DUNG CẦN ĐẠT ĐIỂM 1a) a/(2đ)Cho biểu thức (2đ). � 2 5 x 1 � x −1 A= 1 � � − − � �: ĐK: x �1 + 2 x 4 x − 1 1 − 2 x �4 x + 4 x + 1 1 0,25 0; x ;x 1 4 � � � 2 5 x 1 � x −1 A= 1 � − + : 0,5 Bài 1 � ( ) ( 2 x + 1 2 x + 1 (2 x − 1) 2 x − 1 � 2 x + 1 � ) 2 (5đ) 4 x − 2 − 5 x + 2 x + 1 (2 x + 1) 2 A=1 . 0,5 (2 x + 1)(2 x − 1) x −1 x −1 2 x +1 2 x +1 2 A=1 . = 1− = 0,75 2 x −1 x −1 2 x −1 1 − 2 x 1b) Ta có : (1đ) b/(2đ) Tìm x Z để A nguyên. A �Z � 2 �Z � 1 − 2 x �Ư(2) 0,5 1− 2 x Do x �0; x �1; x �Z � x = 0 0,5 Vậy x=0 thì A có giá trị nguyên. Áp dụng công thức: (a+b)3=a3+b3+3ab(a+b), 0,5 2.(2đ) Đặt a= 3 3 2 2 , b= 3 3 2 2 Ta có 0,5 ⇒ x= a+b ⇒ x3= (a+b)3= a3 + b3 +3ab(a+b) 0,25 => x3 = 6 + 3x ⇒ x3 3x = 6 Suy ra B = 2006 0,25 0,5
- a)(2đ) Bất đẳng thức đã cho tương đương với a + bc + b + ca + c + ab 1 + ab + bc + ca , 0,75 1 1 1 với a = , b = , c = , a + b + c = 1. Bài 2 x y z (4đ) Tacó : a + bc = a (a + b + c) + bc 0,75 = a 2 + a (b + c) + bc a 2 + 2a bc + bc = a + bc . Tương tự: b + ca b + ca ; c + ab c + ab . 0,5 Từ đó ta có đpcm. Dấu bằng xảy ra khi x = y = z = 3. A = n 2 + n + 6 la sô chinh ph ̀ ́ ́ ương nên A co dang ́ ̣ b)2đ A = n + n + 6 = k (k N ) 2 2 * 0,5 � 4n 2 + 4n + 24 = 4k 2 � (2k ) 2 − (2n + 1) 2 = 23 2k + 2n + 1 = 23 � (2k + 2n + 1)(2k − 2n − 1) = 23 � 0,5 2k − 2n − 1 = 1 (Vi 23 la sô nguyên tô va 2k + 2n + 1> 2k – 2n 1) ̀ ̀ ́ ́ ̀ �2k + 2n + 1 = 23 k =6 � �� �� 0,5 �2k − 2n − 1 = 1 �n=5 ̣ ơi n = 5 thi A la sô chinh ph Vây v ́ ̀ ̀ ́ ́ ương 0,5 Bài 3 a)(2đ) a) Giải pt sau: 3 x 2 + 4 x + 10 = 2 14 x 2 − 7 ĐKXĐ: 0,25 (4đ) 2 x 1 2 14 x 2 −�� 7 0−�۳� 2 x2 1 0 x2 2 2 0,25 x − 2 2 26 Vì 3x 2 + 4 x + 10 = 3( x + ) 2 + >0 3 3 0,75 ( Ta có: (1) � 3x 2 + 4 x + 10 − 2 7 2 x 2 − 1 = 0 ) ( ) � x 2 + 4 x + 4 + 2 x 2 − 1 − 2 2 x 2 − 1. 7 + 7 = 0 ( ) 2 � ( x + 2 ) + 2 2x −1 − 7 2 =0 0,75 x = −2 � x+2=0 � � � � � x = 2 � x = −2 2x2 −1 − 7 = 0 0,5 x = −2 (TMĐK)
- Vậy PT có nghiệm là: x = 2 0,25 b) b)(2đ) BiÕn ®æi phư¬ng tr×nh x2+2y2 +2xy +3y-4 =0 (x2+2xy+y2) +y2 +3y - 4=0 (y+4)(y-1) =-(x+y)2 0 0,5 - 4 y 1 v× y thuéc Z nªn y 4; 3; 2; 1;0;1 0,5 §S s¸u cÆp (x;y) tháa m·n phư¬ng tr×nh lµ 0,5 (4;- 4), (1;- 1),(5;-3), (1;3),(2;0), (-2;0) 0,5 Bài 4 Vẽ (5đ) hình d (0,25) M B H K A 0,25 O C a. HOK AOM 0,5 a)(2đ) OA.OK OH.OM2 0,5 vBOM có OB = OH. OM 0,5 R2 ... OK (Không đổi) OA 0,5 K là điểm cố định. b. b)(1đ) H nằm trên đường tròn đường kính OK cố định. 1đ c. 1 c) S OBMC 2S OBM OM . BH OM . BC 2 (1,75) 0,5 Smin OM nhỏ nhất, BC nhỏ nhất
- M A, BC OK H K M A 0,5 S min ...R 2 3 0,5 0,25 Bài 5 Bµi 5: (1®) (1đ) x 2 − 2Mxy + 2 � y ( x 2 − 2)Mxy + 2 � x( xy + 2) − 2( x + y ) Mxy + 2 � 2( x + y )Mxy + 2 0,25 §Æt 2(x+y)=k(xy+2) víi k Z + k=1 � 2 x + 2 y = xy + 2 � ( x − 2)( y − 2) = 2 NêuT×m được x=4 ; y=3 0,5 Nếu k 2 � 2( x + y ) �2( xy + 2) � x + y �xy + 2 � ( x − 1)( y − 1) + 1 �0 v« lÝ (lo¹i) VËy x=4. y=3 0,25 ( Học sinh làm theo cách khác đúng vẫn cho điểm )
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tổng hợp đề thi học sinh giỏi lớp 12 các môn
17 p | 2422 | 830
-
Đề thi học sinh giỏi lớp 10 - Sở Gd&ĐT Bạc Liêu
17 p | 1611 | 319
-
Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh kèm đáp án
7 p | 1055 | 319
-
Đề thi học sinh giỏi lớp 12 môn Sinh cấp quốc gia năm 2011
17 p | 1297 | 296
-
Đề thi học sinh giỏi lớp 12 môn Hóa năm 2013 - Kèm đáp án
10 p | 1253 | 182
-
Đề thi học sinh giỏi lớp 12 môn GDCD cấp tỉnh năm 2013 - Kèm đáp án
8 p | 1646 | 132
-
Đề thi học sinh giỏi lớp 12 môn Sinh cấp tỉnh - Sở GD&ĐT Bắc Giang - Kèm đáp án
11 p | 387 | 71
-
Đề thi học sinh giỏi lớp 12 cấp tỉnh - Sở GD&ĐT Cà Mau
12 p | 939 | 66
-
Đề thi học sinh giỏi lớp 9 môn Lý lớp 9 cấp tỉnh - Kèm đáp án
19 p | 1072 | 64
-
Đề thi học sinh giỏi lớp 12 THPT năm 2012 - Sở GD&ĐT Phú Yên
11 p | 596 | 48
-
Đề thi học sinh giỏi lớp 12 môn Tin cấp quốc gia
12 p | 361 | 47
-
Đề thi học sinh giỏi lớp 12 môn Lý kèm đáp án
7 p | 228 | 45
-
Đề thi học sinh giỏi lớp 12 Toán cấp thành phố năm 2009 - 2010
2 p | 317 | 43
-
Đề thi học sinh giỏi lớp cấp tỉnh năm 2010 - 2011
17 p | 363 | 39
-
Đề thi học sinh giỏi lớp 11 năm 2012-2013 môn Toán - Sở GD&DT Bắc Giang
6 p | 106 | 5
-
Đề thi học sinh giỏi lớp 11 năm 2012-2013 môn Toán - Sở GD&DT Quảng Bình
18 p | 76 | 3
-
Đề thi học sinh giỏi lớp 11 năm 2011-2012 môn Toán - Sở GD&DT Long An
9 p | 120 | 2
-
Đề thi học sinh giỏi lớp 12 môn Anh cấp tỉnh - Sở GD&ĐT Nghệ An
20 p | 126 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn