Đề thi thử đại học môn toán năm 2012_Đề số 80
lượt xem 30
download
Tham khảo đề thi - kiểm tra 'đề thi thử đại học môn toán năm 2012_đề số 80', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử đại học môn toán năm 2012_Đề số 80
- ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG .2012 Môn thi : TOÁN ( ĐỀ 80 ) Câu I: (2,0 điểm) 2x − 4 Cho hàm số y = (C ) . x +1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Gọi M là một điểm bất kì trên đồ thị (C), tiếp tuyến tại M cắt các tiệm cận của (C) tại A, B. CMR diện tích tam giác ABI (I là giao của hai tiệm cận) không phụ thuộc vào vị trí của M. Câu II: (3,0 điểm) 1. Giải hệ phương trình: 2 xy x2 + y 2 + =1 x+ y x + y = x2 − y π� 2� 2. Giải phương trình: 2sin � − � 2sin x − t anx . = 2 x � 4� ( ) ( ) x 2 + 1 + x > log 3 log 1 x2 + 1 − x 3. Giải bất phương trình: log 1 log 5 3 5 Câu III: (2,0 điểm) ln x 3 2 + ln 2 x e 1. Tính tích phân: I = dx . x 1 2. Cho tập A = { 0;1;2;3;4;5} , từ A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó nhất thiết phải có chữ số 0 và 3. Câu IV: (2,0 điểm) 1. Viết phương trình đường tròn đi qua hai điểm A(2; 5), B(4;1) và tiếp xúc với đường thẳng có phương trình 3x – y + 9 = 0. 2. Cho hình lăng trụ tam giác ABC.A’B’C’ với A’.ABC là hình chóp tam giác đều cạnh đáy AB = a; cạnh bên AA’ = b. Gọi α là góc giữa hai mp(ABC) và mp(A’BC). Tính tan α và thể tích chóp A’.BCC’B’. Câu V: (1,0 điểm) Cho x > 0, y > 0, x + y = 1. Tìm giá trị nhỏ nhất của biểu thức x y T= + 1− x 1− y ……………………………………………….Hết…………………………………
- ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 80 ) Nội dung Điể Câu Ý m I 2 1 Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1,00 điểm) -Tập xác định: R\{-1} 6 -Sự biến thiên: y ' = 2 > 0∀x −1 . Suy ra hàm số đồng biến trên các khoảng xác 0.25 ( x + 1) định của hàm số. - x lim) y = m x = −1 là tiệm cận đứng ( −1 0.25 lim y = 2 y = 2 là tiệm cận ngang -x -Bảng biến thiên -1 x -∞ +∞ + + y' 0.25 +∞ 2 2 y -∞ -Đồ thị y 2 I 0.25 x 12 -1 -4 2 Tìm cặp điểm đối xứng….(1,00 điểm) � 2a − 4 � 0.25 � ( C) a ι −1 Gọi M �; a a +1 � � 2a − 4 6 2 ( x − a) + Tiếp tuyến tại M có phương trình: y = ( a + 1) a +1 0.25 � 2a − 10 � − Giao điểm với tiệm cận đứng x = −1 là A � 1; � � a +1 � Giao điểm với tiệm cận ngang y = 2 là B ( 2a + 1;2 ) 0.25
- Giao hai tiệm cận I(-1; 2) 12 1 1 ; IB = 2 ( a + 1) � S IAB = IA. AB = .24 = 12 ( dvdt ) IA = 0.25 a +1 2 2 Suy ra đpcm II 3 1 Giải hệ …(1,00 điểm) 2 xy = 1 ( 1) x2 + y 2 + ( dk x + y > 0 ) x+ y ( 2) x + y = x2 − y 2 xy ( 1) � ( x + y ) − 1 = 0 � ( x + y ) − 2 xy ( x + y ) + 2 xy − ( x + y ) = 0 2 3 − 2 xy + x+ y 0.5 ( ) � ( x + y) ( x + y ) − 1 − 2 xy ( x + y − 1) = 0 2 � ( x + y − 1) �x + y ) ( x + y + 1) − 2 xy � 0 ( = � � ( 3) x + y =1 ( 4) x2 + y 2 + x + y = 0 Dễ thấy (4) vô nghiệm vì x+y>0 Thế (3) vào (2) ta được x − y = 1 2 0.5 x + y =1 x = 1; y = 0 Giải hệ …… x = −2; y = 3 x2 − y = 1 2 Giải phương trình….(1,00 điểm) Đk: cos x 0 (*) � π� � π� sinx 0.25 2sin 2 � − � 2sin 2 x − t anx � 1 − cos � x − � 2sin 2 x − = = x 2 � 4� 2� cos x � � cos x − sin 2 x.cos x − 2sin x.cos x + sinx � cos x + sinx − sin 2 x ( cos x + sinx ) = 0 2 0.25 π cos x 0 sinx = − cos x � t anx = −1 � x = − + kπ π π 4 0.5 += x k (tm(*))… π π 4 2 sin 2 x = 1 � 2 x = + l 2π � x = + lπ 2 4 3 Giải bất phương trình (1,00 điểm) ( ) ( ) x 2 + 1 + x > log 3 log 1 x2 + 1 − x log 1 log 5 (1) 3 5 Đk: x > 0
- ( ) ( ) ( 1) � log x 2 + 1 − x + log 3 log 5 x2 + 1 + x < 0 log 1 3 5 0.25 ( ) ( ) � � x + 1 − x .log 5 x +1 + x � 0 < � log 3 � 1 log 2 2 �5 � ( ) x2 + 1 + x < 1 � log 5 2 ( ) � 0 < log 5 x2 + 1 + x < 1 ( ) 0.25 *) 0 < log 5 x2 + 1 + x � x > 0 ( ) 0.25 12 x 2 + 1 + x < 1 � x 2 + 1 + x < 5 � x 2 + 1 < 5 − x �� x< *) log 5 ... 5 � 12 � 0.2 Vậy BPT có nghiệm x � 0; � � 5� III 2 1 Tính tích phân (1,00 điểm) ln x 3 2 + ln 2 x 1e e e 1 dx = � x 2 + ln xd ( ln x ) = � + ln x ) 3 d ( 2 + ln 2 x ) (2 I =� ln 2 2 3 0.5 x 21 1 1 e ( 2 + ln x ) 4 13 2 3 33 = � 34 − 3 24 � =. 0.5 8� � 2 4 1 2 Lập số …..(1,00 điểm) -Gọi số cần tìm là abcde ( a 0 ) 0.25 -Tìm số các số có 5 chữ số khác nhau mà có mặt 0 và 3 không xét đến vị trí a. Xếp 0 và 3 vào 5 vị trí có: A5 cách 2 3 3 vị trí còn lại có A4 cách 0.25 Suy ra có A A số 2 3 5 4 -Tìm số các số có 5 chữ số khác nhau mà có mặt 0 và 3 với a = 0. 0.25 Xếp 3 có 4 cách 3 3 vị trí còn lại có A4 cách Suy ra có 4. A4 số 3 0.25 2 3 3 Vậy số các số cần tìm tmycbt là: A A - 4. A = 384 5 4 4 IV 2
- 1 Viết phương trình đường tròn….(1,00 điểm) Gọi I ( a; b ) là tâm đường tròn ta có hệ ( 2 − a) + ( 5 − b) = ( 4 − a) + ( 1 − b) 2 2 2 2 (1) IA = IB ( 3a − b + 9 ) � � 2 IA = d ( I ; ∆ ) 0.25 ( 2 − a) + ( 5 − b) = ( 2) 2 2 10 ( 1) � a = 2b − 3 thế vào (2) ta có b 2 − 12b + 20 = 0 � b = 2 �b = 10 0.25 *) với b = 2 � a = 1; R = 10 � ( C ) : ( x − 1) + ( y − 2 ) = 10 2 2 *)với b = 10 � a = 17; R = 250 � ( C ) : ( x − 17 ) + ( y − 10 ) = 250 2 2 0.25 0.25 2 Hình lăng trụ ….(1,00 điểm) Gọi O là tâm đáy suy ra A ' O ⊥ ( ABC ) và góc α = ᄋ ' AIA A' C' *)Tính tan α 0.25 A 'O 1 1a 3 a 3 tan α = với OI = AI = = B' OI 3 32 6 3b − a 2 2 2 a A ' O 2 = A ' A2 − AO 2 = b 2 − = A C 3 3 O I 2 3b − a 2 2 � tan α = B 0.25 a *)Tính VA '. BCC ' B ' 1 VA'. BCC ' B ' = VABC . A' B 'C ' − VA '. ABC = A ' O.S ABC − A ' O.S ABC 3 0.5 2 3b 2 − a 2 1 a 3 a 2 3b 2 − a 2 ( dvtt ) =. .a = . 3 22 6 3 V 1 �π� Đặt x = cos a; y = sin a �� � a 0; 2 2 � hi đó k � 2� cos 2 a sin 2 a cos3 a + sin 3 a ( sin a + cos a ) ( 1 − sin a.cos a ) T= + = = sin a cos a sina.cos a sin a.cos a � π� t2 −1 t = sin a + cos a = 2 sin � + � sin a.cos a = � a Đặ t � 4� 2 π Với 0 < a < � 1 < t � 2 2 −t 3 − 3t = f ( t) ; Khi đó T = 2 t −1
- ( 1; ( 2) −t 4 − 3 f ' ( t ) = �∀ >2 = 0 t f ( t) 2 f 2 ( t 2 − 1) ( 2) = 2 khi x = y = 1 . Hay min T = 2 khi x = y = 1 . Vậy tmin f ( t ) = f ( 1; 2 2 2
CÓ THỂ BẠN MUỐN DOWNLOAD
-
.....đề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & Dđề thi thử đại học môn Văn dành cho các bạn luyện thi khối C & D
5 p | 907 | 329
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 01)
6 p | 444 | 242
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 02)
6 p | 386 | 184
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 03)
7 p | 336 | 161
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 04)
8 p | 330 | 143
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 10)
6 p | 361 | 141
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 05)
6 p | 283 | 130
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 06)
6 p | 301 | 128
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 08)
7 p | 304 | 119
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 07)
8 p | 313 | 114
-
Đề thi thử Đại học môn Lý khối A - Bộ GD & ĐT (Đề 09)
6 p | 293 | 114
-
Đề thi thử Đại học môn Toán 2014 số 1
7 p | 278 | 103
-
Đề thi thử Đại học môn Toán khối A, A1 năm 2014 - Thầy Đặng Việt Hùng (Lần 1-4)
4 p | 223 | 35
-
Đề thi thử Đại học môn Lý khối A - Đề số 18
5 p | 165 | 31
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 2
7 p | 229 | 25
-
Đề thi thử Đại học môn Anh khối A1 & D năm 2014 lần 1
11 p | 142 | 15
-
Đề thi thử Đại học môn Hóa khối A, B năm 2014 - ĐH Quốc gia TP Hồ Chí Minh
6 p | 105 | 7
-
Đề thi thử đại học môn Toán - Trường THPT Phan Đình Phùng năm 2011
8 p | 115 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn