Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 1
lượt xem 29
download
Tham khảo tài liệu 'đề thi thử đại học năm 2011 của trần sỹ tùng ( có đáp án) - đề số 1', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử Đại học năm 2011 của Trần Sỹ Tùng ( Có đáp án) - Đề số 1
- www.MATHVN.com Trần Sĩ Tùng Ôn thi Đại học Đề số 1 I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = − x3 + 3 x2 − 2 (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C). 2) Tìm trên đường thẳng (d): y = 2 các điểm mà từ đó có thể kẻ được ba tiếp tuyến đến đồ thị (C). Câu II (2 điểm) 2x + 3 + x + 1 = 3x + 2 2x2 + 5x + 3 − 16 . 1) Giải phương trình: 3π π 2) Giải phương trình: 2 2 cos2 x + sin2x cos x + − 4sin x + = 0 . 4 4 π 2 I = ∫ (sin4 x + cos4 x)(sin6 x + cos6 x)dx . Câu III (1 điểm) Tính tích phân: 0 Câu IV (2 điểm) Cho hình chóp S.ABC, đáy ABC là tam giác vuông tại B có AB = a, BC = a 3 , SA vuông góc với mặt phẳng (ABC), SA = 2a. Gọi M, N lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB và SC. Tính thể tích của khối chóp A.BCNM. Câu V (1 điểm) Cho a, b, c, d là các số dương. Chứng minh rằng: 1 1 1 1 1 + + + ≤ a + b + c + abcd b + c + d + abcd c + d + a + abcd d + a + b + abcd 4 4 4 4 4 4 4 4 4 4 4 4 abcd II. PHẦN RIÊNG (3,0 điểm) A. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, gọi A, B là các giao điểm của đường thẳng (d): 2x – y – 5 = 0 và đường tròn (C’): x2 + y2 − 20 x + 50 = 0 . Hãy viết phương trình đường tròn (C) đi qua ba điểm A, B, C(1; 1). 2) Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4; 5; 6). Viết phương trình mặt phẳng (P) qua A, cắt các trục tọa độ lần lượt tại I, J, K mà A là trực tâm của tam giác IJK. Câu VII.a (1 điểm) Chứng minh rằng nếu a + bi = (c + di )n thì a2 + b2 = (c2 + d 2 )n . B. Theo chương trình nâng cao Câu VI.b (2 điểm) 3 1) Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có diện tích bằng , A(2; – 2 3), B(3; –2), trọng tâm của ∆ABC nằm trên đường thẳng (d): 3x – y –8 = 0. Viết phương trình đường tròn đi qua 3 điểm A, B, C. 2) Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(4;5;6); B(0;0;1); C(0;2;0); D(3;0;0). Chứng minh các đường thẳng AB và CD chéo nhau. Viết phương trình đường thẳng (D) vuông góc với mặt phẳng Oxy và cắt các đường thẳng AB, CD. log ( x2 + y2 ) − log (2x) + 1 = log ( x + 3y) 4 4 4 x Câu VII.b (1 điểm) Giải hệ phương trình: log4 ( xy + 1) − log4 (4y + 2y − 2x + 4) = log4 y − 1 2 www.MATHVN.com - Trang 1
- Hướng dẫn Đề sô 1 Câu I: 2) Gọi M(m; 2) d. Phương trình đường thẳng qua M có dạng: . y k( x m) 2 Từ M kẻ được 3 tiếp tuyến với (C) Hệ phương trình sau có 3 nghiệm phân biệt: 5 x3 3x2 2 k( x m) 2 (1) m 1 hoaë m c 3 2 3x 6x k (2) m 2 Câu II: 1) Đặt > 0. (2) t 2x 3 x 1 x3 2) 2) (sin x cos x) 4(cos x sin x) sin2 x 4 0 3 ; x k x k2 ; x k2 4 2 33 7 3 33 Câu III: (sin4 x cos4 x)(sin6 x cos6 x) cos4x cos8x I 64 16 64 128 Câu IV: Đặt V1=VS.AMN; V2=VA..BCNM; V=VS.ABC; V1 SM SN SM 1 . . (1) V SB SC SB 2 V1 2 V2 3 2 4a SM 4 3 AM a; SM= V2 V (2) SB 5 V 5 V5 5 5 5
- a3. 3 a3. 3 1 V SABC .SA V2 3 3 5 Câu V: a4 b4 2a2b2 (1); b4 c4 2b2c2 (2); c4 a4 2c2a2 (3) a4 b4 c4 abc(a b c) a4 b4 c4 abcd abc( a b c d ) 1 1 đpcm. (4) 4 4 4 abc( a b c d ) a b c abcd Câu VI.a: 1) A(3; 1), B(5; 5) (C): x2 y2 4x 8y 10 0 xyz 2) Gọi I(a;0;0), J(0;b;0), K(0;0;c) ( P) : 1 abc 77 4 5 6 a 1 4 uur uur a b c 77 I A (4 a;5;6), JA (4;5 b;6) uur uur 5b 6c 0 b 5 JK (0; b; c), IK ( a;0; c) 4a 6c 0 77 c 6 Câu VII.a: a + bi = (c + di)n |a + bi| = |(c + di)n | |a + bi|2 = |(c + di)n |2 = |(c + di)|2n a2 + b2 = (c2 + d 2) n Câu VI.b: 1) Tìm được , . C (1; 1) C2 ( 2; 10) 1 11 11 16 + Với (C): x 2 y2 x y 0 C1(1; 1) 3 3 3 91 91 416 + Với C2 (2; 10) (C): x 2 y2 0 x y 3 3 3 2) Gọi (P) là mặt phẳng qua AB và (P) (Oxy)
- (P): 5x – 4y = 0 (Q) là mặt phẳng qua CD và (Q) (Oxy) (Q): 2x + 3y – 6 = 0 Ta có (D) = (P)(Q) Phương trình của (D) x x= 2 Câu VII.b: vôù > 0 tuyø i yùvaø y y= 1
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử Đại học năm 2013 môn Hóa khối A, B - Trường THPT Trần Nhân Tông (Mã đề 325)
6 p | 285 | 104
-
Đề thi thử Đại học năm 2013 môn Toán khối A - Trường THPT chuyên Quốc học
1 p | 200 | 47
-
Đáp án và đề thi thử Đại học năm 2013 khối C môn Lịch sử - Đề số 12
6 p | 186 | 19
-
Đề thi thử Đại học năm 2013 môn Địa lý (có đáp án)
7 p | 149 | 15
-
Đề thi thử Đại học năm 2013 môn tiếng Anh khối D - Mã đề 234
8 p | 153 | 11
-
Đề thi thử Đại học năm 2014 môn Toán - GV Nguyễn Ngọc Hân
2 p | 119 | 10
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 6) - Sở GD & ĐT TP Hồ Chí Minh
8 p | 123 | 10
-
Đáp án đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 141 | 9
-
Đề thi thử Đại học năm 2013 môn Ngữ văn khối C, D
3 p | 134 | 9
-
Đề thi thử Đại học năm 2014 môn Vật lý (Mã đề TTLTĐH 8) - Sở GD & ĐT TP Hồ Chí Minh
9 p | 109 | 5
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 7
5 p | 60 | 3
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 10
5 p | 74 | 3
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 3
4 p | 53 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 4
6 p | 57 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 5
4 p | 52 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 6
6 p | 70 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 8
6 p | 71 | 2
-
Đề thi thử Đại học năm 2014 môn Toán - Đề số 9
6 p | 75 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn