Giáo án bài Phương trình đường thẳng - Hình học 10 - GV. Trần Thiên
lượt xem 241
download
Qua bài học Phương trình đường thẳng giáo viên giúp học sinh hiểu Véc tơ chi phương của đường thẳng, phương trình tham số của đường thẳng. Liên hệ giữa véc tơ chỉ phương và hệ số góc của đường thẳng. Viết phương trình tham số khi biết một điểm và một véc tơ chỉ phương.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Giáo án bài Phương trình đường thẳng - Hình học 10 - GV. Trần Thiên
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN BÀI 1: PHƯƠNG TRÌNH ĐƯỜNG THẲNG I.MỤC TIÊU 1.Về kiến thức: - Véc tơ chi phương của đường thẳng - Phương trình tham số của đường thẳng - Liên hệ giữa véc tơ chỉ phương và hệ số góc của đường thẳng 2.Về kỹ năng - Viết phương trình tham số khi biết một điểm và một véc tơ chỉ phương - Viết phương trình đường thẳng khi biết hệ số góc 3.Về tư duy: - Tư duy logic mở rộng và tìm tòi kiến thức 4.Về thái độ: - Cẩn thận chính xác trong lập luận và tính toán. II.CHUẨN BỊ 1. Về thực tiễn: H/s đa được học về véc tơ các phép toán về véc tơ. góc giữa hai véc tơ 2. Phương tiện: - Bảng phụ, thước kẻ, phấn III. PHƯƠNG PHÁP Sử dụng phương pháp gợi mở vấn đáp và hoát động nhóm IV.TIẾN TRÌNH BÀI HỌC. 1. Ổn định lớp Lớp 10A1 Sĩ số: 35 Vắng : 2. Kiểm tra bài cũ
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN Câu hỏi: 1. Hai véc tơ cùng phương, khoảng cách giữa hai điểm, độ dài của véc tơ. 2. u và v khi nào? ∃ k sao cho u = k v cho ví dụ 3. Hệ số góc của đường thẳng là gì? 3. Bài mới HĐ 1: Véc tơ chỉ phương của đường thẳng Hoạt động của Thầy Hoạt động của trò Cho đường thẳng ∆ có pt : y = 2x - 4 + Tìm hai điểm M 0 va M trên ∆ có hoành độ là 1 và 4 M 0 (1;-2) và M( 4; 4 ) + Tính toạ độ véc tơ M 0 M 3 + Chứng tỏ u ( ;3) cùng hướng với M 0 M (3;6) 2 véc tơ M 0 M u và v cùng hướng khi và chr khi + có nhận xét gì về véc tơ u và đường ∃ k sao cho u = k v thẳng ∆ trên hình vẽ 3 1 Vì u ( ;3) = M 0 M (3;6) vậy k = 1/2 2 2 + Ta nói u là véc tơ chỉ phương của đường thẳng ∆ vậy thế nào là véc tơ Chúng cùng giá ( song song ) chỉ phương của đường thẳng + Véc tơ M 0 M có phái là véc tơ chỉ phương của đường thẳng ∆ không H/s định nghĩa
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN HĐ 2: Phương trình tham số của đường thẳng Hoạt động của Thầy Hoạt động của trò GV: Bảng phụ( Bài toán) u (u1 ; u 2 ) Cho M 0 ( x0 ; y 0 ) và một véc tơ u (u1 ; u 2 ) Viết pt đường thẳng ∆ đi qua . M 0 ( x0 ; y 0 ) và nhận véc tơ u (u1 ; u 2 ) làm M 0 ( x0 ; y 0 ) véc tơ chỉ phương M 0 M = ( x − x0 ; y − y 0 ) ? Với mọi điểm M ( x; y ) tính toạ độ M 0M ? Nếu M ( x; y ) thuộc ∆ có nhận xét gì + Hai véc tơ cùng phương về véc tơ u (u1 ; u 2 ) và véc tơ M 0 M ? Hai véc tơ bằng nhau khi nào? tính + Hai véc tơ bằng nhau khi chúng có tu cùng toạ độ uuuuur r u x − x0 = tu1 M 0 M = tu + Hệ (1) được gọi là phương trình y − y0 = tu2 tham số của đường thẳng ∆ Liên hệ giữa véc tơ chỉ phương và hệ số góc của đường thẳng x = x0 + tu1 (1) Cho đt có pt tham số y = y0 + tu2 x = x0 + tu1 (1) y = y0 + tu 2 (2) Nếu u1 ≠ 0 từ pt (1) tính t = ? thay vào x − x0 pt (2) t= thay vào (2) ta có: u1
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN u u2 + Đặt k = u suy ra y = ? 2 y= ( x − x0 ) + y0 1 u1 u + k = u = tan α gọi là hệ số góc của 2 1 đường thẳng ∆ Ví dụ: Viết phương trình tham số của đường thẳng ∆ đi qua A( -2;1 ) và có véc tơ pháp tuyến u (3;−4) Viết phương trình tham số của đường thẳng d qua 2 điểm A(2;3) và B(3;1) tính hệ số góc của đt d. Hoạt động của Thầy Hoạt động của trò ? Để viết được đường thẳng d cần + một điểm thuộc d và một véc tơ chỉ biết những gì? phương ? Tính AB có phải là chỉ phương của d + Viết phương trình tham số không. điểm A có thuộc d không ? Từ véc tơ chỉ phương của đường + H/s trả lời thẳng cho biết hệ số góc của đường thẳng k = ? 4. Củng cố: - Véc tơ chỉ phương của đường thẳng - Phương trình tham số của đường thẳng, hệ số góc của đờng thẳng 5. Dặn dò: - Phương trình đừng thẳng đi qua điểm M 0 ( x0 ; y 0 ) và có hệ số góc k có dạng y − y 0 = k ( x − x0 ) - Làm Bài tập 1 sgk (t80) Ngày soạn: ....................... Ngày giảng: .....................
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN TIẾT 30: PHƯƠNG TRÌNH ĐƯỜNG THẲNG (Tiết 2) I.MỤC TIÊU 1. Kiến thức: - Véc tơ pháp tuyến của đường thẳng - Phương trình tổng quát của đường thẳng - Các trừơng hợp đăcl biệt, phương trình đoạn chắn của đường thẳng 2. Kỹ năng - Viết phương trình tổng quát khi biết một điểm và một véc tơ pháp tuyến - Viết phương trình đoạn chắncủa đường thẳngấcc trường hợp đặc biệt 3. Tư duy - Tư duy logic mở rộng và tìm tòi kiến thức 4. Thái độ - Cẩn thận chính xác trong lập luận và tính toán. II.CHUẨN BỊ 1.Về thực tiễn: H/s đã được học véc tơ chỉ phương và phương trình tham số 2. Phương tiện: Bảng phụ, thước kẻ, phấn III. PHƯƠNG PHÁP Sử dụng phương pháp gợi mở vấn đáp và hoát động nhóm III.TIẾN TRÌNH BÀI HỌC. 1. Ổn định lớp Lớp 10A1 Sĩ số: 35 Vắng : 2. Kiểm tra bài cũ
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN Câu hỏi: Viết phương trình đường thẳng đi qua M( -1 ; -4) và có hệ số góc k=2 3. Bài mới: HĐ 1: Véc tơ pháp tuyến của đường thẳng Hoạt động của Thầy Hoạt động của trò x = −5 + 2t Cho đường thẳng ∆ có pt y = 4 + 3t Và véc tơ n = (3;−2) hãy chứng tỏ n vuông góc với véc tơ chỉ phương của ∆ véc tơ chỉ phương của ∆ là u = (2;3) Vì n.u = 3.2 − 2.3 = 0 nên n ⊥ u ? Định nghĩa véc tơ pháp tuyến H/s trả lời Nhận xét: + Nêu n là véc tơ pháp tuyến thì k n cũng là véc tơ pháp tuyến + Một đường thẳng hoàn toàn xác định nếu biết một điểm và một véc tơ chỉ phương HĐ 2: Phương trình tổng quát của đường thẳng a) Bài toán: Trong mặt phẳng toạ độ Oxy cho điểm M 0 ( x0 ; y 0 ) và một véc tơ pháp tuyến n(a; b)
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN + Viết phương trình đường thẳng đi qua điểm M 0 ( x0 ; y 0 ) và có véc tơ pháp tuyến n(a; b) Hoạt động của Thầy Hoạt động của trò Bài làm: n(a; b) ∀ M(x; y) Tính toạ độ véc tơ M 0 M . ? Nếu điểm M ( x; y ) thuộc ∆ có nhận M 0 ( x0 ; y 0 ) xét gì về hai véc tơ M 0 M = ( x − x0 ; y − y 0 ) và n(a; b) M 0 M = ( x − x0 ; y − y 0 ) ? Nêu biểu thức toạ độ của tích vô hướng ? Vì M 0 M ⊥ n nên tích M 0 M .n = 0 M 0M ⊥ n Phương trình (1) được gọi là phương trình tổng quát của đường thẳng ∆ a.b = a1b1 + a2 b2 + Định nghĩa sgk n.M 0 M = 0 ⇔ a ( x − x0 ) + b( y − y0 ) = 0 (1) + nhận xét sgk HĐ 3: Áp dụng 1. Lập phương trình tổng quát đi của đường thẳng đi qua hai điểm A( 2;2 ) và B(4;3) 2. Lập phương trình tổng quát của đt đi qua C(3;4) và ⊥ với d: 2x - y + 3 = 0 Hoạt động của Thầy Hoạt động của trò + Tính toạ độ véc tơ AB và cho biết + = (2;1) ⇒ vtpt là: = (1;-2) véc tơ pháp tuyết của đường thẳng ∆ + Pttq là.(-1)( x - 2) + 2( y- 2) = 0 + Viết phương trình tổng quát của ∆
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN ⇔ x - 2y + 2 = 0 HĐ 4: Các trường hợp đặc biệt. Hoạt động của Thầy Hoạt động của trò +Cho đường thẳng ∆ có pt: ax + by + c =0 by + c = 0 ? nếu a =0 cho biết dạng của pt. là đường thẳng vuông góc với trục Oy nhận xét tại ? nếu b = 0 cho biết dạng của c phương trình. Nhận xét điểm 0;− b ? nếu c = 0 dạng của pt là gì? nhận Tưng tự xét C = 0 khi đó đường thẳng ∆ đi qua góc toạ độ O + Nếu a,b,c khác không phương trình (1) có dạng + = 1, trong đó a = - ; b = - + Phương trình trên được gọi là pt đoạn chắn của đương thẳng ∆ . 4. Củng cố: Véc tơ pháp tuyến của đường thẳng. phương trình tổng quát của đường thẳng, phương trình đạon chắn. 5. Dặn dò: Làm các bài tập 1, 2 ,3, 4 Ngày soạn: ....................... Ngày giảng: ......................
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN TIẾT 31: PHƯƠNG TRÌNH ĐƯỜNG THẲNG (Tiết 3) I.MỤC TIÊU 1. Kiến thức: - Từ pt tộng quát của hai đường thẳng h/s xác định được vị trí tương đối của hai đường thẳng đó. - So sánh hệ số góc k của hai đường thẳng và tích của chúng. 2. Kỹ năng - Viết phương trình tổng quát . xác định được hệ số góc - Từ đó xét được các vị trí tương đối của các đường thẳng. 3. Tư duy - Tư duy logic mở rộng và tìm tòi kiến thức 4. Thái độ - Cẩn thận chính xác trong lập luận và tính toán. II.CHUẨN BỊ PHƯƠNG TIỆN DẠY HỌC. 1. Thực tiễn: H/Sđã biết viết pt tham số và pt tổng quát của đường thẳng 2. Phương tiện: Bảng phụ, thước kẻ, phấn......... III. PHƯƠNG PHÁP - Sử dụng phương pháp gợi mở vấn đáp và hoát động nhóm IV.TIẾN TRÌNH BÀI HỌC. 1. Ổn định lớp Lớp 10A1 Sĩ số: 35 Vắng : 2. Kiểm tra bài cũ
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN Câu hỏi: Viết phương trình đường thẳng đi qua M( -2 ; 4) và vuông góc với đường thẳng y= 2x +4 3. Bài mới: HĐ 1: Vị trí tương đối của hai đường thẳng Hoạt động của Thầy Hoạt động của trò Bài toán: Cho hai đường thẳng ∆ và ∆ + HS trả lời có phương trình lần lượt là ∆ 1 ∩ ∆ 2 = M hai đường thẳng cắt nhau a1 x + b1 y + c1 = 0 ∆1 ∆ 1 ∩ ∆ 2 = ∅ hai đường thẳng song a2 x + b2 y + c2 = 0 ∆2 song ? Nêu vị trí tương đối giữa hai đường ∆1 ≡ ∆ 2 hai đường thẳng trùng nhau thẳng trong mặt phẳng a x + b1 y + c1 = 0 (I ) 1 có nghiệm khi a 2 x + b2 y + c 2 = 0 nào? a b + Có nghiệm khi: a ≠ b hay 1 1 2 1 ∆1 ∩ ∆ 2 = M a x + b1 y + c1 = 0 (I ) 1 vô nghiệm khi a 2 x + b2 y + c 2 = 0 nào? a b c + Vô nghiệm khi a = b ≠ c 1 1 1 2 1 2 a x + b1 y + c1 = 0 (I ) 1 vs nghiệm khi a 2 x + b2 y + c 2 = 0 a b c nào? + Vô số nghiệm khi a = b = c 1 1 1 2 1 2 HĐ 2: Áp dụng
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN Ví dụ 1: Xét vị trí tương đối của hai đường thẳng sau, tìm nghiệm của chúng 4 x − 10 y + 1 = 0 x+ y+2=0 Hoạt động của Thầy Hoạt động của trò a1 b1 a b Vì a ≠ b nên hai đường thẳng cắt 1 1 ?Có nhận xét gì về các tỉ số a và b 2 2 2 2 và kết luận về vị trí tương đối của nó. nhau. ? Giải hệ phương trình để tìm nghiệm của nó H/s lên bảng giải hệ phương trình đã cho. Ví dụ 2: Cho đường thẳng d có phương trình x – y +1 =0 xét vị trí tương đối của d với mỗ đường thẳng sau: ∆1 : 2 x + y − 4 = 0 ∆2 : x − y −1 = 0 ∆3 : 2 x − 2 y + 2 = 0 4. Củng cố: + Vị trí tương đối của hai đường thẳng trong mặt phẳng + Điều kiện để hai đường thẳng song song hoặc vuông góc. 5. Dặn dò: bài tập 5,6, (T 80)
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN TIẾT 32: TRÌNH ĐƯỜNG THẲNG (Tiết 4) I.MỤC TIÊU 1.Về kiến thức: - Xác định được góc giữa hai đường thẳng và góc giữa hai véc tơ - Mối liên hệ giữa các hệ số góc của hai đường thẳng - Công thức tính khoảng cách tù một điểm đến một đường thẳng 2.Về kỹ năng - Xác định được góc giữa hai đường thẳng áp dụng làm bài tập - Tính được khoảng cách giữa hai đường thẳng 3.Về tư duy: Tư duy logic các công thức nhớ các và áp dụng tốt khi làm bài tập 4.Về thái độ: Thái độ nghiêm túc chú ý nghe giảng phát biểu ý kiến xây dựng bài II.CHUẨN BỊ 1. Về thực tiễn: H/s đã biết viết pt tham số và pt tổng quát của đường thẳng 2. Phương tiện: Bảng phụ, thước kẻ, phấn ................. III. PHƯƠNG PHÁP Sử dụng phương pháp gợi mở vấn đáp và hoát động nhóm IV.TIẾN TRÌNH BÀI HỌC. 1. Ổn định lớp Lớp 10A1 Sĩ số: 35 Vắng : 2. Kiểm tra bài cũ
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN Câu hỏi: Viết phương trình đường thẳng đi qua M( -2 ; 4) và // với đường thẳng 2x + 3y – 12 = 0 3. Bài mới. ? Cho hai đường thẳng ∆ 1 và ∆ 2 cắt nhau toạ thành mấy góc? ? Hai đường thẳng vuông góc. Thì góc giữa chúng bàng bao nhiêu? ? Nếu hai đường thẳng // hoặc trùng nhau ta quy ước góc giữa chúng bằng không độ ? Nhận xét gì về hai đường thẳng cắt nhau 0 ∧ 0 0 ≤ (∆1 ; ∆ 2 ) ≤ 90 ? Góc giữa hai đường thẳng và góc giữa hai véc tơ có gì khác nhau? HĐ 1: Góc giữa hai đường thẳng Hoạt động của Thầy Hoạt động của trò ∧ ∧ Nhận xét về cos(∆1 ; ∆ 2 ) và cos(a; b) cos(∆1 ; ∆ 2 ) luon mang dấu dương vì 0 ∧ 0 Vậy 0 ≤ (∆1 ; ∆ 2 ) ≤ 90 Cosϕ = cos(a; b) lớn hơn không khi a1 a 2 + b1b2 = a12 + b12 . a 2 + b2 2 2 (0 0 ) ≤ (a; b) ≤ 90 0 và nhỏ hơn không khi (90 0 ≤ (a; b) ≤ 180 0 ) Chú ý: + ∆ 1 ⊥ ∆ 2 ⇔ n1 ⊥ n2 ⇔ a1a 2 + b1b2 = 0 + Nếu ∆ 1 : y = k 1 x + m1 và ∆ 2 : y = k 2 x + m2
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN Thì ∆ 1 ⊥ ∆ 2 ⇔ k1 .k 2 = −1 HĐ 2: Công thức tính khoảng cách từ một điểm đến một đừng thẳng. Hoạt động của Thầy Hoạt động của trò ax 0 + by 0 + c Công thức d ( M 0 , ∆) = a2 + b2 CM: Gọi H ( x1 ; y1 ) là hình chiếu vuông Là đoạn HM 0 góc của M 0 lên ∆ ? khoảng cách giữa M 0 và ∆ là đoạn ax1 + by1 + c = 0 suy ra c = −( ax1 + by1 ) thẳng nào? ? H ( x1 ; y1 ) ∈ ∆ nên toạ độ điểm H phải thoả mãn phương trình nào? Hai véc tơ cùng phương. nên ? Có nhận xét gì về véc tơ HM 0 và HM 0 = t n (1) véc tơ pháp tuyến n của ∆ ? ? Tính độ dài HM 0 = ? và t.n = ? d ( M 0 , ∆) = HM 0 = t . n = t . a 2 + b 2 (I) HM 0 .n = t.(n) 2 ? nhân cả hai vế của (1) với n và tính giá trị đó. n. HM 0 = a ( x 0 − x1 ) + b( y 0 − y1 ) ? tính n. HM 0 và t.(n) 2 = ax 0 + by 0 − (ax1 + by1 ) (2) ? Từ (2) và (3) tính t = ? t.(n) 2 = t (a 2 + b 2 ) (3) Ví dụ: Tính khoảng cách từ điểm ................
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN M( -2 ; 5 ) đến đường thẳng ∆ : 3x - 4y + 15 = 0 3( −2) − 4(5) + 15 11 d ( M , ∆) = = 3 2 + (−4) 2 5 4. Củng cố : + Sự khác nhau giữa góc của hai đường thẳng và góc của hai véc tơ . + Công thức tính khoảng cách từ một điểm đến một đường thẳng 5. Dặn dò : Bài tập 6,7,8,9 sgk (t 81)
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN TIẾT 33: BÀI TẬP I.MỤC TIÊU 1.Về kiến thức: - Ôn tập củng cố lại cách viết phương trình tổng quát của đường thẳng Quan hệ vuông góc và quan hệ song song của hai đường thẳng. - Công thức tính góc và ct khoảng cách từ một điểm đến một đường thẳng 2.Về kỹ năng - Viết thành thạo phương trình tổng quát của đường thẳng - Xét được mối quan hệ giữa các đường thẳng. 3.Về tư duy - Tư duy logic,nhớ các công thức và áp dụng tốt khi làm bài tập 4.Về thái độ - Chuẩn bị bài trước khi đến lớp, phát biểu xây dựng bài. II.CHUẨN BỊ 1.Về thực tiễn: H/s đã học song lý thuyết, vận dụng vào làm bài tập. 2.Phương tiện: Bảng phụ, thước kẻ, phấn .......... III. PHƯƠNG PHÁP Sử dụng phương pháp gợi mở vấn đáp và hoát động nhóm III.TIẾN TRÌNH BÀI HỌC. 1. Ổn định lớp Lớp 10A1 Sĩ số: 35 Vắng :
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN 2. Kiểm tra bài cũ Gv cùng h/s củng cố lại lý thuyết 3. Bài mới. Dạng 1 : Lập phương trình tổng quá của đường thẳng Bài tập 1: Viết phương trình tổng quát của đường thẳng ∆ a) Đi qua điểm M(-2;3) và có véc tơ chỉ phương u (5;−4) b) Đi qua điểm I(7;2) và ⊥ với đường thẳng d: 2x -5y + 4 = 0 c) Đi qua điểm N(-1;-5) và // với đường thẳng d’: 3x –y +8 =0 d) Đi qua điểm A( 2;-7) và có hệ số góc k = -2 e) Đi qua hai điểm A(2;1) và B(-4;3) f) Đi qua điểm C (0;-5) và có véc tơ pháp tuyến n(1;−5) Hoạt động của Thầy Hoạt động của trò u (5;−4) ⇒ n = ? n = (4;5) ? Phương trình tổng quát có dạng nào? Dạng a( x - x0 ) + b( y – y0) = 0 Gọi học sinh lên bảng. ? Phương trình đường thẳng đi qua hai điểm? A(x1;y1) và B(x2;y2) u = AB = ( x 2 − x1 ; y 2 − y1 ) ⇒ n = [ ( y 2 − y1 );−( x 2 − x1 )] Phương trình tổng quát có dạng ? Vậy viết phương trình đường thẳng đi qua hai điểm A(2;1) và B(-4;3) ( y2 - y1 )( x - x1 ) - (x2- x1)( y - y1) = 0 H/s lên bảng Dạng 2: Tìm tọa độ điểm đối xứng, tọa độ của hình chiếu Bài tập 2: Cho đường thẳng d: x – 2y + 2 = 0 và điểm M( 2; 7) Tìm toạ độ hình chiếu H của điểm M xuống d.
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN Bài tập 3: Tìm toạ độ điểm đối xứng của A qua đường thẳng (D) a) A( 6; 5) ; (D) : 2x + y – 2 = 0 b) A(1; 2) ; (D) : 4x – 14y – 29 = 0 Hoạt động của Thầy Hoạt động của trò + gọi H( xH;yH) có nhận xét gì về véc MH // n tơ MH và pháp tuyến n của d: u ∆ = n d (1;−2) ⇒ n ∆ = (2;1) + Viết pt tổng quát của đường thẳng đi qua H và nhận véc tơ n làm chỉ Pt tổng quát: 2( x - xH) +1( y - yH) = 0 phương (1) + H( xH;yH) ∈ d nên toạ độ điểm Thoả mãn pt d: xH – 2yH + 2 = 0 (2) H( xH;yH) phải thoả mãn phương trình nào? + Giải hệ (1) và (2) ta tìm được tạo độ điểm H H/s lên bảng. 4. Củng cố: Viết phương trình tổng quát của đường thẳng, tìm toạ độ điểm đối xứng với điểm M qua đường thẳng d. 5. Dặn dò: Bài tập 3,4,5,6
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN TIẾT 34: BÀI TẬP (Tiết 2) I.MỤC TIÊU 1. Về kiến thức: - Ôn tập củng cố lại cách viết phương trình tổng quát của đường thẳng - Quan hệ vuông góc và quan hệ song song của hai đường thẳng. - Công thức tính góc và ct khoảng cách từ một điểm đến một đường thẳng 2. Về kỹ năng - Viết thành thạo phương trình tổng quát của đường thẳng - Xét được mối quan hệ giữa các đường thẳng. 3. Về tư duy - Tư duy logic,nhớ các công thức và áp dụng tốt khi làm bài tập 4. Về thái độ - Chuẩn bị bài trước khi đến lớp, phát biểu xây dựng bài. II.CHUẨN BỊ 1. Về thực tiễn: H/s đã học song lý thuyết, vận dụng vào làm bài tập. 2. Phương tiện: Bảng phụ, thước kẻ, phấn ................... III. PHƯƠNG PHÁP Sử dụng phương pháp gợi mở vấn đáp và hoát động nhóm III.TIẾN TRÌNH BÀI HỌC. 1. Ổn định lớp Lớp 10A1 Sĩ số: 35 Vắng :
- GIÁO ÁN HÌNH HỌC 10 CƠ BẢN 2. Kiểm tra bài cũ: Lồng ghép vào bài mới 3. Bài mới. Dạng 1: Lập phương trình đường thẳng Bài tập 1: Cho tam giác ABC biết: A( 2; 4 ) ; B( 7; 1 ) ; C( 0; -1) Viết phương trình đường thẳng d qua A và nhận BC làm chỉ a) phương b) Viết phương trình cạnh AB c) Tính khoảng cách từ A đến BC Hoạt động của Thầy Hoạt động của trò a) u = ? ⇒ n = ? phương trình tổng u = BC = (−7;−2) ⇒ n = (2;−7) quát đi qua đỉnh A. Vậy phương trình tổng quát đi qua A và nhận n = (2;−7) làm pháp tuyến có dạng ? d : 2( x – 2) – 7( y – 4 ) = 0 ⇔ 2x – 7y + 24 = 0 b) phương trình cạnh AB u = AB = (5;−3) Tìm toạ độ véc tơ chỉ phương AB n AB = (3 ; 5) + pháp tuyến n AB = ? + phương trình đường thẳng đi qua A AB : 3( x – 2 ) + 5( y – 4 ) = 0 và nhận n AB = (3 ; 5) làm pháp tuyến ⇔ 3x + 5y – 26 = 0 có dạng? ax0 + by 0 + c c)Nêu công thức tính khoảng cách? d ( M , ∆) = a2 + b2 Viết phương trình cạnh BC
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Giáo án bài Phương trình đường tròn - Hình học 10 - GV. Trần Thiên
16 p | 1179 | 85
-
Giáo án bài 31: Phương trình trạng thái của khí lí tưởng - Lý 10 - GV.T.Tiên
10 p | 728 | 83
-
Giáo án bài Phương trình đường elip - Hình học 10 - GV. Trần Thiên
4 p | 641 | 63
-
Giáo án Hình Học lớp 10: CÂU HỎI VÀ BÀI TẬP PHƯƠNG TRÌNH ĐƯỜNG THẲNG(1)
5 p | 413 | 50
-
Giáo án bài Luyện tập phương trình đường thẳng
9 p | 562 | 47
-
Giáo án bài Phương trình đường thẳng trong không gian - Hình học 12 - GV:N.H.Mi
17 p | 341 | 46
-
Đại số lớp 10: Giáo án đại cương về phương trình
7 p | 487 | 36
-
Giáo án bài Phương trình lượng giác cơ bản - Đại số 11 - GV. Trần Thiên
19 p | 777 | 34
-
Giáo án bài: Luyện tập công thức lượng giác
6 p | 263 | 33
-
Giáo án bài phương trình đường tròn
8 p | 144 | 14
-
Giáo án bài 3: Phương trình đường Elip
2 p | 115 | 10
-
Giáo án Hình học 10 chương 3 bài 1: Phương trình đường thẳng
4 p | 133 | 9
-
Giáo án bài: Công thức lượng giác
7 p | 92 | 6
-
Giáo án môn Toán lớp 10 sách Chân trời sáng tạo - Chương 9: Bài 3
8 p | 20 | 4
-
Giáo án môn Toán lớp 12 - Bài 3: Phương trình đường thẳng trong không gian
18 p | 19 | 4
-
Giáo án Hình học lớp 12: Chương 3 bài 3 - Phương trình đường thẳng trong không gian
15 p | 18 | 4
-
Giáo án môn Toán lớp 10 sách Kết nối tri thức: Bài 21
13 p | 10 | 3
-
Bài giảng Hình học 10 - Bài 3: Phương trình đường Elip
12 p | 55 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn