Hàm số - Giáo án môn toán lớp 10
lượt xem 32
download
Sau khi học xong học sinh cần đáp ứng các yêu cầu sau: 1. Về kiến thức: Hiểu rõ khái niệm hàm số: Chính xác kiến thức về hàm số mà HS đã được học. Hiểu được khái niệm hàm số đồng biến.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Hàm số - Giáo án môn toán lớp 10
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN HÀM SỐ (T1) I. MỤC TIÊU: Sau khi học xong học sinh cần đáp ứng các yêu cầu sau: 1. Về kiến thức: - Hiểu rõ khái niệm hàm số: Chính xác kiến thức về hàm số mà HS đã được học. - Hiểu được khái niệm hàm số đồng biến, nghiệm trên một khoảng, nửa khoảng hoặc đoạn. 2. Về kỹ năng: - Biết cách cho hàm số, tìm tập xác định, tìm giá trị của hàm số tại những điểm cho trước thuộc tập xác định. 3. Tư duy: - Biết vận dụng kiến thức đã học vào bài mới, liên hệ với khái niệm hàm số đã học. - Vận dụng kiến thức vào bài tập cụ thể. 4. Thái độ - Cẩn thận, chính xác. - Biết vận dụng vào thực tiễn. II. CHUẨN BỊ PHƯƠNG TIỆN DẠY HỌC. 1. Thực tiễn: HS đã học về hàm số bậc nhất, bậc hai đơn giản ở THCS. 2. Phương tiện: Chuẩn bị bảng kết quả của từng hoạt động Phiếu học tập, Máy chiếu, Giấy trong. III. PHƯƠNG PHÁP DẠY HỌC Cơ bản sử dụng phương pháp gợi mở, nêu vấn đề thông qua vấn đáp điều khiển các hoạt động tư duy và hoạt động nhóm. IV. TIẾN TRÌNH BÀI HỌC VÀ CÁC HOẠT ĐỘNG A. Các hoạt động của tiết học. Hoạt động1: Hoạt động dẫn dắt đến định nghĩa. Hoạt động 2: Định nghĩa hàm số và những chú ý. Hoạt động 3: Củng cố định nghĩa: Thông qua hoạt động nhóm. Hoạt động 4: Đồ thị của hàm số và củng cố để dẫn dắt đến khái niệm sự biến thiên của hàm số.
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN Hoạt động 5: Định nghĩa hàm số đồng biến, hàm số nghịch biến. Hoạt động 6: Củng cố định nghĩa. Hoạt động 7: Củng cố toàn bài và giao bài tập về nhà. B. Tiến trình bài mới. Hoạt động1: Hoạt động dẫn dắt đến định nghĩa. Ví dụ 1: Chiếu bảng 1 (bảng thông báo lãi xuất tiết kiệm của một Ngân hàng). Loại kỳ hạn VNĐ (% năm) Lĩnh lãi cuối kỳ (Tháng) áp dụng từ tháng 11/2006 1 6,60 2 7,56 3 8,28 6 8,52 9 8,58 12 9,00 Hoạt động 2: HOẠT ĐỘNG CỦA HỌC SINH HOẠT ĐỘNG CỦA GIÁO VIÊN - HS đọc định nghĩa (SGK) chỉ ra - Ký hiệu hàm số. những vấn đề cần chú ý trong định - Tập xác định (Miền xác đinh). nghĩa. - Biến số. Hoạt động 3: Hoạt động củng cố định nghĩa. HOẠT ĐỘNG CỦA HỌC SINH HOẠT ĐỘNG CỦA GIÁO VIÊN - Nắm được khái niệm hàm số cho - Yêu cầu HS cho ví dụ về hàm số, tìm bằng biểu thức, cho ví dụ về hàm số. tập xác định. - Hiểu rõ khái niệm đồ thị hàm số * Chú ý : y = x2 - 2x - 3 (x là biến số) x0; y0 trên Oxy thoả mãn y0 = f(x0). t = u2 - 2u - 3 (u là biến số). - Tìm giá trị hàm số tại một số điểm cho trước. - Giới thiệu đồ thị hàm số. Chiếu bảng 2: (Đồ thị hình 2.1 trang 37). x Hoạt động nhóm 1: Tập xác định của hàm số: y = là ( x 1)( x 2) A. R+ B. x R \ x 1 và x 2 C. R+ \ 1; 2 D. (0; +). Hoạt động nhóm 2: Cho đồ thị (với đọ chính xác nhất định). y 4
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN Hãy nối ở mỗi cột phần câu hỏi và câu trả lời cho mỗi phương án đúng trên -4; 8 Câu hỏi Trả lời y>0 y=4 y=0 x = -3; 1; 4 y
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN tính giá trị của hàm số (Bài tập 1, 2). x 1 4 x Tìm tập xác định: y = - Xét tính đồng biến, nghịch biến của ( x 2)( x 3) hàm số ở bài tập 3. - Bài tập 2 (SGK). 2( x 2) Cho: y = 2 x 1 1 Tính: f(-1); f( ); f(2). 2 - Bài tập 3 (SGK). Hoạt động 7: Định nghĩa: Cho tập hợp khác rỗng D R. Hàm số f xác định trên D là một quy tắc đặt tương ứng mỗi số x thuộc D với một và chỉ một số, ký hiệu là f(x); số f(x) đó gọi là giá trị của hàm số f tại x. Tập D gọi là tập xác định (hay miền xác đinh), x gọi là biến số hay đối số của hàm số f. Định nghĩa: Hàm số đồng biến, hàm số nghịc biến. Cho hàm số f xác định trên K. Hàm số f gọi là đồng biến (hay tăng) trên K nếu: Với mọi x1; x2 K, x1 < x2 => f(x1) < f(x2) Hàm số f gọi là nghịch biến (hay giảm) trên K nếu: Với mọi x1; x2 K, x1 < x2 => f(x1) > f(x2) Đồ thị hàm số Nếu một hàm số đồng biến trên K thì trên đó đồ thị của nó đi lên. Nếu một hàm số nghịch biến trên K thì trên đó đồ thị của nó đi xuống. Hàm số không đổi (hàm số hằng) đồ thị là một đường thẳng song song với trục Ox. Bài tập về nhà: Các bài tập 7, 8, 9, 10, 11 (SGK) HÀM SỐ (T2) I. MỤC TIÊU: Học sinh cần đạt được: 1. Về kiến thức: - Phương pháp khảo sát sự biến thiên của hàm số bằng tỉ số biến thiên - ý nghĩa của bảng biến thiên
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN - Khái niệm hàm số chẵn, hàm số lẻ và tính chất của đồ thị 2. Về kỹ năng: - Vận dụng tốt tỉ số biến thiên để chứng minh hàm số đồng biến, nghịch biến trên một khoảng. - Lập được bảng biến thiên của hàm số. - Biết cách chứng minh hàm số chẵn, hàm số lẻ. 3. Về tư duy: - Hiểu được cách chứng minh hàm số đồng biến và nghịch biến, cách chứng minh hàm số chẵn, hàm số lẻ. - Tư duy so sánh, tổng hợp, khái quát hoá. 4. Về thái độ: - Rèn luyện tính cẩn thận, chính xác. - Thấy được mối liên hệ giữa hàm số và đồ thị. II. CHUẨN BỊ CỦA THẦY VÀ TRÒ. 1. Về kiến thức: - Học sinh đã học khái niệm hàm số đồng biến, nghịch biến. - Học sinh đã học về đồ thị hàm số. - Các câu hỏi, bài tập hoạt động. 2. Về phương tiện: - Các bảng biểu và đồ thị (trình chiếu) III. PHƯƠNG PHÁP DẠY HỌC: Gợi mở, vấn đáp, phát hiện và giải quyết vấn đề thông qua các hoạt động. IV. TIẾN TRÌNH BÀI HỌC VÀ CÁC HOẠT ĐỘNG: A. Các hoạt động Hoạt động 1: Khảo sát sự biến thiên của hàm số. HĐTP 1: Kiểm tra bài cũ HĐTP 2: Hình thành phương pháp chứng minh hàm số đồng biến, nghịch biến bằng tỉ số biến thiên. HĐTP 3: Khảo sát sự biến thiên của hàm số. HĐTP 4: Lập bảng biến thiên. Hoạt động 2: Hàm số chẵn, hàm số lẻ HĐTP 1: Hình thành khái niệm hàm số chẵn, hàm số lẻ. HĐTP 2: Củng cố cách xét một hàm số là hàm số chẵn, hàm số lẻ. HĐTP 3: Đồ thị hàm số chẵn, hàm số lẻ. Hoạt động 3: Cũng cố toàn bài B. Tiến trình bài học 1.Hoạt động 1: Khảo sát sự biến thiên của hàm số HĐTP 1: Kiểm tra bài cũ Câu hỏi: Tìm các mệnh đề tương đương trong 3 cột sau Hàm số f đồng biến x1 , x 2 D, x 2 x1 0 f x 2 f x1 0 Đồ thị hàm số f trên D trên D x1 , x2 D, x2 x1 0 f x 2 f x1 0 đi xuống Hàm số f nghịch biến x1 , x 2 D, x2 x1 0 f x 2 f x1 0 Đồ thị hàm số f trên D trên D x1 , x 2 D, x2 x1 0 f x 2 f x1 0 đi lên Bài mới:
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN HĐTP 2: Hình thành phương pháp chứng minh hàm số đồng biến, nghịch biến bằng tỉ số biến thiên. Câu hỏi: Cho hàm số f đồng biến (nghịch biến) trên D. Hãy xét dấu của biểu thức f x 2 f x1 với x1 , x2 D, x1 x2 . x2 x1 Từ đó rút ra một cách mới để chứng minh hàm số f là đồng biến ( nghịch biến) trên D HĐ của HS HĐ của GV Viết bảng (trình chiếu) - Tìm hiểu câu hỏi - Gợi ý từ HĐTP 1 Hàm số f đồng biến - Trả lời - Chính xác hoá kết quả (nghịch biến) trên D khi và chỉ khi f x 2 f x1 >0 (
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN b) f x 3 x f x x 3 f x x 3 2 x HĐ của HS HĐ của GV Viết bảng (trình chiếu) - Tìm tập xác định của f. - Có nhận xét gì về tập - Định nghĩa: (Hàm số - Tính f(-x) (nếu có) và xác định của f. chẵn, hàm số lẻ) (SGK). so sánh với f(x) - Xác nhận kết quả. - Khái quát hoá: Thế nào - Gọi các hàm số ở câu a) là hàm số chẵn (lẻ)? là hàm số chẵn, các hàm số ở câu b) là hàm số lẻ. - Đưa ra câu hỏi: Thế nào là hàm số chẵn (lẻ)? HĐTP 2: Củng cố cách xét một hàm số là hàm số chẵn, hàm số lẻ. Bài tập: Xét xem các hàm số sau đây hàm số nào là hàm số chẵn (hàm số lẻ) a) f x 2 x 2 x b) f x 2 x 2 x c) f x x d) f x x 2 2 x HĐ của HS HĐ của GV Viết bảng (trình chiếu) - Thực hiện bài toán - Hướng dẫn trình tự - Trình chiếu bài làm. - Trình bày bài toán. thực hiện. - Chú ý: Hàm số không - Trả lời câu hỏi. - Đưa ra câu hỏi: Thế nào chẵn (không lẻ). là hàm số không chẵn (không lẻ)? HĐTP 3: Đồ thị hàm số chẵn, hàm số lẻ. Bài tập: a. Trong mặt phẳng Oxy cho điểm M(x0;y0). Hãy tìm toạ độ điểm M’ biết rằng: + M’ đối xứng với M qua Oy. + M’ đối xứng với M qua O. b. Gọi (G) là đồ thị của hàm số y= f(x) trên D. M’ và M” lần lượt là điểm đối xứng với M qua Oy và O. CMR: Nếu f là hàm số chẵn thì M (G ) M ' (G ) Nếu f là hàm số lẻ thì M (G ) M ' ' (G ) HĐ của HS HĐ của GV Viết bảng (trình chiếu) - Thực hiện bài toán -Hướng dẫn trả lời - Trình chiếu định lý -Tìm ra tính chất đặc -Xác nhận kết quả (SGK) trưng của đồ thị các hàm -Chính xác hoá tính chất số chẵn, hàm số lẻ. của đồ thị hàm số chẵn ,hàm số lẻ. 3. Hoạt động 3: Cũng cố toàn bài a. Lý thuyết: - Cách chứng minh hàm số đồng biến nghịch biến trên một khoảng. - Cách lập bảng biến thiên. - Cách chứng minh một hàm số là chẵn hay lẻ trên D.
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN - Đồ thị hàm số chẵn, hàm số lẻ. b. Bài tập: Cho đồ thị hàm số f xác định trên có đồ thị như hình vẽ: a, Ghép mỗi ý ở cột trái với mỗi ý ở cột phải để được mệnh đề đúng 1, Hàm số f là a, Hàm số chẵn 2, Hàm số f đồng biến b, Hàm số lẻ 3, Hàm số f nghịch biến c, Trên ;0 d, Trên 0; e, Trên ; b, Lập bảng biến thiên của hàm số. HĐ của HÄC SINH HĐ của GV Viết bảng (trình chiếu) - Thực hiện bài toán - Gợi ý (nếu cần) - Trình chiếu các mệnh - Chính xác hoá kết quả đề đúng và bảng biến thiên. 4. Hướng dẫn học ở nhà a, Ôn lại lý thuyết b, Làm các bài tập: 3,4,5 ( trang 45 – SGK) HÀM SỐ (T3) I. Mục tiêu:. Về kiến thức: - Khái niệm tịnh tiến một điểm, một đồ thị sông song với trục toạ độ. - Hiểu và nắm vững định lý tịnh tiến một đồ thị song song với trục toạ độ.
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN Về kỹ năng: - Vận dụng khái niệm tịnh tiến một điểm để xác định toạ độ một điểm có được khi tịnh tiến một điểm đã cho. - Vận dụng định lý tịnh tiến đồ thị để xác định hàm số mà đồ thị của nó có được khi tịnh tiến đồ thị một hàm số đã cho. Về tư duy: - Phát triển tư duy khái quát hoá, so sánh, phân tích, tương tự hoá. - Biết quy lạ về quen. Về thái độ: - Cẩn thận, chính xác. - Bước đầu hiểu được ứng dụng của định lý về tịnh tiến một đồ thị. II. Chuẩn bị phương tiện dạy học: Thực tiễn: HS đã biết hệ trục toạ độ, toạ độ của một điểm, khái niệm đồ thị hàm số. Phương tiện: Phiếu học tập. Chuẩn bị bảng kết quả mỗi hoạt động III. Phương pháp dạy học: Phương pháp gợi mở vấn đáp đan xen hoạt động nhóm. IV. Tiến trình bài học và các hoạt động: 1) Các tình huống học tập: Đặt vấn đề. Nếu (G) là đồ thị của hàm số y f (x) thì hình (G1) có được khi tịnh tiến (G) song song với trục toạ độ có phải là đồ thị của một hàm số hay không? Giải quyết vấn đề thông qua 6 hoạt động sau: HĐ1: Tiếp cận khái niệm tịnh tiến một điểm song song với trục toạ độ. HĐ2: Phát biểu khái niệm. HĐ3: Củng cố khái niệm. (Thông qua bài tập) HĐ4: Dẫn vào khái niệm và định lí về tịnh tiến một đồ thị song song với trục toạ độ. HĐ5: Phát biểu định lí (Không chứng minh) để giải quyết tình huống đặt ra. HĐ6: Củng cố định lí. 2) Tiến trình bài học. a. Bài mới: HĐ1: Tiếp cận khái niệm tịnh tiến một điểm song song với trục toạ độ. HĐ của học sinh HĐ của giáo viên - Theo dõi mô hình. - Trình chiếu mô hình thể hiện sự tịnh - Nhận xét về toạ độ các điểm (theo tiến một điểm song song với trục toạ yêu cầu). độ. (tịnh tiến điểm M0 hình 2.6 SGK - Tiếp thu kiến thức mới. trang 42) - Yêu cầu HS nhận xét về toạ độ các điểm M1;M2;M3;M4 đối với tọa độ điểm M0. - Hướng dẫn học sinh nhận xét. - Nhận xét câu trả lời của HS và đưa ra
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN kết luận. HĐ2: Phát biểu khái niệm. HĐ3: Củng cố khái niệm. (Thông qua bài tập) Bài tập 1: (SGK trang 42) HĐ của học sinh HĐ của giáo viên - Dựa vào kiến thức đã học về toạ độ - Chiếu đề bài lên màn hình. và khái niệm tịnh tiến một điểm để suy - Theo dõi hoạt động của HS, hướng ra kết quả: M 1 ( x0 ; y 0 2) ; dẫn (nếu cần). M 2 ( x0 ; y 0 2) ; M 3 ( x0 2; y 0 ) ; - Nhận xét kết quả bài làm của HS. - Kết luận: (chiếu bảng kết quả lên M 4 ( x0 2; y 0 ) màn hình). HĐ4: Dẫn vào khái niệm và định lí về tịnh tiến một đồ thị song song với trục toạ độ. Bài tập 2: Nhắc lại khái niệm đồ thị của một hàm số. Vẽ đồ thị hàm số y = x (d1); y = x + 2 (d2) nhận xét vị trí tương đối của (d1) và (d2). Cho điểm M 0 ( x0 ; y 0 ) thuộc (d1) xác định toạ độ điểm M1 có được khi tịnh tiến điểm M0 lên trên 2 đơn vị. Hỏi M1 có thuộc (d2) không ? HĐ của học sinh HĐ của giáo viên - Đưa ra khái niệm đồ thị hàm số. - Chiếu đề bài lên màn hình và giao - Vẽ đồ thị hàm số và nhận xét. nhiệm vụ cho HS. - Xác định toạ độ điểm M1(x0;x0 +2) - Yêu cầu 1 HS nhắc lại khái niệm đồ thuộc vào (d2). thị của hàm số từ đó suy ra khái niệm tịnh tiến một đồ thị lên trên (xuống dưới, sang trái, sang phải) k đơn vị (k>0). - Nhận xét kết quả bài làm của HS. - Đưa bảng kết quả lên màn hình. - Đưa ra nhận xét: Khi tịnh tiến đồ thị hàm số y = x lên trên 2 đơn vị ta được đồ thị hàm số y = x + 2 từ đó đặ vấn đề ở tình huống 1 để dẫn vào định lí. HĐ5: Phát biểu định lí (Không chứng minh) để giải quyết tình huống đặt ra. (SGK) - thừa nhận không chứng minh. HĐ6: Củng cố định lí. Bài tập 3: 1 2 y x Cho parabol (P) 2 hỏi ta sẽ được đồ thị của hàm số nào khi tịnh tiến (P) Lên trên 3 đơn vị. Xuống dưới 2 đơn vị Sang phải 2 đơn vị Sang trái 6 đơn vị HĐ của học sinh HĐ của giáo viên - Hoạt động theo nhóm. - Chia 4 nhóm.
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN - Dựa vào nội dung định lí và yêu cầu - Yêu cầu mỗi nhóm làm một câu. bài toán để tìm đáp án. - Hướng dẫn (nếu cần). - Trình bày lời giải (đại diện của - Yêu cầu đại diện mỗi nhóm trình bày. nhóm) - Nhận xét và đưa kết quả lên màn - Tiếp thu lời giải các câu khác. hình. Bài tập 4: 1 2x 1 f ( x) g ( x) Cho đồ thị (H) của hàm số x . Hỏi muốn có đồ thị hàm số x ta phải tịnh tiến(H) song song với trục toạ độ như thế nào. Hỏi tương tự với f(x) = x và g(x) = x – 3 HĐ của học sinh HĐ của giáo viên - Biểu diễn g(x) qua f(x). - Giao nhiệm vụ cho HS. g(x) = f(x)- 2. suy ra tịnh tiến f(x) - Hướng dẫn biểu diễn g(x) qua f(x). xuống dưới 2 đơn vị ta được đồ thị của - Yêu cầu HS trình bày. g(x). - Nhận xét và sửa chữa sai lầm (nếu Tịnh tiến đồ thị của f(x) xuống dưới có). hoặc sang phải 3 đơn vị ta được đồ thị - Đưa kết quả lên màn hình. của g(x) b.Củng cố: Câu hỏi 1: Phát biểu định lí về tịnh tiến một đồ thị song song với trục toạ độ. Câu hỏi 2: (Dùng phiếu trắc nghiệm khách quan làm việc theo nhóm) 2 - Khi tịnh tiến parabol (P) y 3x sang trái 2 đơn vị ta được đồ thị của hàm số nào? 2 2 2 2 A. y 3( x 2) B. y 3( x 2) C. y 3 x 2 D. y 3 x 2 c. Bài tập VN: Bài tập 6 SGK. LUYỆN TẬP (T4) I- MỤC TIÊU 1.Về kiến thức - Củng cố các kiến thức đã học 2.Về kỹ năng - Rèn luyện kỹ năng : Tìm tập xác định của hàm số; sử dụng tỉ số biến thiên để khảo sát sự biến thiên của hàm số trên một khoảng đã cho và lập bảng
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN biến thiên ; xác định được mối quan hệ giữa hai hàm số khi biết đồ thị của hàm số này là do tịnh tiến đồ thị của hàm số kia song song với trục tọa độ. 3.Về tư duy - Biết cách giải các bài toán tổng hợp : Tìm tập xác định , khảo sát sự biến thiên của một hàm số và các bài toán liên quan 4.Về thái độ - Cẩn thận , chính sác - Chuẩn bị bài học ở nhà III- Phương tiện dạy học - Tranh vẽ minh hoạ đồ thị II. Phương pháp dạy học - Gợi mở vấn đáp - Phát hiện và giải quyết vấn đề III- tiến trình bài học A-Các tình huống học tập Tình huống 1: Rèn luyện kỹ năng các dạng toán áp dụng định nghĩa hàm số thông qua việc HS trả lời miệng HĐ 1 : HS trả lời miệng kết quả các bài tập 7;8;9;10;11 Tình huống 2: Rèn luyện kỹ năng các dạng toán về tính chất hàm số HĐ 2 : Chữa bài tập 12;13;14 HĐ 3 : Chữa bài tập 15;16 HĐ 4 : Củng cố và tổng kết bài học B- TIẾN TRÌNH BÀI HỌC 1. Kiểm tra bài cũ : Lồng vào các hoạt động học tập của tiết học 2. Bài mới Hoạt động 1: HS trả lời miệng kết quả các bài tập 7;8;9;10;11 Hoạt động của HS Hoạt động của GV - HS trả lời miệng kết quả các bài - Gọi 5 HS từ khá trở lên , tại vị trí trả tập 7;8;9;10;11 lời nhanh kết quả các bài tập , các học - Nhận xét các câu trả lời của bạn sinh còn lại nhận xét các câu trả lời - Nhận xét kết quả các bài tập sau khi HS trả lời và kết luận - Những điểm cần lưu ý khi giải các dạng toán này Hoạt động 2 : Chữa các bài tập 12;13;14 Hoạt động của Hoạt động của Bảng HS GV - Tìm hiểu đề - Dựa vào tính bài chất nào để
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN - Định hướng khẳng định sự Bài 12c : với x1 , x 2 ; ,ta có cách giải bài tập đồng biến x1 x2 x12005 x 2 x12005 1 x 2 1 2005 2005 12c nghịch biến của Vậy hàm số đồng biến trên khoảng -Trả lời các câu hàm số ; hỏi phụ trong - Trình bày lời quá trình giải giải trên bảng Bài 13 : - Định hướng a.Bảng biến thiên: cách giải bài tập x 0 - 13 1 0 ║+ -Trả lời các câu y= x - 0 hỏi phụ trong b.Với mọi x1 , x 2 0; ,ta có quá trình giải 1 1 0 x1 x 2 , suy ra hàm số nghịch x1 x 2 biến trên 0; Tương tự hàm số nghịch biến trên ;0 - Định hướng -Đưa ra các lỗi Bài 14 cách giải bài tập mà học sinh -Tập xác định của hàm số chẵn hoặc lẻ 14 thường mắc là tập đối xứng -Trả lời các câu phải khi giải -Hàm số đã cho có tập xác định là hỏi phụ trong dạng toán 0; tập này không phải là tập đối quá trình giải này,đó là thiếu xứng nên hàm số đã cho không phải là một trong hai hàm số chẵn , hàm số lẻ điều kiện Hoạt động 3 : Chữa bài tập 15;16 Hoạt động của Hoạt động của Bảng HS GV - Tìm hiểu đề bài -Yêu cầu học sinh đọc kỹ đề bài - Trình bày lời giải trên bảng - Định hướng -Trong quá trình Bài 15: cách giải bài tập giải yêu cầu học a) Gọi f x 2 x . Khi đó 15 sinh theo dõi 2x-3= f x 3 ,do đó muốn có d ' ,ta -Trả lời các câu cách trình bày tịnh tiến d xuống dưới 3 đơn vị hỏi phụ trong của thầy và trả b) Cũng có thể viết quá trình giải lời một số câu 2x-3=2 x 1,5 f x 1,5 , do đó hỏi phụ muốn có d ' ,ta tịnh tiến d sang
- GIÁO ÁN ĐẠI SỐ 10 – CƠ BẢN phải 1,5 đơn vị Bài 16c : - Định hướng Theo yêu cầu bài toán ta được đồ thị cách giải bài tập hàm số 16c f x 3 1 2 1 , tức là của hàm -Trả lời các câu x3 hỏi phụ trong x 1 số y = quá trình giải x3 Hoạt động 4: Củng cố và tổng kết tiết học - Qua bài học cần thành thạo các kỹ năng giải toán liên quan đến định nghĩa hàm số, các tính chất của hàm số - Về nhà tiếp tục làm các bài tập còn lại và bài tập sưu tầm ở các cuốn sách nâng cao,sách tham khảo
CÓ THỂ BẠN MUỐN DOWNLOAD
-
CÁC BÀI TOÁN LIÊN QUAN ĐẾN KHẢO SÁT HÀM SỐ (ĐÁP ÁN CHI TIẾT)
123 p | 476 | 99
-
Hàm số Lôgarit
10 p | 651 | 66
-
Sáng kiến kinh nghiệm THPT: Phát triển năng lực mô hình hóa toán học cho học sinh thông qua khai thác bài toán thực tiễn trong quá trình dạy học bài hệ bất phương trình bậc nhất hai ẩn và hàm số bậc hai của Đại số 10 (Bộ sách kết nối tri thức với cuộc sống)
65 p | 34 | 18
-
Tài liệu ôn thi THPT Quốc gia 2022 môn Toán - Chuyên đề 5: Giá trị lớn nhất - Giá trị nhỏ nhất của hàm số (Dành cho đối tượng học sinh 9-10 điểm)
109 p | 321 | 13
-
Sáng kiến kinh nghiệm: Đổi mới phương pháp dạy học chủ đề hàm số bậc nhất, hàm số bậc hai (Đại số 10 – Cơ bản), góp phần phát huy tư duy sáng tạo và năng lực tự học của học sinh trường THPT Thường Xuân 2
29 p | 160 | 11
-
Luyện thi Đại học Kit 1 - Môn Toán: Tính đơn điệu của hàm số (Đáp án bài tập tự luyện)
1 p | 113 | 10
-
Luyện thi Đại học Kit 1 - Môn Toán: Tiếp tuyến của đồ thị hàm số_P2 (Đáp án bài tập tự luyện)
1 p | 95 | 8
-
Luyện thi Đại học Kit 1 - Môn Toán Bài 15, 16, 17: Tiếp tuyến của đồ thị hàm số (Đáp án bài tập tự luyện)
1 p | 111 | 8
-
Luyện thi Đại học Kit 1 - Môn Toán: Tiếp tuyến của đồ thị hàm số (Đáp án bài tập tự luyện)
1 p | 103 | 8
-
250 Câu trắc nghiệm Hàm số có đáp án
46 p | 58 | 6
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 1
158 p | 18 | 5
-
Tài liệu ôn thi THPT Quốc gia 2022 môn Toán - Chuyên đề 1: Tính đơn điệu của hàm số (Dành cho đối tượng học sinh 9-10 điểm)
81 p | 65 | 5
-
Sáng kiến kinh nghiệm THPT: Một số hướng tiếp cận bài toán hàm số ẩn trong bài toán trắc nghiệm
32 p | 12 | 5
-
Các phương pháp tìm nhanh đáp án môn Toán: Phần 2
166 p | 14 | 4
-
Tài liệu môn Toán lớp 11: Chuyên đề hàm số lượng giác và phương trình lượng giác - Dương Minh Hùng
89 p | 16 | 4
-
Bài tập trắc nghiệm tính đơn điệu của hàm số
50 p | 36 | 3
-
SKKN: Đổi mới phương pháp dạy học chủ đề hàm số bậc nhất, hàm số bậc hai (Đại số 10 – Cơ bản), góp phần phát huy tư duy sáng tạo và năng lực tự học của học sinh trường THPT Thường Xuân 2
29 p | 83 | 3
-
Đề thi học kì 2 môn Toán lớp 11 năm 2022-2023 - Trường THPT số 2 An Nhơn, Bình Định
3 p | 2 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn