Kiến thức trọng tâm môn Toán 12 - Th.S Phạm Hoàng Điệp
lượt xem 6
download
Tài liệu "Kiến thức trọng tâm môn Toán 12" được biên soạn bởi thầy giáo Th.S Phạm Hoàng Điệp tổng hợp kiến thức trọng tâm môn Toán 12, bao gồm đầy đủ công thức và dạng toán, hỗ trợ học sinh tra cứu trong quá trình học tập môn Toán lớp 12 và ôn thi tốt nghiệp THPT môn Toán. Mời các bạn cùng tham khảo tài liệu.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Kiến thức trọng tâm môn Toán 12 - Th.S Phạm Hoàng Điệp
- 1 2021 TH.S PHẠM HOÀNG ĐIỆP NGUYỄN THÁI HOÀNG 29 DỰ ÁN LATEX TÀI LIỆU ÔN THI 6 30 50 2 26 32 19 3 KIẾN THỨC TRỌNG TÂM 1 20 38 10 25 MÔN TOÁN MÔN TOÁN 12 12 12 17 46 47 43 5 7 4 23 35 9 39 24 42 15 11 14 44 49 16 FULL CÔNG FULL CÔNG THỨC THỨC VÀ VÀ 18 DẠNG TOÁN DẠNG TOÁN 13 31 8 40 34 37 27 21 33 22 48 36 π 28 41 45 TÀI LIỆU LƯU HÀNH NỘI BỘ
- MỤC LỤC I ĐẠI SỐ VÀ GIẢI TÍCH 1 A Lớp 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 | Dạng 1. Xét dấu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 | Dạng 2. Phương trình cơ bản . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 B Lớp 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 3. Cấp số cộng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 4. Cấp số nhân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 5. Đạo hàm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 | Dạng 6. Công thức lượng giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 C Lớp 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 | Dạng 7. Quy tắc xét tính đơn điệu hàm số . . . . . . . . . . . . . . . . . . . . . . . 7 | Dạng 8. Cực trị hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 | Dạng 9. Cực trị hàm bậc 3 - Trùng phương . . . . . . . . . . . . . . . . . . . . . . . 8 | Dạng 10. Giá trị lớn nhất, nhỏ nhất . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 | Dạng 11. Đường tiệm cận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 | Dạng 12. Đồ thị hàm số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 | Dạng 13. Tịnh tiến đồ thị và phép suy đồ thị . . . . . . . . . . . . . . . . . . . . . . 11 | Dạng 14. Sự tương giao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 | Dạng 15. Lũy thừa (a>0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 | Dạng 16. Lôgarit (0 < a 6= 1, 0 < b 6= 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 12 | Dạng 17. Hàm số lũy thừa y = xα , α ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . 12 | Dạng 18. Hàm số mũ y = a x (a > 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 | Dạng 19. Hàm số Lôgarit y = loga x . . . . . . . . . . . . . . . . . . . . . . . . . . 12 | Dạng 20. Phương trình, bất phương trình mũ . . . . . . . . . . . . . . . . . . . . . 13 | Dạng 21. Phương trình và bất phương trình logarit . . . . . . . . . . . . . . . . . . 13 | Dạng 22. Lãi suất ngân hàng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 | Dạng 23. Nguyên hàm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 | Dạng 24. Tích phân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 | Dạng 25. Diện tích hình phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 | Dạng 26. Thể tích khối tròn xoay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 | Dạng 27. Thể tích vật thể . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 | Dạng 28. Số phức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 II HÌNH HỌC 18 | Dạng 29. Một số công thức cần nhớ . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! | Dạng 30. Góc giữa đường thẳng và mặt phẳng . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 31. Góc giữa hai mặt phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 | Dạng 32. Khoảng cách từ chân đường vuông góc đến mặt bên . . . . . . . . . . . . 20 | Dạng 33. Khối đa diện đều . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 | Dạng 34. Mặt phẳng đối xứng của một số hình thường gặp . . . . . . . . . . . . . . 21 | Dạng 35. Hình học phẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 | Dạng 36. Diện tích đa giác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 | Dạng 37. Thể tích khối đa diện . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 | Dạng 38. Hình chóp đều . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 | Dạng 39. Tỉ số thể tích khối chóp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 | Dạng 40. Tỉ số thể tích khối lăng trụ . . . . . . . . . . . . . . . . . . . . . . . . . . 24 | Dạng 41. Khối tròn xoay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 | Dạng 42. Thiết diện khối nón và trụ . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 | Dạng 43. Thiết diện không đi qua trục . . . . . . . . . . . . . . . . . . . . . . . . . 26 | Dạng 44. Bán kính đường tròn ngoại tiếp . . . . . . . . . . . . . . . . . . . . . . . . 27 | Dạng 45. Bán kính mặt cầu ngoại tiếp khối đa diện . . . . . . . . . . . . . . . . . . 27 | Dạng 46. Mặt cầu nội tiếp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 | Dạng 47. Tọa độ trong không gian . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 | Dạng 48. Ứng dụng tích có hướng của hai vec-tơ . . . . . . . . . . . . . . . . . . . 30 | Dạng 49. Phương trình mặt cầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 50. Một số yếu tố trong tam giác . . . . . . . . . . . . . . . . . . . . . . . . . 30 | Dạng 51. Phương trình tổng quát của mặt phẳng . . . . . . . . . . . . . . . . . . . 31 | Dạng 52. Phương trình đường thẳng . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 | Dạng 53. Góc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 | Dạng 54. Khoảng cách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 | Dạng 55. Vị trí tương đối . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 | Dạng 56. Tọa độ hình chiếu và đối xứng của một điểm qua mặt phẳng . . . . . . . 34 TH.S PHẠM HOÀNG ĐIỆP GV: NGUYỄN THÁI HOÀNG
- PHẦN I ĐẠI SỐ VÀ GIẢI TÍCH 1
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! A LỚP 10 Xét dấu 1. Dấu nhị thức bậc nhất • Dạng f ( x) = ax + b (a 6= 0). Nghiệm của nhị thức là nghiệm của phương trình ax + b = 0. • Bảng xét dấu của nhị thức bậc nhất f ( x) = ax + b (a 6= 0): b x −∞ − +∞ a ax + b trái dấu với a 0 cùng dấu với a 2. Dấu tam thức bậc hai • Dạng f ( x) = ax2 + bx + c (a 6= 0). Nghiệm của nhị thức là nghiệm của phương trình ax2 + bx + c = 0. • Tính ∆ = b2 − 4ac. • Nếu ∆ < 0 thì phương trình f ( x) = 0 vô nghiệm và x −∞ +∞ ax2 + bx + c cùng dấu với a b • Nếu ∆ = 0 thì phương trình f ( x) = 0 có nghiệm kép x = − và 2a b x −∞ − +∞ 2a ax2 + bx + c cùng dấu với a 0 cùng dấu với a • Nếu ∆ = 0 f ( x) = 0 có 2 nghiệm x1 , x2 ( x1 < x2 ) và x −∞ x1 x2 +∞ ax2 + bx + c cùng dấu với a 0 trái dấu với a 0 cùng dấu với a Chú ý: Có thể xét dấu tam thức bậc hai theo ∆0 theo hệ số b chẵn . 3. Dấu các nghiệm phương trình bậc hai Cho phương trình: ax2 + bx + c = 0 (∗) ∆ = b2 − 4ac ¡ ¢ c • Phương trình (*) có hai nghiệm trái dấu ( x1 < 0 < x2 ) khi và chỉ khi P = < 0. a TH.S PHẠM HOÀNG ĐIỆP 2 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! • Phương trình (*) có hai nghiệm âm phân biệt ( x1 < x2 < 0) khi và chỉ khi 0 a = 6 ∆>0 c P = >0 . a b S = − < 0 a • Phương trình (*) có hai nghiệm dương phân biệt (0 < x1 < x2 ) khi và chỉ khi 0 a = 6 ∆>0 c P = >0 . a b S = − > 0 a 4. Điều kiện không đổi dấu của tam thức bậc hai Cho tam thức bậc hai f ( x) = ax2 + bx + c (a 6= 0) a>0 a 0. f ( x) 2. Phương trình chứa ẩn dưới dấu căn B≥0 B≥0 ( ( p p p a) A= B⇔ b) A=B⇔ A = B. A = B2 . 3. Phương trình chứa dấu giá trị tuyệt đối Với f ( x), g( x) là các hàm số. Khi đó g ( x) ≥ 0 | f ( x )| = g ( x ) ⇔ f ( x) = g ( x) " f ( x) = − g ( x) f ( x) = g ( x) " | f ( x)| = | g( x)| ⇔ f ( x) = − g ( x) | f ( x)| + | g( x)| = | f ( x) + g( x)| ⇔ f ( x).g( x) ≥ 0 TH.S PHẠM HOÀNG ĐIỆP 3 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! B LỚP 11 Cấp số cộng • ( u n ) là cấp số cộng ⇔ u n+1 = u n + d • Ba số a, b, c (theo thứ tự đó) lập thành một cấp số cộng khi và chỉ khi a + c = 2 b • Số hạng TQ: u n = u 1 + ( n − 1) d . n( u 1 + u n ) n( n − 1) • Tổng n số hạng đầu CSC: S n = = nu 1 + d 2 2 Cấp số nhân • ( u n ) là cấp số nhân ⇔ n ≥ 2, u n = u n−1 · q. • Ba số a, b, c (theo thứ tự đó) lập thành một cấp số cộng khi và chỉ khi a · c = b2 . • Số hạng TQ: u n = u 1 · q n−1 , n ≥ 2. 1 − q n u 1 − u n+1 • Tổng n số hạng đầu CSN: S n = u 1 · = . 1− q 1− q ! u1 Tổng cấp số nhân lùi vô hạn S n = . 1− q Đạo hàm 1. Các quy tắc Giả sử u = u( x), v = v( x), w = w( x) là các hàm số có đạo hàm, khi đó: • ( u + v − w)0 = u0 + v0 − w0 ³ u ´0 u 0 v − v0 u • = ! v v2 • ( uv)0 = u0 v + v0 u 1 µ ¶0 v0 • ( ku)0 = ku0 • =− 2 v v 2. Bảng đạo hàm các hàm số sơ cấp cơ bản Đạo hàm hàm số sơ cấp cơ bản Đạo hàm hàm số hợp (C )0 = 0 ( x n )0 = n.x n−1 ( n ∈ R, x > 0) ( u n )0 = n.u n−1 ( n ∈ R, u > 0) ¡p ¢0 1 ¡p ¢0 u0 x = p ( x > 0) u = p ( u > 0) 2 x 2 u 1 1 1 µ ¶0 µ ¶0 u0 = − 2 ( x 6= 0) = − 2 ( u 6= 0) x x u u TH.S PHẠM HOÀNG ĐIỆP 4 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! (sin x)0 = cos x (sin u)0 = u0 . cos u (cos x)0 = − sin x (cos u)0 = − u0 . sin u 1 ³ π ´ u0 ³ π ´ (tan x) = 0 x 6= + kπ , k ∈ Z (tan u) =0 u 6= + kπ , k ∈ Z cos2 x 2 cos2 u 2 1 u0 (cot x) = − 0 ( x 6= kπ) , k ∈ Z (tan u) = − 0 ( u 6= kπ) , k ∈ Z sin2 x sin2 u ¢0 1 ¢0 u0 loga x = loga u = ¡ ¡ x. ln a u. ln a 1 u0 (ln a)0 = (ln u)0 = x u (a x )0 = a x . ln a (a u )0 = u0 .a u ln a 3. Phương trình tiếp tuyến • Hệ số góc của tiếp tuyến tại điểm M ( x0 ; y0 ) thuộc đồ thị hàm số y = f ( x) là f 0 ( x0 ) ! • Phương trình tiếp tuyến tại M ( x0 , y0 ) có dạng y − y0 = f 0 ( x0 )( x − x0 ) . Công thức lượng giác 1. Công thức lượng giác cơ bản • sin2 x + cos2 x = 1 • tan x. cot x = 1 sin x π 1 π • tan x = , x 6= + kπ • 1 + tan2 x = , x = 6 + kπ cos x 2 cos2 x 2 cos x 1 • cot x = , x 6= kπ • 1 + cot2 x = − , x 6= + kπ sin x sin2 x ! π cos − đối, sin − bù, phụ - chéo, hơn kém π tan cot, hơn kém chéo sin. 2 2. Công thức cộng • sin (a + b) = sin a. cos b + sin b. cos a tan a + tan b • tan (a + b) = 1 − tan a. tan b • sin (a − b) = sin a. cos b − sin b. cos a • cos (a + b) = cos a. cos b − sin a. sin b tan a − tan b • cos (a − b) = cos a. cos b + sin a. sin b • tan (a − b) = 1 − + tana. tan b 3. Công thức nhân đôi, hạ bậc TH.S PHẠM HOÀNG ĐIỆP 5 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! • cos 2a = cos2 a − sin2 a = 2 cos2 a − 1 = • cos 3a = 3 cos3 a − 3 cos a 1 − 2 sin2 a 1 − cos 2a • sin2 a = • sin 2a = 2 sin a. cos a 2 1 + cos 2a 2 tan a • cos2 a = • tan 2a = 2 1 − tan2 a 1 − cos 2a • sin 3a = 3 sin a − 4 sin3 a • tan2 a = 1 + cos 2a 4. Công thức biến đổi tích thành tổng 1 cos a cos b = [cos (a + b) + cos (a − b)] 2 1 sin a sin b = − [cos (a + b) − cos (a − b)] 2 1 sin a cos b = [sin (a + b) + sin (a − b)] 2 5. Công thức biến tổng thành tích a+b a−b cos a + cos b = 2 cos . cos 2 2 a+b a−b cos a − cos b = −2 sin . sin 2 2 a+b a−b sin a + sin b = 2 sin . cos 2 2 a+b a−b sin a − sin b = 2 cos . sin 2 2 6. Phương trình lượng giác cơ bản sin x = a và cos x = a Trường hợp |a| > 1 phương trình vô nghiệm. Trường hợp |a| < 1, khi đó sin x = a cos x = a sin x = 0 ⇔ x = kπ π cos x = 0 ⇔ x = 2 + kπ π sin x = 1 ⇔ x = + k2π Đặc biệt 2 cos x = 1 ⇔ x = k2π π sin x = −1 ⇔ x = − + k2π cos x = −1 ⇔ x = π + k2π 2 ∃ a sao cho sin x = a ∃a sao cho cos x = a x = a + k 2π x = a + k2π " " Nếu a sin x = sin a ⇔ cos x = cos a ⇔ x = π − a + k 2π x = − a + k 2π (chẵn số) TH.S PHẠM HOÀNG ĐIỆP 6 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! x = arccos (a) + k2π " Nếu a (lẻ sin x = a ⇔ cos x = a ⇔ x = arcsin (a) + k2π x = − arccos (a) + k2π " số) x = π − arcsin (a) + k2π x = a o + k360 o " Nếu a sin x = sin a o ⇔ cos x = cos a ⇔ o x = a o + k360 o x = −a o + k360 o " (theo đơn vị độ) x = π − a o + k360 o 7. Phương trình lượng giác cơ bản tan x = a và cot x = a π tan x = a ( x 6= + k π) cot x = a ( x 6= kπ) 2 π tan x = 0 ⇔ x = kπ cot x = 0 ⇔ x = + kπ 2 π tan x = 1 ⇔ x = + kπ π Đặc biệt 4 cot x = 1 ⇔ x = + kπ 4 π π tan x = −1 ⇔ x = − + kπ cot x = −1 ⇔ x = − + kπ 4 4 ∃ a sao cho tan x = a ∃a sao cho cot x = a Nếu a (chẵn số) tan x = tan a ⇔ x = a + kπ cot x = cot a ⇔ x = a + π Nếu a (lẻ số) tan x = a ⇔ x = arctan (a) + kπ cot x = a ⇔ x = arccot(a) + kπ Nếu a ( theo tan x = tan a o ⇔ x = a o + k180 o cot x = cot a o ⇔ x = a o + k180 o đơn vị độ) C LỚP 12 Quy tắc xét tính đơn điệu hàm số • Nếu f 0 ( x) ≥ 0 và f 0 ( x) = 0 chỉ tại một số hữu hạn điểm của K thì HSĐB trên K . • Nếu f 0 ( x) ≤ 0 và f 0 ( x) = 0 chỉ tại một số hữu hạn điểm của K thì HSNB trên K . TH.S PHẠM HOÀNG ĐIỆP 7 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! ! Hàm y = cx + d không xét dấu bằng. ax + b Quy tắc: a) Tìm tập xác định. b) Tính đạo hàm f 0 ( x). Tìm nghiệm f 0 ( x) = 0 x i ∈ R hoặc f 0 ( x) = 0 không xác định. c) Lập BBT. d) Kết luận. Cực trị hàm số Hàm số y = f ( x) có đạo hàm tại x0 và đạt cực trị tại x0 thì f 0 ( x0 ) = 0. Quy tắc 1. • Tìm tập xác định. • TÍnh f 0 ( x). Tìm các điểm tại đó f 0 ( x) bằng 0 hoặc không xác định. • Lập bảng biến thiên. • Từ bảng biến thiên suy ra cực trị. Nếu f 0 ( x) đổi dấu khi qua x i thì hàm số đạt cực trị tại x i . Quy tắc 2. • Tìm tập xác định. • Tính f 0 ( x). Giải phương trình f 0 ( x) = 0 và kí hiệu x i ( i = 1, 2, 3, . . . , n) là các nghiệm của nó. • Tính f 00 ( x) và f 00 ( x i ), ( i = 1, 2, 3, . . . , n). • Dựa vào dấu của f 00 ( x i ) suy ra tính chất cực trị của điểm x i . +o Nếu f 00 ( x i ) > 0 thì x i là điểm cực tiểu. +o Nếu f 00 ( x i ) < 0 thì x i là điểm cực đại. Cực trị hàm bậc 3 - Trùng phương • Hàm số bậc 3 có cực trị khi: ∆ y0 > 0. Không có cực trị khi: ∆ y0 ≤ 0. • Hàm số trùng phương có 3 cực trị khi: ab < 0. Có 1 cực trị khi: ab ≥ 0. +o 3 điểm cực trị hàm trùng phương luôn tạo thành tam giác cân. b3 + 8a +o cos BAC = b3 − 8a s b5 +o S4 ABC = − 32a3 TH.S PHẠM HOÀNG ĐIỆP 8 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! Giá trị lớn nhất, nhỏ nhất Quy tắc 1. Tìm các điểm x1 ; x2 ; ...; xn trên khoảng (a; b) tại đó f 0 ( x) = 0 hoặc f 0 ( x) KXĐ. 2. Tính f (a) ; f ( x1 ) ; f ( x2 ) ; ...; f ( xn ) ; f (b) . 3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Sử dụng máy tính FX-580VNX Bước 1. w 8 (TABLE). Bước 2. NHẬP F(X) =. b−a Bước 3. START = a, END = b, STEP = . Chú ý: −∞ = −10, +∞ = 10. 29 Đường tiệm cận • lim f ( x) = y0 ; lim f ( x) = y0 ( y0 = const) ⇒ TCN: y = y0 . x→+∞ x→−∞ • TCĐ: x = x0 nếu x0 = const là nghiệm mẫu và không là nghiệm tử. • Giao điểm của TCĐ và TCN là tâm đối xứng của đồ thị. Đồ thị hàm số 1. Đồ thị hàm số y = ax3 + bx2 + cx + d a>0 a 0 O x O x y y ∆ y0 = 0 O x O x TH.S PHẠM HOÀNG ĐIỆP 9 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! y y ∆ y0 < 0 O x O x 2. Đồ thị hàm số y = ax4 + bx2 + c. a>0 a
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! Tịnh tiến đồ thị và phép suy đồ thị Tịnh tiến đồ thị song song với các trục tọa độ Cho (C) là đồ thị của hàm số y = f ( x) và p > 0, ta có: • Tịnh tiến (C) lên trên p đơn vị tì được đồ thị y = f ( x) + p. • Tịnh tiến (C) xuống dưới p đơn vị tì được đồ thị y = f ( x) − p. • Tịnh tiến (C) sang trái p đơn vị tì được đồ thị y = f ( x + p). • Tịnh tiến (C) sang phải p đơn vị tì được đồ thị y = f ( x − p). Dạng 1: Từ đồ thị (C): y = f ( x) suy ra đồ thị (C’): y = f (| x|) Ta có: y = f (| x|) là hàm chẵn nên đồ thị (C’) nhận O y làm trục đối xứng Cách vẽ (C’) từ (C): • Giữ nguyên phần đồ thị bên phải trục Oy của đồ thị (C): y = f ( x). • Bỏ phần đồ thị bên trái trục Oy của (C), lấy đối xứng phần đồ thị được giữ qua Oy. Dạng 2: Từ đồ thị (C): y = f ( x) suy ra đồ thị (C’): y = | f ( x)| Cách vẽ (C’) từ (C): • Giữ nguyên phần đồ thị bên trên trục Ox của đồ thị (C): y = f ( x). • Bỏ phần đồ thị bên dưới trục Ox của (C), lấy đối xứng phần đồ thị bị bỏ qua Ox. Sự tương giao Cho hai hàm số y = f ( x) và y = g ( x) có đồ thị lần lượt là (C1 ) và (C2 ). • Khi đó số giao điểm của hai đồ thị (C 1 ) và (C 2 ) chính bằng số nghiệm của phương trình f ( x) = g ( x) và hoành độ giao điểm chính là nghiệm của phương trình đó. ! hoành Phương trình f ( x) = 0 là phương trình hoành độ giao điểm của đồ thị (C ) với trục Ox 1 • Cô lập m: ! • Nếu g( m) ≤ f ( x) thì g( m) ≤ min f ( x) • Nếu g( m) ≥ f ( x) thì g( m) ≥ max f ( x) Lũy thừa (a>0) 1 ³ a ´n • a m · a n = a m+ n • = an • a− n = b bn an • (a · b)n = a n · b n k m p p k n p k p • a k = a m· n • ak = a 2 • n ak = a n m a • = a m− n • ( a m ) n = a m· n an TH.S PHẠM HOÀNG ĐIỆP 11 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! Lôgarit (0 < a 6= 1, 0 < b 6= 1) • loga 1 = 0 1 • log x a = loga x • loga ( x · y) = loga x + loga y • loga a = 1 1 • logam x = loga x m x µ ¶ • loga = loga x − loga y y • loga x = loga b · logb x • loga a = α α logb x • loga xα = α loga x • loga x = logb a Hàm số lũy thừa y = xα , α ∈ R Tập xác định y α>1 a) D = R khi α nguyên dương. α=1 b) D = R \ {0} khi α nguyên âm. 01 01 0
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! Phương trình, bất phương trình mũ a x = b ⇔ x = loga b a f (x) = a g(x) ⇔ f ( x) = g( x) a>1 0 g( x) a f (x) > a g(x) ⇔ f ( x) < g( x) Phương trình và bất phương trình logarit Khi giải phương trình bất phương trình logarit: Đặt điều kiện loga x = b ⇔ x = a b loga f ( x) = loga g( x) ⇔ f ( x) = g( x) a>1 0 g( x) loga f ( x) > loga g( x) ⇔ f ( x) < g( x) Lãi suất ngân hàng 1. Lãi đơn: Lãi đơn là số tiền lãi chỉ tính trên số tiền gốc mà không tính trên số tiền lãi do số tiền gốc sinh ra, tức là tiền lãi của kì hạn trước không được tính vào vốn để tính lãi cho kỳ hạn tiếp, cho dù đến kì hạn người gửi không đến rút tiền ra. Khách hàng gửi vào ngân hàng A đồng với lãi đơn r %/ kỳ hạn thì số tiền khách nhận được cả vốn lẫn lãi sau n kì hạn (n ∈ N∗ ) là !S n = A + n · A · r = A (1 + nr ) 2. Lãi kép: Lãi kép là tiền lãi của kì hạn trước nếu người gửi không rút ra thì được tính vào vốn để tính lãi cho kì hạn sau. Khách hàng gửi vào ngân hàng A đồng với lãi kép r %/kì hạn thì số tiền khách hàng nhận được cả vốn lẫn lãi sau n kì hạn n ∈ N∗ là !S n = A (1 + r )n TH.S PHẠM HOÀNG ĐIỆP 13 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! Nguyên hàm Z 1. Kí hiệu f ( x) d x = F ( x) + C . 2. Tính chất Z • f 0 ( x) d x = f ( x) + C . Z Z • k f ( x) d x = k f ( x) d x với k 6= 0. Z Z Z • [ f ( x) ± g( x)] d x = f ( x) d x ± g ( x) d x. Bảng nguyên hàm của một số hàm thường gặp Z Nguyên hàm Z Nguyên hàm mở rộng 1 0d x = C kd x = k · x + C xα+1 1 (ax + b)α+1 Z Z 2 xα d x = + C ,α 6= −1 (ax + b)α d x = · + C ,α 6= −1 α+1 a α+1 1 1 dx 1 1 Z Z 3 2 d x = − +C = − . +C x x (ax + b)2 a ax + b ax 1 a mx+n Z Z 4 a dx = x +C a mx+ n dx = · +C ln a m ln a 1 Z Z 5 exdx = ex + C e ax+b d x = e ax+b + C a 1 1 1 Z Z 6 d x = ln | x| + C d x = . ln |ax + b| + C Z x ax + b a 1 Z 7 cos x d x = sin x + C cos (ax + b) d x = · sin (ax + b) + C a 1 Z Z 8 sin x d x = − cos x + C sin (ax + b) d x = − cos (ax + b) + C a 1 1 1 Z Z 9 2 d x = tan x + C d x = tan (ax + b) + C Z cos x cos2 (ax + b) a 1 1 1 Z 10 d x = − cot x + C d x = − cot (ax + b) + C sin2 x 2 sin (ax + b) a ! Lưu đầu. ý sau khi đổi biến và tính nguyên hàm xong thì cần phải trả lại biến cũ ban Tích phân 1. Kí hiêu Zb ¯b f ( x) d x = F ( x)¯ = F ( b) − F (a). ¯ a a 2. Tính chất Za Zb Za • f ( x ) d x = 0. • f ( x) d x = − f ( x) d x. a a b TH.S PHẠM HOÀNG ĐIỆP 14 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! Zb Zb • k f ( x) d x = k f ( x) d x ( k ∈ R). a a Zb Zc Zb • f ( x) d x = f ( x) d x + f ( x ) d x ( a < c < b ). a a c Zb Zb Zb • [ f ( x) ± g( x)] d x = f ( x) d x ± g ( x) d x. a a a Za • Nếu y = f ( x) là hàm lẻ, liên tục trên đoạn [−a; a] thì f ( x) d x = 0. −a Za Za • Nếu y = f ( x) là hàm chẵn, liên tục trên đoạn [−a; a] thì f ( x) d x = 2 f ( x) d x. −a 0 Diện tích hình phẳng y = f ( x) y = f ( x) Zb Zb y = 0 y = g ( x) (H ) = ⇒ S = | f ( x)|d x. (H ) = ⇒ S = | f ( x) − g( x)|d x. x=a x=a a a x=b x=b Thể tích khối tròn xoay • Loại 1 Vật thể tròn xoay sinh ra khi quanh y quanh trục Ox hình phẳng được giới hạn y = f ( x) bởi các đường y = f ( x), y = 0, x = a, x = b với f ( x) liên tục trên đoạn [a; b]. Zb Áp dụng công thức: V = π f 2 ( x) d x O a b x a • Loại 2 TH.S PHẠM HOÀNG ĐIỆP 15 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! Vật thể tròn xoay sinh ra khi quanh y quanh trục Ox hình phẳng được giới hạn y = f ( x) bởi các đường y = f ( x), y = g( x), x = a, x = b với f ( x), g( x) liên tục trên đoạn [a; b] và 0 ≤ g( x) ≤ f ( x) ∀ x ∈ [a; b]. y = g ( x) Áp dụng công thức: O a b x Zb f 2 ( x) − g 2 ( x) d x £ ¤ V =π a • Nhiều bài tập chưa cho x = a, x = b thì ta GPT f ( x) = g( x) để tìm a, b. • Nếu xác định được vị trí hàm số f ( x) và g( x) thì ta có thể mở giấu GTTĐ như ! sau: +o ĐTHS f ( x) nằm trên ĐTHS g( x) trên [a, b] thì f ( x) > g( x), ∀ x ∈ [a, b]. +o ĐTHS f ( x) nằm dưới ĐTHS g( x) trên [a, b] thì f ( x) < g( x), ∀ x ∈ [a, b]. Thể tích vật thể Cắt vật thể V bởi hai mặt phẳng (P ) và (Q ) vuông góc với trục Ox lần lượt tại x = a, x = b(a < b). Một mặt phẳng tuỳ ý vuông góc với Ox tại điểm x, (a ≤ x ≤ b) cắt V theo thiết diện có diện tích S ( x). Với S ( x) liên tục trên đoạn [a; b]. a x b x Thể tích của vật thể V giới hạn bởi hai mặt phẳng (P ) và (Q ) tính bởi công thức Zb V= S ( x) d x. a Số phức 1. Định nghĩa và tính chất • z = a + bi , i 2 = −1 là số phức TH.S PHẠM HOÀNG ĐIỆP 16 GV: NGUYỄN THÁI HOÀNG
- SỔ TAY TOÁN HỌC Ô 038.333.8353 NĂM 2021 - HAPPY NEW YEAR!!! +o Phần thực: a +o Phần ảo: b • Cho z = a + bi và z0 = a0 + b0 i thì +o z + z0 = (a + a0 ) + (b + b0 ) i +o z − z0 = (a − a0 ) + (b − b0 ) i +o z · z0 = (aa0 − bb0 ) + (ab0 + a0 b) i z aa0 + bb0 a0 b − a − b0 +o = 02 + z0 a + b02 a02 + b02 2. Số phức liên hợp • Cho z = a + bi thì z = a − bi là số phức liên hơp của z • Tính chất: +o z · z = a2 + b2 ; z1 + z2 = z1 + z2 ; z1 · z2 = z1 · z2 z1 z1 µ ¶ +o = ; z + z = 2 a; z − z = 2 bi z2 z2 3. Môđun của số phức p • Cho a = z + bi thì | z| = a2 + b 2 • | z | = | z |; | z 1 · z 2 | = | z 1 | · | z 2 | ¯ ¯ ¯ z1 ¯ | z1 | • ¯¯ ¯¯ = ; | z 1 + z 2 | ≤ | z 1 | + | z 2 |; | z1 − z2 | ≥ | z1 | − | z2 | z2 | z2 | 4. Biểu diễn hình học số phức • z = a + bi ⇒ M (a; b) y • | z| = OM M b O a x 5. Phương trình bậc hai • ax2 + bx + c = 0, (a 6= 0), ∆ = b2 − 4ac. p −b ± ∆ • ∆ > 0 phương trình có hai nghiệm thực: x1,2 = 2a p − b ± |∆| i • ∆ < 0 Phương trình có hai nghiệm phức: x1,2 = 2a TH.S PHẠM HOÀNG ĐIỆP 17 GV: NGUYỄN THÁI HOÀNG
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm: Giúp học sinh yếu học tốt hơn về kiến thức hình tam giác, hình thang ở lớp 5
18 p | 435 | 92
-
Đề cương ôn tập học kì 1 môn Toán 8 năm 2018-2019 - Trường THCS Lăng Cô
5 p | 75 | 10
-
Tuyển tập 10 đề thi trắc nghiệm khảo sát kiến thức tổng hợp môn Toán 10
45 p | 29 | 7
-
Nội dung kiến thức trọng tâm phần điện ôn thi học sinh giỏi cấp THCS
47 p | 87 | 7
-
Phiếu bài tập ở nhà môn Toán + Tiếng Việt lớp 2 năm học 2019-2020 - Trường Tiểu học Liên Hà A (Tuần 22)
10 p | 76 | 6
-
Đề cương ôn tập học kì 2 môn Toán 6 năm 2019-2020 - Trường THCS Phước Nguyên
7 p | 71 | 5
-
Đề cương ôn tập học kì 2 môn Toán 10 năm 2018-2019 - Trường THPT Cẩm Xuyên
6 p | 69 | 3
-
Đề cương ôn tập HK1 môn Toán 8 năm 2020-2021 - Trường THCS Long Toàn
9 p | 48 | 3
-
Đề cương ôn tập HKI năm học 2018-2019 môn Toán khối 11
12 p | 34 | 3
-
Đề cương ôn tập HK1 môn Toán 7 năm 2020-2021 - Trường THCS Huỳnh Thúc Kháng
13 p | 21 | 2
-
Đề cương ôn tập giữa học kì 1 môn Toán 6 năm 2020-2021 - Trường THCS Long Toàn
4 p | 76 | 2
-
Đề cương ôn tập HK1 môn Toán 9 năm 2020-2021 - Trường THCS Thanh Quan
5 p | 31 | 2
-
Đề cương ôn tập học kì 1 môn Toán 10 năm 2018-2019 - Trường THPT Tôn Thất Tùng
3 p | 50 | 2
-
Đề cương ôn tập HK2 môn Toán 7 năm 2019-2020 - Trường THCS Thu Bồn
28 p | 42 | 2
-
Đề cương ôn tập HK2 môn Toán 9 năm 2019-2020 - Trường THCS Giá Rai A
8 p | 31 | 2
-
Đề cương ôn tập HK1 môn Toán 9 năm 2020-2021 - Trường THCS Ngọc Lâm
6 p | 36 | 2
-
Đề cương ôn tập HK1 môn Toán 8 năm 2020-2021 - Trường THCS Quang Trung
3 p | 33 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn