Luận văn: ÁNH XẠ ĐƠN ĐIỆU VÀ ÁP DỤNG VÀO CÁC BÀI TOÁN CÂN BẰNG KINH TẾ
lượt xem 23
download
Ánh xạ đơn điệu là một trong những lĩnh vực của giải tích hiện đại đã và đ ang được rất nhiều nhà toán học hàng đầu thế giới nghiên cứu. Đặc biệt phải kể đến như: R. T. Rockafellar, F. E. Browder. Bên cạnh các kết quả đặc biệt có ý nghĩa về mặt lý thuyết, ánh xạ đơn đ iệu là một trong những công cụ được sử dụng nhiều và rất có hiệu quả trong lĩnh vực toán ứng dụng như lĩnh vực tối ưu hóa....
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn: ÁNH XẠ ĐƠN ĐIỆU VÀ ÁP DỤNG VÀO CÁC BÀI TOÁN CÂN BẰNG KINH TẾ
- ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM -------- -------- NGÔ THỊ VIỆT HẰNG ÁNH XẠ ĐƠN ĐIỆU VÀ ÁP DỤNG VÀO CÁC BÀI TOÁN CÂN BẰNG KINH TẾ LUẬN VĂN THẠC SĨ TOÁN HỌC THÁI NGUYÊN – 2008
- ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM -------- -------- NGÔ THỊ VIỆT HẰNG ÁNH XẠ ĐƠN ĐIỆU VÀ ÁP DỤNG VÀO CÁC BÀI TOÁN CÂN BẰNG KINH TẾ Chuyên ngành: Giải tích Mã số: 60.46.01 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƢỜI HƢỚNG DẪN KHOA HỌC TS. NGUYỄN VĂN QUÝ THÁI NGUYÊN – 2008
- MỤC LỤC Mở đầu ....................................................................................................1 Chƣơng 1: TOÁN TỬ ĐƠN ĐIỆU TRONG KHÔNG GIAN HILBERT 1.1. Không gian Hilb ert thực ......................................................................3 1.2. Tập lồi và hàm lồi ...............................................................................7 1.3. To án tử đơn điệu .................................................................................14 1.3.1. Các định nghĩa về toán tử đơn điệu ...................................................15 13.2. To án tử đơn điệu tuần hoàn ...............................................................19 1.3.3. To án tử đơn điệu cực đại ..................................................................21 Chƣơng 2: BẤT ĐẲNG THỨC BIẾN PHÂN VỚI TOÁN TỬ ĐƠN ĐIỆU 2.1. Bất đẳng thức biến phân ......................................................................33 2.2. Bất đẳng thức biến phân với toán tử đơn điệu .......................................39 2.3. Bất đẳng thức biến phân với ánh xạ đa tr ị.............................................46 2.4. Bất đẳng thức biến phân và c ác bài toán liê n quan ................................49 Chƣơng 3: MÔ HÌNH NASH – COURNOT VỚI TOÁN TỬ ĐƠN ĐIỆU 3.1. Phát biểu mô hình ...............................................................................55 3.2. Mô hình Nas h – Cournot với bài toán c ân bằng ....................................56 3.3. Mô hình Nas h – Cournot với bài toán bất đẳng thức biến phân..............57 3.4. Mô hình Nas h – Cournot với toán tử đơn điệu ......................................58 KẾT LUẬN ..............................................................................................65 TÀI LIỆU THAM KHẢO ..........................................................................66
- MỞ ĐẦU Ánh xạ đơn điệu là một trong những lĩnh vực của giải tích hiện đại đã và đ ang được rất nhiều nhà toán học hàng đầu thế giới nghiên cứu. Đặc biệt phải kể đến như: R. T. Rockafellar, F. E. Browder, (Xem [5], [14]). Bên cạnh các kết quả đặc biệt có ý nghĩa về mặt lý thuyết, ánh xạ đơn điệu là một trong những công cụ được sử dụng nhiều và rất có hiệu quả trong lĩnh vực toán ứng dụng như lĩnh vực tối ưu hóa. Nó giúp ích cho việc chứng minh sự tồn tại và tính duy nhất nghiệm cho rất nhiều các lớp bài toán cân bằng, bài toán bất đẳng thức biến phân và bài toán tối ưu. Đề tài của bản luận văn này là nghiên cứu về toán tử đơn điệu trong không gian Hilbert thực và ứng dụng của nó trong việc khảo sát các bài toán bất đẳng thức biến phân và đặc biệt là mô hình kinh tế nổi tiếng Nash - Cournot. Vì thế, đây là một đề tài vừa có ý nghĩa về mặt lý thuyết, đồng thời vừa có ý nghĩa thực tiễn cao. Nội dung chính của bản luận văn là trình bày một cách hệ thống các kiến thức cơ sở có liên quan; khái niệm, tính chất và các điều kiện cho các toán tử đơn điệu; áp dụng toán tử đơn điệu trong bài toán bất đẳng thức biến phân và mô hình kinh tế Nash - Cournot. Ngoài phần mở đầu, kết luận và các tài liệu tham khảo, các kết quả nghiên cứu trong bản luận văn được trình bày thành ba chương với tiêu đề: Chương 1: Toán tử đơn điệu trong không gian Hilbert. Chương 2: Bất đẳng thức biến phân với toán tử đơn điệu. Chương 3: Mô hình Nash - Cournot với toán tử đơn điệu. Nội dung chính của các chương là: Chương 1: Trình bày một số kiến thức cơ sở về giải tích lồi phục vụ cho việc nghiên cứu toán tử đơn điệu. Sau đó, trình bày các khái niệm về toán tử đơn điệu, đơn điệu tuần hoàn và đơn điệu cực đại. Song song với các khái niệm này là một số kết quả về tính chất, điều kiện của toán tử đơn điệu. S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 1
- Chương 2: Trình bày về bài toán bất đẳng thức biến phân và các bài toán liên quan. Sau đó, trình bày một số kết quả về việc sử dụng toán tử đơn điệu trong việc chứng minh sự tồn tại và tính duy nhất nghiệm của bài toán bất đẳng thức biến phân. Chương 3: Trình bày về mô hình kinh tế Nash - Cournot trong lĩnh vực s ản xuất kinh doanh. Sau đó, sử dụng toán tử đơn điệu để nghiên cứu về sự tồn tại và tính duy nhất nghiệm cho mô hình. Bản luận văn được hoàn thành tại Trường Đại học Sư phạm - Đại học Thái Nguyên. Để hoàn thành được bản luận văn này, trước hết, tôi xin bày tỏ lòng biết ơn sâu sắc tới Tiến sĩ Nguyễn Văn Quý, người thầy đã trực tiếp tận tình hướng dẫn, giúp đỡ tôi trong suốt quá trình làm và hoàn thiện bản luận văn. Tôi xin bày tỏ lòng biết ơn sâu sắc tới các thầy giáo, các cô giáo trong trường Đại họ c Sư phạm Thái Nguyên, Viện Toán học Việt Nam, trường Đại học Sư phạm Hà Nội đã tận tình giảng dạy và giúp đỡ tôi hoàn thành khóa học. Tôi xin cảm ơn tới cơ quan, gia đình và bạn bè đã luôn động viên, ủng hộ giúp đỡ tôi trong suốt quá trình học tập và làm luận văn tốt nghiệp. Thái Nguyên, tháng 09 năm 2008 Ngô Thị Việt Hằng S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 2
- Chương 1 TOÁN TỬ ĐƠN ĐIỆU TRONG KHÔNG GIAN HILBER T Nội dung chính của chương bao gồm: một số kiến thức cơ sở về không gian Hilbert thực và giải tích lồi. Tiếp sau đó là các khái niệm về ánh xạ đơn điệu, đơn điệu tuần hoàn, đơn điệu cực đại. Đồng thời trình bày một số kết quả liên quan đến tính đơn điệu c ủa các toán tử đơn trị và đa trị trong không gian Hilbert. 1.1. Không gian Hilbert thực Chúng ta bắt đầu từ không gian đơn giản nhất là không gian véc tơ tuyến tính trên trường số thực. Đó là một tập hợp khác rỗng X mà trên đó có trang bị hai phép toán: phép toán cộng hai véc tơ và phép toán nhân một số thực với một véc tơ: x1 x2 X , x1 , x2 X ; x X , x X , R. Nếu trên X được trang bị một tô pô là một họ các tập con của X thỏa mãn các tính chất: 1. ; X ; 2. A , B A B ; 3. At t T At , tT ( T là tập chỉ số bất kỳ) thì X được gọi là không gian véc tơ tô pô và thường ký hiệu là X , . Nếu trên X được trang bị một metric ( . ) với các tính chất: 1. ( x, y ) 0, x, y X ; ( x, y ) 0 x y ; 2. ( x, y ) ( y, x), x, y X ; 3. ( x, y ) ( x, z ) ( y, z ), x, y, z X thì X được gọi là không gian metric. S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 3
- Nếu trên X được trang bị một chuẩn || , || với các tính chất: 1. || x || 0, x X ; || x || 0 x 0 ; 2. || x || | ||| x ||, x X , R ; 3. || x y || || x || || y ||, x, y X thì X được gọi là một không gian định chuẩn. Định nghĩa 1.1 . Cho X là một không gian tuyến tính thực. X được gọi là không gian tiền Hilbert nếu: với mọi x, y H , xác định một số thực ký hiệu là x, y gọi là tích vô hướng của x, y X , thỏa mãn các tính chất sau: x, y y, x ; 1. x y, z x, z y, z ; 2. 3. x, y x, y , R ; x, x 0 nếu x 0 , x, x 0 nếu x 0 . 4. Mệnh đề 1. 1 (Xem [4]). Mọi không gian tiền Hilbert X là không gian tuyến tính định chuẩn, với chuẩn được xác định: x x, x , x X . Định nghĩa 1.2. Cho X là một không gian định chuẩn. Dãy xn X được gọi là dãy cơ bản trong X nếu : lim xn xm 0 . m,n Nếu trong X,, mọi dãy cơ bản đều hội tụ, tức là xn xm 0 kéo theo sự tồn tại x0 X sao cho xn x0 , thì X được gọi là không gian đủ. Định nghĩa 1.3 . Không gian tiền Hilbert và đủ gọi là không gian Hilbert, trong luận văn này ta thống nhất ký hiệu H là một không gian Hilbert thực. Định nghĩa 1.4. Hai véc tơ x, y H được gọi là hai véc tơ trực giao với nhau, kí hiệu là x y , nếu x, y 0 . Từ định nghĩa dễ dàng suy ra các tính chất đơn giản sau đây: S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 4
- 1. 0 x, x X ; 2. x y y x ; 3. x y1, y2 , ..., yn x 1 y1 2 y2 ... n yn , n N * , i R, i 1,2,...,n; 4. x yn , yn y khi n thì x y . Định nghĩa 1.5. Cho tập M H , phần bù trực giao của M , kí hiệu M , là tập hợp sau: M x H : x y, y M . Định lý 1.1 (Định lý F.Riesz). Với mỗi véc tơ a cố định thuộc không gian Hilbert H , hệ thức: f x a, x . (1.1) Xác định một phiếm hàm tuyến tính liên tục f x trên không gian H , với f || a || . (1.2) Ngược lại, bất kỳ phiếm hàm tuyến tính liên tục f ( x ) nào trên không gian Hilbert H cũng đều có thể biểu diễn một cách duy nhất dưới dạng ( 1.1 ), trong đó a là một véc tơ của H thỏa mãn (1.2). Chứng minh. Phần thứ nhất của định lý, ta dễ chứng minh được vì f x a, x rõ ràng là một phiếm hàm tuyến tính và do : f x a, x a x . (1.3) f a a, a a a . (1.4) nên phiếm hàm đó giới nội và thỏa mãn (1.2). Để chứng minh phần ngược lại, ta xét một phiếm hàm tuyến tính liên tục f ( x ) trên không gian Hilbert H . Tập hợp M x H : f x 0 S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 5
- rõ ràng là một không gian con đóng của H . Nếu M 0 thì dựa vào cách phân tích x y z với y M , z M , ta thấy rằng z 0 , cho nên f x f y 0 với mọi x H , do đó f x 0, x , nghĩa là ta có cách biểu diễn (1.1) với a 0 . Vậy chỉ còn phải xét trường hợp M 0 . Ta có f x0 0 , nên véc tơ : f x0 a x0 0 . x0 , x0 Với mọi x H , f x y x x0 M f x0 vì f x f x0 0 . f y f x f x0 Mà x0 M , vậy y, x0 0 , tức là f x f x x x0 , x0 x, x0 x0 .x0 0 f x0 f x0 hay: f x0 f x x0 , x a, x . x0 , x0 f x có dạng (1.2). Cách biểu diễn đó là duy nhất, vì nếu Như vậy, f x a, x thì a a ' , x 0 , nghĩa là a a ' 0 . Cuối cùng do (1.3) và (1.4) nên phải có (1.2) như trên. Định lí được chứng minh. Định lý vừa chứng minh cho phép lập một tương ứng một đối một giữa các phiếm hàm tuyến tính liê n tục f trên H và các véc tơ a H . Tương ứng đó là một phép đẳng cự tuyến tính, cho nên nếu ta đồng nhất hóa phiếm hàm f với véc S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 6
- tơ a s inh ra nó thì ta có H * H , nghĩa là : không gian Hilbert trùng với không gian liên hợp của nó. Cho A là toán tử tuyến tính liên tục trong không gian Hilbert H . Với mỗi y H cố định ta xét phiếm hàm f : H R được xác định như sau: f x Ax, y , x H . Dễ thấy f là phiếm hàm tuyến tính, liên tục trong H nên theo định lý 1.1 về dạng tổng quát của phiếm hàm tuy ến tính liên tục, tồn tại duy nhất y* H để Ax, y x, y* , x H . Định nghĩa 1.6. Cho A là một toán tử trong không gian Hilbert H , ánh xạ A* : H H xác định như sau: y H , A* y y* trong đó: Ax, y x, A* y x, y * khi đó A* được gọi là toán tử liên hợp của toán tử A . Nhận xét 1.1 . Toán tử liên hợp A* nếu tồn tại là duy nhất. 1.2. Tập lồi và hàm lồi Định nghĩa 1.7. Tập D H được gọi là tập lồi nếu với mọi x1, x2 D và mọi số thực 0 1 ta đều có: x1 1 x2 D . Nhận xét 1.2. Theo định nghĩa, tập được xem là tập lồi . Định nghĩa 1. 8. Tập K H được gọi là nón có đỉnh tại 0 nếu: x K , 0 x K . K H được gọi là nón có đỉnh tại x0 nếu K x0 là nón có đỉnh tại 0 . S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 7
- Định nghĩa 1. 9. Nón K có đỉnh tại x0 được gọi là nón lồi nếu K là một tập lồi, có nghĩa là: x, y K , , 0 x y K . Định nghĩa 1. 10. Cho K là tập lồi trong H và điểm x K , nón pháp tuyến của K tại x là một tập hợp được kí hiệu và xác định như sau: N x / K x* H * : x* , x x* 0, x K . Nhận xét 1. 3. (a) Khi K x thì N x / K H . (b) N x / K là một nón lồi. Cho tập D H là tập lồi khác rỗng và hàm f : D R . Ta có các định nghĩa về các dạng hàm lồi sau: Định nghĩa 1.11 . Hàm f được gọi là (i) Lồi trên D nếu với mọi 0 1, x, y D , ta có : f x 1 y f x 1 f y ; (ii) Lồi chặt trên D nếu với 0,1 và x, y D, x y ta có: f x 1 y f x 1 f y ; (iii) Lồi mạnh trên D nếu với 0, 1 , x, y D , tồn tại R, 0 , ta có f x 1 y f x 1 f y 1 x y . 1 2 2 Nhận xét 1.4. Từ định nghĩa 1.11 ta dễ thấy (ii) (i), (iii) (i). Định nghĩa 1.12 . Hàm f được gọi là lõm trên D nếu f là hàm lồi trên D . Định nghĩa 1.13. Trên đồ thị (epigraph) của hàm f, ký hiệu là epif , được định nghĩa như sau : epif x, r D R : f x r . S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 8
- Định nghĩa 1.14. Miền hữu hiệu(effective domain) của hàm f , ký hiệu là domf , được định nghĩa như sau : domf x D : f x . Định nghĩa 1.15. Hàm f được gọi là chính thường ( proper), nếu domf và f x với mọi x D . Định nghĩa 1.16. Hàm f được gọi là đóng nếu epif là tập đóng trong H R . Định nghĩa 1.17. Với f x , hàm f được gọi là nửa liên tục dưới tại x nếu với mọi 0 , tồn tại lân cận x K của x sao cho : f x f y , y U Với f ( x ) , hàm f được gọi là nửa liên tục dưới tại x nếu với mọi N 0 , tồn tại lân cận U của x sao cho : f y N , y U . Định nghĩa 1.18. Hàm f được gọi là nửa liên tục dưới trên H nếu f nửa liên tục dưới tại mọi x H . Định nghĩa 1.19. f x , hàm f được gọi là nửa liên tục trên tại x nếu với mọi Với 0 , tồn tại lân cận U của x sao cho : f x f y , y U . Với f ( x ) , hàm f được gọi là nửa liên tục trên tại x nếu với mọi N 0 , tồn tại lân cận U của x sao cho : f y N , y U . Định nghĩa 1.20. Hàm f được gọi là nửa liên tục trên trên H nếu f nửa liên tục trên tại mọi x H . S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 9
- Nhận xét 1.5. Hàm f liên tục tại x H nếu và chỉ nếu f nửa liên tục trên và nửa liên tục dưới tại x . Định lí 1.2 (Xem [1]). Giả sử f : H R là hàm lồi chính thường trên H . Khi đó, các khẳng định sau là tương đương: (i) f bị chặn trên trong một lân cận của x H ; (ii) f liên tục tại x H ; (iii) int epif ; (iv) int domf và f liên tục trên int domf . Bây giờ, ta giả sử hàm f : H R . Định nghĩa 1.21. Cho hàm f xác định trên một lân cận của x H , hàm f được gọi là khả vi tại x , nếu tồn tại x* H sao cho: f z f x x* , z x 0. lim zx zx Hàm f được gọi là hàm khả vi nếu nó khả vi tại mọi điểm x H . Nhận xét 1.6. Điểm x* nếu tồn tại sẽ duy nhất và được gọi là đạo hàm của hàm f tại x , thường kí hiệu là f x hoặc f x . Nhận xét 1.9 . Giả sử f : R n R là hàm lồi, chính thường và x domf . Nếu f khả vi tại x thì với mọi y Rn , y 0 , ta có : f x y f x f x , y 0 lim y 0 và đạo hàm tại x theo phương y là : f x y f x f x , y f x, y , lim 0 nên S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 10
- f x, y f x , y 0. y Suy ra f ( x, y) f ( x), y với mọi y . Lấy y ei i 1,2,..., n là vectơ đơn vị thứ i của Rn , ta có : f x , ei f / xi x , i 1,2,...,n . Vậy n f x, y yi f / xi x . i 1 Từ đó ta có hai mệnh đề sau : Mệnh đề 1.2 (Xem [2]). Giả sử f : R n R là hàm lồi , chính thường và Hàm f khả vi tại x khi và chỉ khi tồn tại x* R n sao cho x domf . f ' x, y x* , y với mọi y , x int domf và f x x* . Mệnh đề 1.3 (Xem [2]). Cho f : R n R là hàm khả vi và D R n . Khi đó , ba điều kiện sau là tương đương: (a) là hệ số lồi của f trên D; (b) f y f x f ' x , y x x y ; 2 2 (c) f y f x , y x x y . 2 2 Định nghĩa 1.22. Giả sử f là hàm lồi trên H . Phiếm hàm x* H * được gọi là dưới gradient (subgradient) của hàm f tại x H nếu f x f x x* , x x , x H . Định nghĩa 1.23. Tập tất cả dưới gradient của f tại x được gọi là dưới vi phân (subdifferential) của f tại x , ký hiệu là f x , tức là : f x x* H * : f x f x x* , x x , x H . S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 11
- Mệnh đề 1.4 . (Xem [1]). Giả sử f là hàm lồi chính thường trên H , x domf . Khi đó, f x khi và chỉ khi f x , . nửa liên tục dưới tại 0 , trong đó f x ,. là đạo hàm tại x theo phương bất kì của hàm f . Cho hàm f xác định trên tập Q H . Xét bài toán: (P) min f x : x Q Định nghĩa 1.24. a) Điểm x Q được gọi là điểm chấp nhận được của bài toán (P) . b) Điểm x Q được gọi là nghiệm tối ưu địa phương của bài toán (P), nếu tồn tại một lân cận U của x sao cho: f x f x , x Q U . b) Điểm x Q được gọi là nghiệm tối ưu toàn cục của bài toán (P) nếu: f x f x , x Q . Nhận xét 1.8. Hiển nhiên điểm x Q là nghiệm tối ưu toàn cục của bài toán (P) thì x là nghiệm tối ưu địa phương của bài toán (P) . Nếu tập Q là một tập lồi và f là một hàm lồi trên Q thì bài toán (P) được gọi là một bài toán qui hoạch lồi. Nếu Q = H thì bài toán (P) được gọi là bài toán tối ưu không ràng buộc. Mệnh đề 1.5 . (i) Nếu bài toán (P) là một bài toán qui hoạch lồi thì mọi nghiệm tối ưu địa phương đều là nghiệm tối ưu toàn cục. (ii) Giả sử trong bài toán (P) ta có Q = H và f là một hàm lồi. Để x là nghiệm tối ưu toàn cục của bài toán (P), điều kiện cần và đủ là : 0 f x . Chứng minh. (i) Giả sử x Q là nghiệ m tối ưu địa phương của bài toán (P), theo định nghĩa, tồn tại lân cận U của điểm x sao cho: S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 12
- f ( x ) f ( x), x Q U . Trên Q ta lấy điểm x tùy ý, với 0 đủ nhỏ ta có: x (1 ) x U . Từ đó: f ( x ) f x (1 ) x f ( x) (1 ) f ( x ) hay: f ( x ) f ( x) f ( x ) f ( x) . Chứng tỏ x là nghiệm tối ưu toàn cục. (ii) x là nghiệm tối ưu toàn cục của (P) f x f x x X 0 0, x x f x f x x X 0 f x ( theo Định nghĩa 1.22). Mệnh đề được chứng minh. Định nghĩa 1.25 . Cho f là hàm xác định trên H , có domf . Hàm liên hợp với hàm f , ký hiệu là f * , là một hàm xác định trên H * và được định nghĩa như sau: f * x* sup x* , x f x . x (Cận trên trong trường hợp này chỉ lấy theo x domf ). Ví dụ 1.1. Xét hàm f x e x x R , đây là hàm lồi chính thường đóng. Ta có: f * x* sup x* , x e x supx* x e x , x* R . xR xR Ta xác định cận trên của biểu thức : x* x e x . (1.5) (a) Nếu x* 0 : (1.5) có thể nhận giá trị lớn nhất bằng cách lấy x là số âm có trị tuyệt đối rất lớn. Do đó, cận trên của (1.5) bằng (b) Nếu x* 0 : Xét hàm g ( x) x* x e x ta có: g ( x) x* e x ; g x e x , g x 0 x ln x* , g ln x* eln x x* 0 . * S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 13
- Do đó tại x ln x* , g ( x ) đạt giá trị cực đại. Vậy cận trên của (1.5) là x* ln x* x* hay f * x* x* ln x* x* . (c) Nếu x* 0 thì cận trên của (1.5) bằng 0 . Tóm lại : x* ln x* x* khi x* 0 f * x* 0 khi x* 0 khi x* 0 Mệnh đề 1.6. (Xem [1]). Cho f là hàm xác định trên H, domf . Khi đó, f * là hàm lồi đóng * yếu. Mệnh đề 1.7. (Xem [1]). Cho f là hàm xác định trên H, domf , ta có f ** f , trong đó x ,x f ** x f * x sup f * x* . * * x H * * Mệnh đề 1.8. (Xem [1]). Nếu f là hàm lồi chính thường đóng trên H thì f * là hàm lồi chính thường. Định lý 1.2 (Định lý Fenchel – Moreau – Xem [1]). Cho hàm f : H , , khi đó f f ** khi và chỉ khi f là hàm lồi đóng. Sau đây chúng ta sẽ trình bày các khái niệm cơ bản và một số kết quả quan trọng về toán tử đơn điệu trong không gian Hilbert. 1.3. Toán tử đơn điệu Như chúng ta đã biết, ánh xạ F từ không gian X vào không gian Y là đơn trị nếu ứng với mỗi phần tử x X , xác định duy nhất một phần tử F ( x) y Y và ta thường ký hiệu là: F:X Y. S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 14
- Ánh xạ F từ không gian X vào không gian Y là đa trị nếu ứng với mỗi phần tử x X , thì F ( x ) là một tập con của không gian Y (có thể là tập rỗng) và ta thường hay ký hiệu là: F : X 2Y hay F : X (Y ) . Hiển nhiên ánh xạ đơn trị là một trường hợp riêng của ánh xạ đa trị. Trong bản luận văn này ta qui ước: nếu chỉ nói ánh xạ (toán tử) thì đó là ánh xạ đơn trị. Trường hợp ánh xạ đa trị sẽ được nói rõ . Đối với ánh xạ đơn trị F thì ánh xạ ngược: F 1 : Y X được định nghĩa như sau: F 1 ( y ) x X : F ( x) y . Nếu F là ánh xạ đa trị thì: F 1 ( y ) x X : y F ( x) . 1.3.1. Các định nghĩa về toán tử đơn điệu Định nghĩa 1.26 . Toán tử T : H H * H * H được gọi là toán tử đơn điệu nếu: T x T y , x y 0 , x, y H . Ví dụ 1.2 . Cho toán tử T đơn trị xác định trên R như sau: T x x, x R . Khi đó, T là toán tử đơn điệu vì với x, y R có : T x T y , x y x y, x y x y 0 . 2 Định nghĩa 1.27 . Toán tử đa trị T : H 2 H được gọi là toán tử đơn điệu nếu: u v, x y 0 , x, y domT , u T x , v T y , trong đó, domT z H : T z . Ví dụ 1.3. Xét toán tử đa trị trong R : S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 15
- 1 khi x 0 T ( x) khi x 0. Hiển nhiên ta có: u v, x y 0 , x, y domT , u T x , v T y , Khi đó, toán tử T 1 : H 2 H được xác định như sau: T 1 y x H : y T x , y H . Ví dụ 1.4. Cho hàm lồi f : H , , khi đó ánh xạ dưới vi phân T f : H H của f là toán tử đa trị đơn điệu. Chứng minh. Với mọi x, y domT , u T x , v T y , ta cần chứng minh rằng: u v, x y 0 . Thực vậy, theo định nghĩa dưới vi phân của hàm lồi, ta có u T x f x khi và chỉ khi: f ( z) f ( x) u, z x , z H . Thay z y ta có : f ( y ) f ( x) u , y x f y f x u , x y (1.6) Tương tự, v T y f y khi và chỉ khi : f z f y v, z y , z H Thay z x ta có : f x f y v, x y (1.7) Cộng hai bất đẳng thức (1.6) và (1.7), ta được: v, x y u, x y 0 v u, x y 0 hay u v, x y 0 Vậy T f là toán tử đơn điệu. Điều phải chứng minh. S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 16
- Định nghĩa 1.28 . Toán tử đa trị T : H 2 H được gọi là đơn điệu chặt nếu: u v, x y 0 với x, y domT , x y, u T x , v T y . Định nghĩa 1 .29. Toán tử đa trị T : H 2 H được gọi là đơn điệu mạnh nếu với hằng số R, 0 , x, y domT , u T x , v T y , ta có x y, u v x y . 2 Mệnh đề 1.9 . Toán tử tuyến tính A : H H là đơn điệu khi và chỉ khi Az, z 0 , z H . Chứng minh. Hiển nhiên domA H và A là toán tử đơn trị. Theo định nghĩa, A là toán tử đơn điệu khi và chỉ khi: Ax Ay, x y 0 , x, y H , hay A x y , x y 0 , x, y H . Đặt z x y , ta có : Az, z 0 , z H . Mệnh đề được chứng minh. Mệnh đề 1.10 . Các tính chất sau là luôn đúng. (i) T : H 2 H đơn điệu khi và chỉ khi T 1 : H 2 H là đơn điệu. (ii) Nếu Ti : H 2H i 1, 2 , là các toán tử đơn điệu và nếu i 0 i 1,2 , thì 1T1 2T2 cũng là toán tử đơn điệu. (iii) Nếu A : H H là toán tử tuyến tính, b H , và nếu T : H H là toán tử đơn điệu thì S x A*T Ax b S ố hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc -tnu.edu.vn 17
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn Thạc sĩ Toán học: Nguyên lý ánh xạ co và phương pháp điểm gần kề cho bài toán bất đẳng thức biến phân đa trị đơn điệu
45 p | 322 | 70
-
Luận văn: Điểm bất động của ánh xạ compact trong không gian tuyến tính định chuẩn
38 p | 145 | 43
-
Luận văn: NGUYÊN LÍ ÁNH XẠ KKM VÀ BÀI TOÁN CÂN BẰNG VECTƠ TRONG KHÔNG GIAN VECTƠ TÔPÔ
68 p | 157 | 29
-
Luận văn Thạc sĩ Toán học: Điểm bất động của một số lớp ánh xạ đa trị
43 p | 105 | 10
-
Luận văn Thạc sĩ Toán học: Điểm bất động của lớp ánh xạ tăng
56 p | 65 | 9
-
Luận văn Thạc sỹ Toán học: Qui hoạch phi tuyến và ánh xạ đa trị
60 p | 73 | 8
-
Luận văn Thạc sĩ Toán học: Ứng dụng lí thuyết điểm bất động trong hình nón vào phương trình vi phân phi tuyến
57 p | 83 | 8
-
Luận văn Thạc sĩ Toán học: Ánh xạ tựa đơn điệu tăng
48 p | 46 | 5
-
Luận văn Thạc sĩ Toán học: Một phương pháp chiếu co hẹp giải bài toán không điểm chung tách trong không gian banach
52 p | 34 | 4
-
Luận văn Thạc sĩ Toán học: Bất đẳng thức biến phân trên tập điểm bất động chung của một họ ánh xạ không giãn
35 p | 18 | 4
-
Luận án Tiến sỹ Toán học: Các phương pháp hiệu chỉnh lặp newton kantorovich và điểm gần kề cho phương trình toán tử không chỉnh phi tuyến đơn điệu
102 p | 36 | 4
-
Tóm tắt Luận án Tiến sỹ Toán học: Các phương pháp hiệu chỉnh lặp newton kantorovich và điểm gần kề cho phương trình toán tử không chỉnh phi tuyến đơn điệu
26 p | 41 | 3
-
Luận văn Thạc sĩ Toán học: Phương pháp chiếu giải bài toán bất đẳng thức biến phân hai cấp
42 p | 74 | 3
-
Luận văn Thạc sĩ Toán học: Đồng điều kỳ dị
79 p | 22 | 3
-
Luận văn Thạc sĩ Quản trị kinh doanh: Nghiên cứu các nhân tố ảnh hưởng đến sự hài lòng trong công việc của nhân viên tại Bảo hiểm xã hội tỉnh Quảng Nam
159 p | 7 | 2
-
Tóm tắt luận văn Thạc sĩ Khoa học: Đồng điều đơn hình và định lý lefschetz
27 p | 12 | 1
-
Tóm tắt luận văn Thạc sĩ Khoa học: Đồng điều kỳ dị và ứng dụng
13 p | 35 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn