Luyện thi Đại học môn Toán: Bài toán lập phương trình mặt phẳng (Phần 2) - Thầy Đặng Việt Hùng
lượt xem 28
download
Tài liệu "Luyện thi Đại học môn Toán: Bài toán lập phương trình mặt phẳng (Phần 2) - Thầy Đặng Việt Hùng" tóm lược nội dung cần thiết và cung cấp các bài tập ví dụ hữu ích, giúp các bạn củng cố và nắm kiến thức về bài toán lập phương trình mặt phẳng thật hiệu quả.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luyện thi Đại học môn Toán: Bài toán lập phương trình mặt phẳng (Phần 2) - Thầy Đặng Việt Hùng
- Khóa học VIP A. LTĐH môn Toán – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 08. BÀI TOÁN LẬP PHƯƠNG TRÌNH MẶT PHẲNG – P2 Thầy Đặng Việt Hùng DẠNG 3. MẶT PHẲNG CÓ YẾU TỐ KHOẢNG CÁCH Phương pháp giải: Giả sử mặt phẳng cần lập có một véc tơ véc tơ pháp tuyến là nP = (a; b; c), a 2 + b2 + c 2 ≠ 0. Mặt phẳng (P) chứa đường thẳng d nên (P) đi qua M ( x0 ; y0 ; z0 ) ∈ d và vuông góc với véc tơ chỉ phương của d. ( P ) : a ( x − x0 ) + b( y − y0 ) + c( z − z0 ) = 0 Khi đó ta có nQ .ud = 0 ⇔ a = f (b; c) Từ các dữ kiện về khoảng cách từ một điểm cho trước đến (P) ta được một phương trình đẳng cấp bậc hai theo các ẩn a, b, c. Thay a = f(b; c) vào phương trình này, giải ra được b = m.c hoặc b = n.c Chọn cho c = 1, từ đó tim được các giá trị tương ứng của a và b ⇒ phương trình mặt phẳng (P) cần lập. Chú ý: Phương trình đẳng cấp bậc hai là phương trình có dạng 2 x x x Ax + Bxy + Cy = 0 ⇔ A + B + C = 0 ⇒ = t ⇔ x = t. y 2 2 y b y Ví dụ 1: [ĐVH]. Cho hai mặt phẳng ( α ) : x + 2 y − z + 5 = 0; (β ) : 4 x − 2 y + 3 = 0 8 Lập (P) vuông góc với cả hai mặt phẳng đã cho đồng thời khoảng cách từ điểm A(3; 1; 1) đến (P) bằng . 30 Ví dụ 2: [ĐVH]. Lập phương trình (P) đi qua A(1; −1;0), B (2; −1; −1) sao cho khoảng cách từ M(–2; 1; 3) đến (P) 2 bằng . 3 Đ/s: ( P) : 2 x + y + 2 z − 1 = 0;( P ) : 2 x − y + 2 z − 3 = 0 x +1 y z + 2 Ví dụ 3: [ĐVH]. Lập phương trình (P) chứa d : = = sao cho khoảng cách từ A(–3; 1; 1) đến (P) bằng 1 1 −2 2 . 3 Đ/s: ( P ) : x + y + z + 3 = 0 x − 2 y +1 z Ví dụ 4: [ĐVH]. Cho ∆ : = = ;( P ) : 2 x + y − z + 3 = 0 1 3 −1 7 Lập (Q) // ∆; (Q) ⊥ (P) đồng thời khoảng cách từ A(1; 2; 0) đến (P) bằng . 30 Đ/s: (Q ) : 2 x + y + 5 z + 3 = 0 Ví dụ 5: [ĐVH]. Lập phương trình (P) đi qua A(−1;2;1), vuông góc với mặt phẳng (xOy) đồng thời khoảng cách từ 3 điểm B (1;1; −3) đến (P) bằng . 5 Đ/s: ( P) : 2 x + y = 0 x = 2 + t Ví dụ 6: [ĐVH]. Cho d : y = 1 − 2t và các điểm A(1;1;2), B (3;1; −1) z = −t Lập (P) chứa d sao cho khoảng cách từ A tới (P) bằng hai lần khoảng cách từ B tới (P) Tham gia trọn vẹn khóa VIP A. LTĐH môn Toán tại Moon.vn để đạt điểm số cao nhất trong kỳ TSĐH !
- Khóa học VIP A. LTĐH môn Toán – Thầy ĐẶNG VIỆT HÙNG Facebook: LyHung95 Đ/s: ( P ) : y − 2 z = 0;( P ) : 8 x + y + 6 z − 17 = 0 x −1 y +1 z Ví dụ 7: [ĐVH]. Cho d : = = và các điểm A(1;2; 2), B (4;3;0) 2 −1 −2 Lập (P) chứa d sao cho khoảng cách từ A tới (P) bằng khoảng cách từ B tới (P) Đ/s: ( P) : 4 x − 2 y + 5 z − 10 = 0;( P ) :12 x − 10 y + 17 z − 22 = 0 BÀI TẬP TỰ LUYỆN: x + 2 y z +1 Bài 1: [ĐVH]. Cho d : = = và các điểm A(1;1;0), B (2; −3; −1) −1 1 2 Lập (P) chứa d sao cho đường thẳng AB cắt (P) tại điểm I thỏa mãn IA = 2IB x = 1+ t Bài 2: [ĐVH]. Lập phương trình (P) chứa d : y = −1 + t và khoảng cách từ điểm A(1; 2; –2) đến (P) bằng 2. z = 2t x − 3 y +1 z 2 Bài 3: [ĐVH]. Lập phương trình (P) chứa d : = = và khoảng cách từ điểm A(1; 2; –1) đến (P) bằng . 2 −2 1 3 x −1 y − 3 z +1 Bài 4: [ĐVH]. Cho đường thẳng (d) và mặt phẳng (P) có phương trình d : = = ; ( P) : x − y + z + 2 = 0. 1 −2 2 Lập phương trình (Q) biết (Q) song song với d; vuông góc với (P) và có khoảng cách đến d bằng 1. Bài 5: [ĐVH]. Cho hai điểm A(1; –2; 1), B(2; –3; 1) và (P): 2x + 2y + z – 1 = 0, lập phương trình (Q) song song với (P) và cách đều hai điểm A, B. x +1 y − 3 z + 2 Bài 6: [ĐVH]. Cho đường thẳng ∆ : = = và hai điểm M(2; 1; −4), N(−2; 3; 6). Viết phương trình mặt 2 1 −3 phẳng (P) chứa đường thẳng ∆ và cách đều hai điểm M, N. Tham gia trọn vẹn khóa VIP A. LTĐH môn Toán tại Moon.vn để đạt điểm số cao nhất trong kỳ TSĐH !
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 1) - Thầy Đặng Việt Hùng
2 p | 225 | 42
-
Luyện thi Đại học môn Toán 2015: Bất phương trình mũ (phần 1) - Thầy Đặng Việt Hùng
4 p | 181 | 28
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 2) - Thầy Đặng Việt Hùng
2 p | 129 | 25
-
Đề kiểm tra định kỳ luyện thi đại học môn toán - Đề số 4
1 p | 158 | 24
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 3) - Thầy Đặng Việt Hùng
1 p | 103 | 18
-
Đề tự luyện thi đại học môn toán số 2
1 p | 128 | 16
-
Đề tự luyện thi đại học môn toán số 3
1 p | 116 | 16
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 5) - Thầy Đặng Việt Hùng
2 p | 108 | 15
-
Đề tự luyện thi đại học môn toán số 4
6 p | 137 | 15
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 6) - Thầy Đặng Việt Hùng
3 p | 92 | 14
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 4) - Thầy Đặng Việt Hùng
1 p | 115 | 14
-
Giải đề tự luyện thi đại học môn toán số 1
3 p | 114 | 13
-
Luyện thi Đại học môn Toán 2015: Phương trình logarith (phần 7) - Thầy Đặng Việt Hùng
1 p | 90 | 12
-
Đề tự luyện thi đại học môn toán số 5
3 p | 125 | 12
-
Luyện thi Đại học môn Toán 2015: Phương trình mũ (phần 3) - Thầy Đặng Việt Hùng
9 p | 103 | 12
-
Luyện thi Đại học môn Toán 2015: Phương trình mũ (phần 4) - Thầy Đặng Việt Hùng
2 p | 84 | 11
-
Giải đề tự luyện thi đại học môn toán số 2
3 p | 107 | 10
-
Luyện thi Đại học môn Toán 2015: Phương trình mũ (phần 5) - Thầy Đặng Việt Hùng
1 p | 139 | 10
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn