intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Một số bài toán ôn thi đại học về tam giác

Chia sẻ: Ngo Quang Do | Ngày: | Loại File: PDF | Số trang:1

251
lượt xem
64
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo về Một số bài toán ôn thi đại học về tam giác...

Chủ đề:
Lưu

Nội dung Text: Một số bài toán ôn thi đại học về tam giác

  1. 1 − cos 2A 1 − cos 2B GIÔÙI THIEÄU MOÄT SOÁ BAØI TOAÙN OÂN THI ÑAÏI HOÏC VEÀ TAM GIAÙC Giaûi: Ta coù sin A + sin B + sin C = + 1 − cos 2 C + 2 2 2 3 2 2 1) Chöùng minh raèng trong moïi tam giaùc ABC ta ñeàu coù cosA + cosB + cosC ≤ 2 1 = 2− (cos 2A + cos 2B) − cos 2 C = 2 − cos(A + B) cos(A − B) − cos 2 [π − (A + B)] Giaûi: Ñaët y= cosA+cosB+cosC ta coù: 2 A+ B A− B C πC A− B C 1 1 y = 2 cos cos + 1 − 2 sin 2 = 2 cos( − ) cos + 1 − 2 sin 2 = 2 − cos(A + B) cos(A − B) − cos 2 (A + B) = 2 + cos 2 (A − B) − [cos(A + B) + cos(A − B)] 2 2 2 2 22 2 2 4 2 C A− B C C A− B C 9 ⇔ y = 2 sin cos + 1 − 2 sin 2 ⇔ 2 sin 2 − 2 cos sin + y − 1 = 0 ⇒ sin A + sin B + sin C ≤ . 2 2 2 2 2 2 2 2 2 4 C 9 Ñeå phöông trình naøy xaùc ñònh sin ta phaûi coù: Vaäy trong moïi tam giaùc ABC ta ñeàu coù sin A + sin B + sin C ≤ 2 2 2 2 4 A− B 2 A− B 2 5) a) Chöùng minh baát ñaúng thöùc: Vôùi 6 soá thöïc a1, a2, a3, b1, b2, b3 ta luoân coù: ∆ ' = (cos ) − 2(y − 1) ≥ 0 ⇔ 2y ≤ 2 + (cos )≤3 2 2 a1 b 1 + a 2 b 2 + a 3 b 3 ≤ a1 + a 2 + a 3 . b1 + b 2 + b 2 2 2 2 2 2 3 3 3 ⇔ y≤ ⇔ cosA + cosB + cosC ≤ a1 a 2 a 3 2 2 = = Ñaúng thöùc xaûy ra khi vaø chæ khi ( BÑT Bunhiacoâpxki) b1 b 2 b 3 3 Vaäy trong moïi tam giaùc ABC ta ñeàu coù cosA + cosB + cosC ≤ 2 b) Tam giaùc ABC coù 3 trung tuyeán ma, mb, mc vaø R laø baùn kính ñöôøng troøn ngoaïi tieáp tam giaùc 1 9R 2) Chöùng minh raèng trong moïi tam giaùc ABC ta ñeàu coù cosA.cosB.cosC ≤ ABC. Chöùng minh raèng: Neáu ma+mb+mc= thì ABC laø moät tam giaùc ñeàu. 8 2 Giaûi:* Giaû thieát A tuø ⇒ø B, C nhoïn. Khi ñoù cosA0, cosC>0 → Giaûi: a) Xeùt trong heä toïa ñoä vuoâng goùc Oxyz xeùt 2 vectô khaùc 0 : 1 ⇒ cosA.cosB.cosC < 0 ⇒ cosA.cosB.cosC ≤ a = (a 1 ; a 2 ; a 3 ) vaø b = ( b 1 ; b 2 ; b 3 ) . Theo coâng thöùc ñònh goùc cuûa 2 vectô ta coù → → 8 → → → → *Giaû thieát A, B, C nhoïn. Khi ñoù cosA>0 vaø cosB>0, cosC>0 a.b | a.b | → → → → → → → → cos(a, b) = . Vì | cos(a, b) | ≤ 1 neân ≤ 1 ⇒ | a.b |≤ | a | . | b | cos A + cos B + cos C 3 → → → → ≥ cos A. cos B. cos C | a|.| b| |a|.| b| Theo baát ñaúng thöùc Coâsi daønh cho 3 soá ta coù: 3 Theo phöông phaùp toïa ñoä: a 1 b 1 + a 2 b 2 + a 3 b 3 ≤ a 12 + a 2 + a 3 . b 12 + b 2 + b 2 2 ⇔27cosA.cosB.cosC≤(cosA+cosB+cosC)3 (1). 2 2 3 a1 a 2 a 3 3 Theo keát quaû baøi 1): cosA + cosB + cosC ≤ → → → → = = Ñaúng thöùc xaûy ra khi vaø chæ khi | cos(a, b) | = 1 ⇔ a, b cuøng phöông ⇔ . (2). 2 b1 b 2 b 3 3 1 12 + 12 + 12 . m 2 + m 2 + m 2 Töø (1) vaø (2) ta coù: 27cosA.cosB.cosC≤( )3 ⇒ cosA.cosB.cosC ≤ b) Theo baát ñaúng thöùc Bunhiacoápxki: |1.ma+1.mb+1.mc| ≤ a b c 2 8 ⇒ (ma+mb+mc)2 ≤ 3(m a + m b + m c ) (1). 2 2 2 1 Vaäy trong moïi tam giaùc ABC ta ñeàu coù: cosA.cosB.cosC ≤ Theo ñònh lyù ñöôøng trung tuyeán trong tam giaùc ABC ta coù: 8 2 b 2 + 2c 2 − a 2 2a 2 + 2 c 2 − b 2 2a 2 + 2 b 2 − c 2 3 2 1 m2 + m2 + m2 = = (a + b 2 + c 2 ) (2) + + 3) Chöùng minh raèng: Neáu cosA.cosB.cosC = thì ∆ABC ñeàu. 4 4 4 4 a b c 8 Theo ñònh lyù sin trong tam giaùc ABC ta coù: 1 1 Giaûi: Ta coù cosA.cosB.cosC = ⇔ 8 cos A. [cos(B + C) + cos(B − C)] − 1 = 0 9 baøi 4 8 2 a 2 + b 2 + c 2 = 4R 2 sin 2 A + 4R 2 sin 2 B + 4R 2 sin 2 C = 4R 2 (sin 2 A + sin 2 B + sin 2 C) ≤ 4 R 2 . 4 ⇔ 4 cos A.[cos(π − A ) + cos(B − C)] − 1 = 0 ⇔ 4 cos A.[− cos A + cos(B − C)] − 1 = 0 ⇒ a 2 + b 2 + c 2 ≤ 9R 2 (3). ⇔ 4 cos A − 4 cos A. cos(B − C) + cos (B − C) + 1 − cos (B − C) = 0 2 2 2 27 R 2 ⇔ [2 cos A − cos(B − C)] + sin (B − C) = 0 Töø (2) vaø (3): m a + m b + m c ≤ 2 2 (4) 2 2 2 4 1   A = 60 0  2 cos A − cos(B − C) = 0  2 cos A − cos 0 = 0  cos A = 81R 2 9R Töø (1) vaø (4): (ma+mb+mc)2 ≤ . 2 ⇒ ⇔ ma+mb+mc≤ ⇒ ⇒ ⇒ 4 2 B= C  sin(B − C) = 0 B= C B= C  9R ma mb mc Theo baát ñaúng thöùc Bunhiacoápxki: ma+mb+mc= = = ⇒A=B=C=600 ⇒ ∆ABC ñeàu. ⇔ 2 1 1 1 9 4) Chöùng minh raèng trong moïi tam giaùc ABC ta ñeàu coù sin A + sin B + sin C ≤ ⇒ Tam giaùc ABC laø tam giaùc ñeàu. 2 2 2 4
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2