Sáng kiến kinh nghiệm THPT: Rèn luyện kỹ năng viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz thỏa mãn điều kiện cực trị học cho học sinh lớp 12 THPT
lượt xem 8
download
Mục đích nghiên cứu của đề tài "Rèn luyện kỹ năng viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz thỏa mãn điều kiện cực trị học cho học sinh lớp 12 THPT" là rèn luyện năng lực giải toán cho học sinh lớp 12 THPT thông qua các bài toán viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị bằng câu hỏi trắc nghiệm. Mời quý thầy cô và các em cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sáng kiến kinh nghiệm THPT: Rèn luyện kỹ năng viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz thỏa mãn điều kiện cực trị học cho học sinh lớp 12 THPT
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa MỤC LỤC PHẦN I: MỞ ĐẦU ............................................................................. Trang 2 PHẦN II: NỘI DUNG ....................................................................... Trang 4 Chương I. CƠ SỞ LÍ THUYẾT ....................................................... Trang 4 CHƯƠNG II. MỘT SỐ BÀI TOÁN VIẾT PT MẶT PHẲNG, ĐƯỜNG THẲNG TRONG KHÔNG GIAN OXYZ THỎA MÃN YẾU TỐ CỰC TRỊ ………................................................................. Trang 7 I. VIẾT PHƯƠNG TRÌNH MẶT PHẲNG TRONG KHÔNG GIAN OXYZ THỎA MÃN YẾU TỐ CỰC TRỊ............................... Trang 7 II. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN OXYZ THỎA MÃN YẾU TỐ CỰC TRỊ............................... Trang 12 Chương III: KẾT QUẢ VÀ BÀI HỌC KINH NGHIỆM ............... Trang 16 I. Tiến hành thử nghiệm ..................................................................... Trang 16 II. Kết luận chung về thử nghiệm ...................................................... Trang 17 III. Bài học kinh nghiệm .................................................................... Trang 18 TÀI LIỆU THAM KHẢO .................................................................. Trang 19 1/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa PHẦN I: MỞ ĐẦU I . Lý do chọn đề tài Qua thực tiễn, nhiều học sinh lớp 12 Trường THPT còn lúng túng khi giải bài toán hình học không gian bằng phương pháp tọa độ. Nhiều em giải bài toán nào thì biết bài toán đó, chưa có kĩ năng vận dụng, phát huy kiến thức đã học và trong nhiều trường hợp chưa biết cách phát biểu bài toán dưới dạng khác, giải bài toán bằng nhiều cách… Vì vậy khi làm bài tập trắc nghiệm khách quan mất nhiều thời gian do đó kết quả kiểm tra và thi không cao. Để giúp học sinh lớp 12 khắc sâu các kiến thức về phương pháp tọa độ nói chung và có kỹ năng giải nhanh một số bài toán Hình học giải tích trong không gian có yếu tố cực trị nói riêng, trong năm học 2017 – 2018 tôi đã viết sáng kiến kinh nghiệm “Rèn luyện kỹ năng tìm điểm trong không gian Oxyz thỏa mãn điều kiện cực trị cho học sinh lớp 12 THPT”. Để tiếp tục phát triển chuyên đề này, năm học 2018 – 2019 tôi viết sáng kiến kinh nghiệm “Rèn luyện kỹ năng viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz thỏa mãn điều kiện cực trị học cho học sinh lớp 12 THPT”. II. Mục đích; đối tượng; phạm vi nhiên cứu và thời gian thực hiện đề tài. 1) Mục đích nghiên cứu: Rèn luyện năng lực giải toán cho học sinh lớp 12 THPT thông qua các bài toán Viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị bằng câu hỏi trắc nghiệm. 2) Đối tượng nghiên cứu: Trên cơ sở lí luận của năng lực giải toán, áp dụng vào dạy học giải các bài toán Viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị cho học sinh lớp 12 trung học phổ thông. Từ đó phân loại và phát triển hệ thống bài tập về Viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị cho học sinh lớp 12, đặc biệt là học sinh khá, giỏi. 3) Phạm vi nghiên cứu: Quá trình tổ chức dạy học Rèn luyện kỹ năng Viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị cho học sinh lớp 12 THPT bằng bài tập tổng quát sau đó là thực hiện ví dụ dạng câu hỏi trắc nghiệm. 4) Thời gian thực hiện: Sáng kiến kinh nghiệm được thực hiện trong năm học 2018 – 2019. Đề tài đã được đăng kí với tổ và đã được tổ duyệt, thông qua kế hoạch thực hiện đề tài. Trong quá trình thực hiện đề tài đã được tổ dự giờ và khẳng định đề tài có chất lượng, đã được đồng nghiệp áp dụng trong giảng dạy. III. Nhiệm vụ nghiên cứu: Nhiệm vụ nghiên cứu của SKKN bao gồm: + Đưa ra cơ sở lý thuyết về Hình học giải tích trong không gian Oxyz. 2/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa + Đưa ra một số bài toán về viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị. + Rèn luyện kĩ năng giải toán cho học sinh thông qua các bài tập tự luyện. IV. Dự kiến cấu trúc của sáng kiến kinh nghiệm: Ngoài phần mở đầu, kết luận và danh mục tài liệu tham khảo, SKKN gồm 3 chương Chương I. Cơ sở lí thuyết Chương II. Một số bài toán Viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị. Chương III. Kết quả và Bài học kinh nghiệm ====================== 3/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa PHẦN II: NỘI DUNG CHƯƠNG I: CƠ SỞ LÍ THUYẾT I. Tọa độ của vectơ, tọa độ của điểm và tính chất 1) Định nghĩa và tính chất: Véc tơ u ( x; y; z ) u xi y j zk Điểm M ( x; y; z ) OM xi y j zk Vectơ 0 (0;0;0) Điểm A x A ; y A ; z A ; B xB ; y B ; zB ; C xC ; yC ; zC thì: 2 2 2 AB xB x A ; y B y A ; zB z A và AB AB xB xA yB yA zB z A x A xB y yB z z Tọa độ trung điểm I của AB: xI ; yI A ; zI A B 2 2 2 Tọa độ trọng tâm G của tâm giác ABC: x A xB xC y yB yC z z z xG ; yG A ; zG A B C 3 3 3 2) Các phép toán: Cho u x; y; z ; v x' ; y ' ; z ' thì: x x' u v x x' ; y y ' ; z z ' ; ku kx; ky; kz ; u v y y ' ' z z x kx ' x y z u cùng phương với v u kv y ky ' ' ' ' x ' . y ' . z ' 0 ' x y z z kz 3) Tích vô hướng và tích có hướng của hai vectơ: Trong không gian Oxyz cho u x; y; z ; v x' ; y ' ; z ' 3.1. Tích vô hướng của hai véc tơ Định nghĩa: Cho hai vectơ u , v khác vectơ 0 . Tích vô hướng của hai vectơ u , v là một số: u.v u . v .cos u, v . Nếu u 0 hoặc v 0 thì qui ước u.v 0 . Biểu thức tọa độ: u. v x.x' y. y ' z.z ' ; u v u.v 0 x.x' y. y ' z.z ' 0 Độ dài vectơ: u x2 y 2 z 2 Góc giữa hai vectơ u , v khác vectơ 0 : u.v x.x ' y. y ' z.z ' cos u, v u .v x 2 y 2 z 2 . x '2 y '2 z '2 u v x.x’+ y.y’ + z.z’ = 0 4/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa 3.2. Tích có hướng của hai véc tơ Định nghĩa: Tích có hướng của hai vectơ là một vectơ và được tính như yz z x x y sau: u , v ' ' ; ' ' ; ' ' yz ' y ' z; zx ' z ' x; xy ' x ' y y z z x x y Tính chất: u , v u; u , v v II. Phương trình mặt phẳng 1) Véc tơ pháp tuyến. - Vectơ n 0 có giá vuông góc với mặt phẳng () được gọi là VTPT của mặt phẳng (). - Nếu u, v là hai vectơ không cùng phương có giá song song hoặc nằm trên mặt phẳng () thì u , v n là một VTPT của mặt phẳng (). - Nếu ba điểm A, B, C không thẳng hàng thì AB, AC n là một VTPT của mặt phẳng (ABC). - Mặt phẳng () đi qua điểm Mo(x0; y0; z0) và có một VTPT n A; B; C có phương trình: A(x – x0) + B(y – y0) + C(z – z0) = 0 () . Chú ý: Trong không gian Oxyz, phương trình: Ax + By + Cz + D = 0 với điều kiện A2 + B2 + C2 > 0 là phương trình một mặt phẳng có một vectơ pháp tuyến là: n = (A; B; C). 2) Các cách viết phương trình mặt phẳng. Cách 1: Mặt phẳng () qua điểm Mo(x0; y0; z0) và có một vectơ pháp tuyến n = (A, B, C) có phương trình là: A(x - x0) + B(y - y0) + C(z - z0) = 0 Ax + By + Cz + D = 0. Cách 2: Mặt phẳng () qua điểm Mo(x0; y0; z0) và có hai vectơ không cùng phương u1 ,u2 có giá song song hoặc chứa trong () thì () có vectơ pháp tuyến là n [u1 ; u2 ] . Cách 3: Từ phương trình tổng quát: Ax + By + Cz + D = 0 (A2 + B2 + C2 > 0), thường dùng khi trong giả thiết có khoảng cách, góc... Cách 4: Mặt phẳng () đi qua ba điểm A(a; 0; 0); B(0; b; 0), C(0; 0; c) với abc x y z 0 thì () có phương trình: 1 a b c III. Phương trình đường thẳng 1) Véc tơ chỉ phương. - Vectơ u 0 có giá song song hoặc trùng với đường thẳng được gọi là VTCP của đường thẳng . - Đường thẳng đi qua điểm M o(x0; y0; z0) và có VTCP u a; b; c , khi đó 5/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa x x0 at +) Phương trình tham số của là: y y0 bt ;(t R) , t gọi là tham số. z z ct 0 x x0 y y0 z z0 +) Phương trình chính tắc của là: (abc 0) . a b c 2) Các cách viết phương trình đường thẳng. Cách 1: Đường thẳng d qua Mo(x0; y0; z0) và có vectơ chỉ phương u = (a; b; c): x x0 at - Có phương trình tham số là: y y 0 bt (t là tham số) z z ct 0 x x 0 y y 0 z z0 - Nếu abc 0 thì d có phương trình chính tắc là: a b c Cách 2: Từ giả thiết tìm hai điểm phân biệt A, B mà đường thẳng d đi qua. Cách 3: Đường thẳng d là giao của hai mặt phẳng. Nếu đường thẳng d thuộc hai mặt phẳng phân biệt (), () có vectơ pháp tuyến là n1 ,n 2 và có phương trình lần lượt là: Ax + By + Cz + D = 0; A’x + B’y + C’z + D’ = 0 thì d gồm các điểm Ax By Cz D 0 M(x; y; z) thỏa mãn hệ phương trình: . Đường thẳng d có A' x B' y C ' z D ' 0 một vectơ chỉ phương là: u [n1 , n 2 ] . IV. Khoảng cách từ một điểm đến mặt phẳng: Cho điểm M0(x0; y0; z0) và Ax0 By0 Cz0 D mp(): Ax + By + Cz + D = 0 thì: d M 0 ; A2 B 2 C 2 V. Góc trong không gian VI.1. Góc giữa hai đường thẳng: Nếu đường thẳng có VTCP u (a; b; c) và đường thẳng ' có VTCP u ' ( a ' ; b' ; c ' ) thì: u.u ' aa ' bb ' cc ' cos , ' u.u ' 2 2 2 a b c . a b c'2 '2 '2 ; 00 , ' 900 VI.2. Góc giữa đường thẳng và mặt phẳng: Đường thẳng có VTCP u (a; b; c ) và mặt phẳng () có VTPT n ( A; B; C ) thì: u.n Aa Bb Cc sin , cos u, n u.n 2 2 2 A B C . a b c 2 2 2 ; 00 , 900 VI.3. Góc giữa hai mặt phẳng: Nếu mặt phẳng () có VTPT n ( A; B; C ) và mặt phẳng () có VTPT n' A' ; B ' ; C ' thì: ' n.n AA' BB ' CC ' cos , cos n, n ' n . n' 2 2 2 A B C . A B C '2 '2 '2 ; 0 0 , 90 0 6/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa VI. Một số bất đẳng thức cơ bản Để giải nhanh bài toán cực trị trong hình học tọa độ trong không gian, ta cần tìm được vị trí đặc biệt của nghiệm hình đề cực trị xảy ra. Khi đó ta cần khai thác được các đại lượng không đổi (Đoạn thẳng, khoảng cách từ điểm đến đường thẳng, mặt phẳng,…) để áp dụng các bất đẳng thức hình học cơ bản sao cho phù hợp với bài toán. 7/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa CHƯƠNG II. MỘT SỐ BÀI TOÁN VIẾT PHƯƠNG TRÌNH MẶT PHẲNG, ĐƯỜNG THẲNG TRONG KHÔNG GIAN OXYZ THỎA MÃN YẾU TỐ CỰC TRỊ I. VIẾT PHƯƠNG TRÌNH MẶT PHẲNG TRONG KHÔNG GIAN OXYZ THỎA MÃN YẾU TỐ CỰC TRỊ Bài Toán 1: Viết phương trình mặt phẳng M () đi qua điểm A cho trước và cách M cho trước một khoảng lớn nhất. H A α Hướng dẫn: Khai thác đại lượng không đổi MA, theo các bước: Bước 1: Gọi H là hình chiếu vuông góc của M trên (). Bước 2: Ta có d(M, ()) = MH MA (không đổi). Vậy d(M, ()) lớn nhất là MA khi H A hay () là mặt phẳng qua A và vuông góc với MA. Bước 3: Viết phương trình mặt phẳng () qua A và vuông góc với MA. Ví dụ 1: Trong không gian Oxyz. Phương trình mặt phẳng (): ax + by + cz + 5 = 0 đi qua điểm A(1; 0; -2) và cách điểm M(2; 1; 1) một khoảng lớn nhất. Khi đó a + b + c nhỏ nhất bằng? A. -7 B. -3 C. 2 D. 5 Bài giải: +) Ta có MA ( 1; 1; 3) +) Gọi H là hình chiếu vuông góc của M trên (). +) Ta có d(M, ()) = MH MA = 11 . Vậy d(M, ()) lớn nhất là 11 khi H A hay () là mặt phẳng qua A và vuông góc với MA. +) Mặt phẳng () qua A(1; 0; -2), có một véctơ pháp tuyến n (1;1;3) có phương trình là: x + y + 3z + 5 = 0 Chọn đáp án D. Bài Toán 2: Viết phương trình mặt M phẳng () chứa đường thẳng d và cách M cho trước một khoảng lớn nhất. H d N α Hướng dẫn: Khai thác đại lượng không đổi khoảng cách từ M đến d, theo các bước: 8/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa Bước 1: Gọi N là hình chiếu vuông góc của M trên d, H là hình chiếu vuông góc của M trên (). Bước 2: Ta có d(M, ()) = MH MN (không đổi). Vậy d(M, ()) lớn nhất là MN khi H N hay () là mặt phẳng qua N và vuông góc với MN. Bước 3: Viết phương trình mặt phẳng () qua N và vuông góc với MN. Ví dụ 2: Trong không gian Oxyz, cho điểm M(2; 5; 3) và đường thẳng d: x 1 y z 2 . Gọi () là mặt phẳng chứa d sao cho khoảng cách từ M đến () 2 1 2 lớn nhất. Khi đó () đi qua điểm nào? A. A(1; 1; 0) B. B(1; 1; 1) C. C(-1; 1; 0) D. D(0; 1; 1) Bài giải: +) Gọi N(2a + 1; a; 2a + 2) thuộc d MN (2 a 1; a 5;2a 1) . N là hình chiếu vuông góc của M trên d khi MN ud (2;1;2) 2(2a – 1) + a – 5 + 2(2a – 1) = 0 a = 1 N(3; 1; 4). +) Gọi H là hình chiếu vuông góc của M trên (). Ta có d(M, ()) = MH MN = 3 2 . Vậy d(M, ()) lớn nhất là 3 2 khi H N hay () là mặt phẳng qua N và vuông góc với MN. +) Mặt phẳng () qua N(3; 1; 4), có một véctơ pháp tuyến n (1; 4;1) có phương trình là: x – 4y + z – 3 = 0 Chọn đáp án A. Bài Toán 3: Viết phương trình mặt phẳng () d N đi qua M, song với d và cách d một khoảng lớn nhất. H M α Hướng dẫn: Khai thác đại lượng không đổi khoảng cách từ M đến d, theo các bước: Bước 1: Tìm N là hình chiếu vuông góc của M trên d, gọi H là hình chiếu vuông góc của N trên (). Ta có d(d, ()) = d(N, ()) = NH MN (không đổi). Bước 2: Vậy d(d, ()) lớn nhất là MN khi H M hay () là mặt phẳng qua M và vuông góc với MN. Bước 3: Viết phương trình mặt phẳng () qua M và vuông góc với MN. Ví dụ 3: Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; -1; 4) và đường x 1 y 2 z thẳng : . Biết mặt phẳng (P) có phương trình x + ay + bz + c = 1 1 3 0 là mặt phẳng đi qua M và cách một khoảng lớn nhất. Tính T = a + b + c? A. T = 6 B. T = 3 C. T = -8 D. T = -5 Bài giải: 9/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa +) Gọi N(a + 1; -a - 2; 3a) thuộc d MN (a; a 1;3a 4) . N là hình chiếu vuông góc của M trên d khi MN u d (1; 1;3) a + a + 1 + 3(3a – 4) = 0 a = 1 N(2; -3; 3). +) Gọi H là hình chiếu vuông góc của M trên (). Ta có d(d, ()) = d(N, ()) = NH MN = 6 . Vậy d(d, ()) lớn nhất là 6 khi H M hay () là mặt phẳng qua M và vuông góc với MN. +) Mặt phẳng () qua N(2; -3; 3), có một véctơ pháp tuyến n (1; 2; 1) có phương trình là: x – 2y – z – 5 = 0 Chọn đáp án C. Bài Toán 4: Viết phương trình mặt phẳng (Q) B chứa đường thẳng d và tạo với mặt phẳng (P) một góc nhỏ nhất. d H A P M Hướng dẫn: Cách 1: Khai thác đại lượng không đổi, theo các bước. Bước 1: Gọi = (Q)(P), A = d(P), lấy điểm B trên d khác A. Bước 2: Gọi H là hình chiếu vuông góc của B trên (P), M là hình chiếu vuông góc của H trên . ˆ BH BH Bước 3: Ta có: tan BMH (không đổi). Vậy góc giữa (Q) và (P) là HM HA ˆ góc BMH nhỏ nhất khi tan BMH ˆ nhỏ nhất khi M A hay (Q) là mặt phẳng có một VTPT là n u ; ud nP ; ud ; ud . nP .nQ Cách 2: Dùng công thức góc giữa hai mặt phẳng: cos(( P ),(Q)) nP . nQ Ví dụ 4: Trong không gian Oxyz. Cho đường thẳng d: x 1 y 2 z . Gọi (Q) 1 1 2 là mặt phẳng chứa đường thẳng d và tạo với mặt phẳng (Oxy) một góc nhỏ nhất. Khi đó mặt phẳng (Q) đi qua điểm nào? A. (1; -1; 1) B. (1; 1; -1) C. (-1; 1; -1) D. (-1; -1; 0) Bài giải: +) Lấy hai điểm trên d là: A(1; -2; 0), B(0; -1; 2). +) Giả sử mặt phẳng (Q) chứa d có một VTPT là: n ( A; B; C ) , với A2 + B2 + C2 > 0. Vì mặt phẳng (Q) qua A(1; -2; 0) nên (Q): Ax + By + Cz – A + 2B = 0, mặt khác qua B(0; -1; 2) nên A = B + 2C n ( B 2C ; B; C ) . +) Gọi là góc giữa (Q) và (Oxy), khi đó: 10/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa n.k C 1 1 cos 2 2 . n.k 2 B 2 4 BC 5C 2 B B 2t 4t 5 2 4 5 C C Khi đó nhỏ nhất cos lớn nhất f(t) = 2t2 + 4t + 5 nhỏ nhất t = -1 B = -C, ta chọn B = -1, C = 1 A = 1. Vậy (Q): x – y + z – 3 = 0 Chọn đáp án A. Bài Toán 5: Viết phương trình mặt phẳng B d' (P) chứa đường thẳng d và tạo với đường thẳng d’ (d’ không song song với d) một góc lớn nhất. H A d P M Hướng dẫn: Cách 1: Khai thác đại lượng không đổi, theo các bước. Bước 1: Lấy điểm A cố định trên d, kẻ đường thẳng qua A song song với d’, lấy điểm B cố định trên khác A. Bước 2: Gọi H, M lần lượt là hình chiếu vuông góc của B trên (P), d. ˆ ˆ : sin BAH BH BM Bước 3: Ta góc giữa d’ và (P) là góc BAH (không đổi). AB AB ˆ lớn nhất khi sin BAH Vậy góc giữa d’ và (P) là góc BAH ˆ lớn nhất khi H M hay (P) là mặt phẳng qua M vuông góc với BM. Cách 2: Dùng công thức góc giữa hai mặt phẳng. ud ' .nP sin(d ',( P )) cos(ud ' , nP ) ud ' . nP Ví dụ 5: Trong không gian Oxyz. Mặt phẳng (P): ax + by + cz – 7 = 0 chứa đường thẳng d: x 1 y 1 z 2 và tạo với đường thẳng d’: x 1 y z 1 một 2 1 2 1 2 1 góc lớn nhất. Tính a + b + c? A. 0 B. -2 C. -4 D. -3 Bài giải: Bài giải: +) Lấy hai điểm trên d là: A(1; -1; 2), B(3; 0; 4). +) Giả sử mặt phẳng (P) chứa d có một VTPT là: n ( A; B; C ) , với A2 + B2 + C2 > 0. Vì mặt phẳng (P) qua A(1; -1; 2) nên (P): Ax + By + Cz – A + B - 2C = 0, mặt khác qua B(3; 0; 4) nên B = -2A - 2C n (A; 2 A 2C ; C ) . +) Gọi là góc giữa (P) và d’, khi đó: 11/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa n.u ' 3 A 3C 3 A 3C sin n .u' 5 A2 8 AC 5C 2 5( A C )2 2( A C ).C 2C 2 3 1 . 2 2 C C 2t 2t 5 52 2 AC AC Khi đó lớn nhất sin lớn nhất f(t) = 2t2 - 2t + 5 nhỏ nhất t = 1/2 A = C, ta chọn A = 1, C = 1 B = -4. Vậy (Q): x – 4y + z – 7 = 0 Chọn đáp án B. Bài tập tự luyện Câu 1: Trong không gian Oxyz, cho điểm M(2; 1; 1) và đường thẳng d: x 1 y z 2 . Phương trình mặt phẳng (): ax + by + cz + d = 0 chứa d sao cho 2 1 1 khoảng cách từ M đến () lớn nhất. Với a, b, c, d là số nguyên dương, khi đó a + b + c nhỏ nhất bằng? A. 7 B. 3 C. 4 D. 8 Câu 2: Trong không gian Oxyz, cho điểm A(1; -2; 1) và đường thẳng d: x y 1 z . Phương trình mặt phẳng (): ax + by + cz – 53 = 0 đi qua A, song 2 2 1 song với d và cách gốc tọa độ O một khoảng lớn nhất. Khi đó a + b + c nhỏ nhất bằng? A. -2 B. 2 C. -4 D. 5 Câu 3: Trong không gian Oxyz, cho mặt phẳng (Q): 2x – y + z – 1 = 0. Phương trình mặt phẳng (P): x + by + cz = 0 đi qua gốc tọa độ O, vuông góc với (Q) và cách điểm M(1/2; 0; 2) một khoảng lớn nhất. Khi đó b + c bằng? A. Đáp án khác B. 1 C. -4 D. -5 Câu 4: Trong không gian với hệ tọa độ Oxyz, cho điểm A(2; -2; 0), đường x 1 y z 2 thẳng : . Biết mặt phẳng (P) có phương trình ax + by + cz + d = 1 3 1 0 đi qua A, song song với và khoảng cách từ tới mặt phẳng (P) lớn nhất. Biết a, b là các số nguyên dương có ước chung lớn nhất bằng 1. Hỏi tổng a + b + c + d bằng bao nhiêu? A. 0 B. 3 C. -1 D. 1 Câu 5: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; -1), B(0; 4; 0) và mặt phẳng (P) có phương trình: 2x – y – 2z + 2019 = 0. Mặt phẳng (Q): ax + by + cz – 4 = 0 đi qua hai điểm A, B và tạo với mặt phẳng (P) một góc nhỏ nhất. Tính a + b + c? A. -2 B. 1. C. 2 D. 0 Câu 6: Trong không gian Oxyz. Mặt phẳng (Q): 12x + by + cz = 0 đi qua gốc tọa độ O, song song với đường thẳng d: x 1 y z 2 và tạo với mặt phẳng (P): 2 1 3 x + 2y – z + 1 = 0 một góc nhỏ nhất. Tính b + c? A. 10 B. -12 C. -14 D. -13 12/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa Câu 7: Trong không gian Oxyz. Mặt phẳng (P): ax + by + cz – 23 = 0 đi qua hai điểm A(1; 2; -1), B(2; 1; 3) và tạo với trục Ox một góc lớn nhất. Tính a + 4b + c? A. 9 B. -16 C. -9 D. 17 Câu 8: Trong không gian Oxyz. Mặt phẳng (P): 2x + by + cz = 0 đi qua gốc tọa độ O, vuông góc với mặt phẳng (Q): 2x + y – z – 1 = 0 và tạo với trục Oy một góc lớn nhất. Tính b + c? A. 6 B. -6 C. -7 D. 7 II. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG TRONG KHÔNG GIAN OXYZ THỎA MÃN YẾU TỐ CỰC TRỊ Bài Toán 6: Viết phương trình đường thẳng B d chứa trong (P), đi qua A và cách B cho trước một khoảng lớn nhất. d H A P K Hướng dẫn: Khai thác đại lượng không đổi, theo các bước. Bước 1: Gọi K là hình chiếu vuông góc của B trên d, H là hình chiếu vuông góc của B trên (P). Bước 2: Ta có d(B, d) = BK BA (không đổi). Vậy d(B, d) lớn nhất là BA khi K A hay d là đường thẳng đi qua A và có một VTCP u nP ; AB . Bước 3: Viết phương trình đường thẳng đi qua A và có một VTCP u nP ; AB . Ví dụ 6: Đường thẳng d đi qua điểm A(1; 1; -1), nằm trong mặt phẳng (P): 2x – y – z = 0 và cách điểm B(0; 2; 1) một khoảng lớn nhất. Biết đường thẳng d đi qua điểm E(2; b; c). Tính b + c? A. -2 B. 4 C. 2 D. 3 Bài giải: +) Ta có: AB (1;1; 2) +) Gọi K là hình chiếu vuông góc của B trên d, H là hình chiếu vuông góc của B trên (P). +) Ta có d(B, d) = BK BA = 6 . Vậy d(B, d) lớn nhất là 6 khi K A hay d là đường thẳng đi qua A và có một VTCP u nP ; AB (1; 3;1) Phương x 1 t trình tham số của d là: y 1 3t E(2; 4; -2) z 1 t Chọn đáp án C. 13/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa Bài Toán 7: Viết phương trình đường B thẳng d chứa trong (P), đi qua A và cách B cho trước một khoảng nhỏ nhất. d H A P K Hướng dẫn: Khai thác đại lượng không đổi, theo các bước: Bước 1: Gọi K là hình chiếu vuông góc của B trên d, H là hình chiếu vuông góc của B trên (P). Bước 2: Ta có d(B, d) = BK BH (không đổi). Vậy d(B, d) nhỏ nhất là BH khi K H hay d là đường thẳng AH. Bước 3: Viết phương trình đường thẳng đi qua A, H. Ví dụ 7: Trong không gian Oxyz, cho mặt phẳng (P): 2x – y + z = 0 và điểm M(1; -3; 1). Đường thẳng (d) đi qua gốc tọa độ O, nằmtrong mặt phẳng (P) và khoảng cách từ M đến đường thẳng đó nhỏ nhất. Gọi u = (1; a; b) là một véc tơ chỉ phương của đường thẳng (d). Tính a + b? A. -3 B. 3 C. 2 D. -2 Bài giải: +) Gọi là đường thẳng qua M và vuông góc với (P) có hương trình tham x 1 2t số là: y 3 t . Gọi H là hình chiếu vuông góc của M trên (P) H(-1; -2; 0). z 1 t +) Gọi K là hình chiếu vuông góc của M trên d. Ta có d(M, d) = MK MH (không đổi). Vậy d(M, d) nhỏ nhất là MH khi K H hay d là đường thẳng OH. x t d qua O, H có phương trình tham số là: y 2t E(2; 4; -2) z 0 Chọn đáp án C. Bài Toán 8: Viết phương trình đường M d' thẳng d đi qua A, nằm trong mặt phẳng (P) và tạo với đường thẳng d’ cho trước một góc nhỏ nhất. d H A P I Hướng dẫn: Cách 1: Khai thác đại lượng không đổi. 14/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa Bước 1: Gọi đường thẳng qua A song song với d’, lấy điểm M cố định trên khác A. Bước 2: Gọi H, I lần lượt là hình chiếu vuông góc của M trên (P), d. Ta góc ˆ ˆ : sin MAI MI MH giữa d và d’ là góc MAI (không đổi). Vậy góc giữa d và d’ MA MA ˆ nhỏ nhất khi I H hay d là đường thẳng qua A, H. nhỏ nhất khi sin MAI Bước 3: Viết phương trình đường thẳng đi qua A, H. Cách 2: Dùng công thức góc giữa hai mặt phẳng: ud .ud ' cos( d , d ') cos(ud , ud ' ) ud . ud ' Ví dụ 8: Đường thẳng d đi qua gốc tọa độ O, nằm trong mặt phẳng (P): 2x + y – x y 1 z 1 z = 0 và tạo với đường thẳng d’: một góc nhỏ nhất. Biết đường 2 1 2 thẳng (d) đi qua điểm E(a; b; 13). Tính a + b? A. -2 B. -5 C. 3 D. 4 Bài giải: +) Gọi đường thẳng qua O song song với d’ có hương trình tham số là: x 2t y t . Lấy điểm M (2; -1; 2) trên . z 2t +) Gọi ’ là đường thẳng qua M và vuông góc với (P) ’ có hương trình x 2 2t tham số là: y 1 t . Gọi H là hình chiếu vuông góc của M trên (P) H(5/3; - z 2 t 7/6; 13/6). +) Gọi I lần lượt là hình chiếu vuông góc của M trên d. Ta góc giữa d và d’ là MI MH góc MOI : sin MOI (không đổi). Vậy góc giữa d và d’ nhỏ nhất khi MO MO sin MOI nhỏ nhất khi I H hay d là đường thẳng qua O, H. x 10t d qua O, H có phương trình tham số là: y 7t E(10; -7; 13) z 13t Chọn đáp án C. Bài tập tự luyện Câu 1: Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z – 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Đường thẳng (d) đi qua A, song song với mặt phẳng (P) và khoảng cách từ B đến đường thẳng đó lớn nhất. Gọi u = (-2; a; b) là một véc tơ chỉ phương của đường thẳng (d). Tính a + b? A. 5 B. 6 C. 11 D. 13 15/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa x y 1 z Câu 2: Cho đường thẳng : và hai điểm M 1; 1;0 , B 2; 1;3 . Viết 2 1 1 phương trình đường thẳng d đi qua điểm M , vuông góc với đường thẳng và cách N một khoảng lớn nhất. x 1 y 1 z x 1 y 1 z A. B. 3 2 1 3 2 1 x 1 y 1 z x 1 y 1 z C. D. 3 2 1 3 2 1 Câu 3: Trong không gian Oxyz, cho mặt phẳng (P): x – 2y + 2z – 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Đường thẳng (d) đi qua A, song song với mặt phẳng (P) và khoảng cách từ B đến đường thẳng đó nhỏ nhất. Khi đó đường thẳng (d) đi qua điểm nào? A. (0; 1; 0) B. (23; 11; -1) C. (-29; -11; 2) D. (1; 3; -2) Câu 4: Cho mặt phẳng (P): 2x + y + z – 3 = 0, điểm A(0; 2; 1) và đường thẳng x 1 y z : . Đường thẳng d đi qua A, nằm trong (P) và khoảng cách giữa d 1 2 1 và d’ lớn nhất. Biết d đi qua điểm E(1; b; c). Tính b + c? A. -3 B. 2 C. 1 D. -1 Câu 5: Cho hai điểm A(0; -1; -1), B(-1; -3; 1). Giả sử C, D là hai điểm di động thuộc mặt phẳng (P): 2x + y – 2z – 1 = 0 sao cho CD = 4 và A, C, D thẳng hàng. Gọi S1, S2 lần lượt là diện tích lớn nhất và nhỏ nhất của BCD. Khi đó S1 + S2 bằng: 34 17 11 37 A. B. C. D. 3 3 3 3 Câu 6: Đường thẳng (d) đi qua gốc tọa độ O, vuông góc với đường thẳng d’: x 1 y 1 z 1 và tạo với mặt phẳng (P): x – y + 2z – 1 = 0 một góc lớn nhất. 2 2 1 Biết đường thẳng (d) đi qua điểm E(a; b; 16). Tính a + b? A. 10 B. 14 C. 3 D. Đáp án khác x 1 t x 0 2 Câu 7: Cho hai đường thẳng chéo nhau: d1: y 0 d 2: y 4 2t . Gọi (S): x z 5 t z 5 3t + y2 + z2 - 4x - 6y + d = 0 là mặt cầu đồng thời tiếp xúc với hai đường thẳng d1 và d2 và có bán kính nhỏ nhất. Khi đó d bằng? A. 4 B. -4 C. 3 D. -3 Câu 8: Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm M(1; 2; 3) và cắt cấc trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C 1 1 1 khác với gốc tọa độ O sao cho biểu thức T có giá trị nhỏ nhất. OA OB OC2 2 2 A. P : x 2y 3z 14 0 B. P : 6x 3y 2z 6 0 C. P : 6x 3y 2z 18 0 D. P : 3x 2y 3z 10 0 Câu 9: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; -3) và mặt phẳng (P): 2x + 2y – z + 9 = 0. Đường thẳng đi qua A và có vectơ chỉ phương u 3; 4; 4 cắt (P) tại B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn 16/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa AB dưới một góc 900 và độ dài MB lớn nhất. Đường thẳng MB đi qua điểm nào trong các điểm sau? A. J 3; 2; 7 B. H 2; 1;3 C. K 3;0;15 D. I 1; 2;3 Câu 10: Trong không gian với hệ tọa độ Oxyz cho điểm M(3; -4; 0) và mặt cầu (S) có phương trình ( x 1)2 ( y 2)2 ( z 3)2 25 . Viết phương trình tham số của đường thẳng d đi qua M nằm trong mặt phẳng Oxy và cắt (S) theo một dây cung dài nhất. x 3 t x 3 t x 3 t x 3 2t A. y 4 t B. y 4 t C. y 4 t D. y 4 t z 0 z 0 z 0 z 0 CHƯƠNG III: KẾT QUẢ VÀ BÀI HỌC KINH NGHIỆM I. Tiến hành thử nghiệm - Tiến hành dạy 3 tiết tự chọn: 27, 28, 29. - Để tiến hành thực nghiệm đạt kết quả tôi đã chọn 1 lớp thực nghiệm và một lớp đối chứng, tôi căn cứ vào các tiêu chí sau: Học lực hiện tại của học sinh hai lớp Điều kiện cơ sở vật chất là như nhau Sĩ số của hai lớp Trình độ giảng dạy của giáo viên Cụ thể khi tiến hành thử nghiệm tôi đã chọn lớp 12A1 có sĩ số 42 dạy thực nghiệm và lớp 12A2 có sĩ số là 41 không thực nghiệm làm lớp đối chứng. Việc lựa chọn hai lớp trên là hoàn toàn phù hợp với tiêu chí đặt ra, hai giáo viên đã có kinh nghiệm giảng dạy. Để đánh giá, nhận xét kết quả một cách khách quan. Trong quá trình thử nghiệm, đối chứng tôi đã mời đồng chí tổ trưởng, các đồng chí giáo viên trong tổ Toán - Tin cùng các đồng chí bộ môn khác quan tâm đến dự giờ nhằm mục đích đánh giá, nhận xét và so sánh các giờ dạy. - Trong đợt thử nghiệm, tôi đã tiến hành thu thập kết quả của học sinh hai lớp thử nghiệm và đối chứng trước khi tiến hành giảng dạy thử nghiệm. - Sau khi dạy thử nghiệm kết thúc, chúng tôi ra đề kiểm tra chung để kiểm tra kết quả học tập của các em học sinh trong hai lớp nhằm mục đích: Xác định trình độ tiếp nhận kiến thức của các em sau khi được thử nghiệm, so sánh kết quả của hai lớp đối chứng và thử nghiệm. Bảng 1: Kết quả của bài kiểm tra trước thử nghiệm của hai lớp thực nghiệm (TN) và đối chứng (ĐC) Giỏi Khá Trung bình Yếu Kết quả số số số số Lớp % % % % lượng lượng lượng lượng 17/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa 12A1(TN) 15 36% 14 33% 11 26% 2 5% 12A2(ĐC) 6 15% 25 61% 5 12% 5 12% Bảng 2: Kết quả của bài kiểm tra sau thử nghiệm của học sinh ở hai lớp thực nghiệm (TN) và đối chứng (ĐC) Giỏi Khá Trung bình Yếu Kết quả số số số số Lớp % % % % lượng lượng lượng lượng 12A1(TN) 20 48% 18 43% 4 9% 0 0% 12A2(ĐC) 7 17% 26 63% 4 10% 4 10% II. Kết luận chung về thử nghiệm 1. Hiệu quả của thử nghiệm Căn cứ vào kết quả kiểm tra trước và sau thử nghiệm của cả hai lớp chúng tôi có các nhận xét sau: Sau thử nghiệm kết quả của cả hai lớp thử nghiệm và đối chứng đều có sự thay đổi. Bài làm của lớp thử nghiệm phần trăm giỏi tăng lên 13%, tỉ lệ học sinh yếu đã giảm đi 7% không còn học sinh yếu nữa, số lượng học sinh trung bình và khá là không thay đổi. Kết quả của lớp đối chứng sau thử nghiệm thì tỉ lệ học sinh giỏi tăng lên 1 em chiếm 2% tỉ lệ học sinh khá tăng lên 2% còn số lượng học sinh trung bình, yếu thì giảm 2%. Qua kết quả này cho thấy nội dung bài học là không dễ nên học sinh của lớp đối chứng đã có tỉ lệ học sinh giỏi thấp hơn. Còn ở lớp thử nghiệm không còn điểm yếu nghĩa là toàn bộ học sinh đã hiểu bài tốt. Tỉ lệ học sinh giỏi tăng chứng tỏ dạy học theo hướng tăng cường rèn luyện năng lực giải toán đã phát huy được năng lực tư duy sáng tạo, khả năng linh hoạt của học sinh. Học sinh phát huy hết khả năng tiềm ẩn của mình, học sinh học tập tự tin hơn, mạnh dạn hơn, không khí lớp học sôi nổi hơn. Tóm lại việc dạy học Rèn luyện kỹ năng viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz thảo mãn điều kiện cực trị hình học cho học sinh lớp 12 THPT bằng câu hỏi trắc nghiệm cho học sinh là hoàn toàn có khả năng góp phần nâng cao chất lượng dạy học, giúp học sinh hoc tập một cách chủ động, tích cực, tự chiếm lĩnh tri thức, tự xây dựng tri thức cho bản thân, phát huy được năng lực tạo được niềm tin, sự hứng thú trong quá trình học toán. 2. Hạn chế của thử nghiệm. - Do thời gian tiến hành thử nghiệm không dài nên không thể khẳng định được hiệu quả một cách chính xác hoàn toàn. - Việc thử nghiệm không được thí điểm với quy mô lớn, chỉ thực hiện trên một lớp nên các tỉ lệ trên không thể khẳng định là chính xác. Do vậy không thể 18/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa lấy đó làm số liệu để khẳng định tính hiệu quả của việc dạy học Rèn luyện kỹ năng giải toán cho học sinh lớp 12 thông qua các bài toán Hình học giải tích trong không gian Oxyz có yếu tố cực trị bằng câu hỏi trắc nghiệm cho học sinh. 3. Khả năng vận dụng dạy học Rèn luyện kỹ năng giải toán cho học sinh lớp 12 thông qua các bài toán viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị bằng câu hỏi trắc nghiệm cho học sinh Từ việc dạy thử, phân tích các số liệu thử nghiệm, đánh giá kết quả của thử nghiệm, bước đầu có thể khẳng định việc dạy học Rèn luyện kỹ năng giải toán cho học sinh lớp 12 thông qua các bài toán viết phương trình mặt phẳng, đường thẳng trong không gian Oxyz có yếu tố cực trị bằng câu hỏi trắc nghiệm cho học sinh là góp phần nâng cao chất lượng dạy học. III. Bài học kinh nghiệm Qua quá trình thực hiện đề tài, SKKN đã thu được kết quả sau: - Tìm hiểu một số quan điểm về đổi mới phương pháp dạy học, kiểm tra đánh giá và phương pháp ra đề thi trắc nghiệm khách quan. - SKKN đã xây dựng được các dạng toán tổng quát và bài tập trắc nghiệm trong dạy học trong không gian Oxyz có yếu tố cực trị. Trong quá trình hoàn thành sáng kiến kinh nghiệm, tôi đã nhận được sự giúp đỡ nhiệt tình của các thầy giáo, cô giáo trong nhóm Toán. Do thời gian còn hạn chế nên chắc chắn sáng kiến kinh nghiệm này còn nhiều thiếu sót. Rất mong nhận được sự đóng góp ý kiến của quý thầy cô và của bạn đọc để sáng kiến kinh nghiệm được hoàn thiện hơn. Tôi xin chân thành cảm ơn! Hà Nội, ngày 10 tháng 03 năm 2019 XÁC NHẬN CỦA HỘI ĐỒNG KH Tôi xin cam đoan đây là SKKN của CẤP CƠ SỞ mình viết, không sao chép nội dung của người khác. Nguyễn Bình Long 19/20
- Nguyễn Bình Long – Trường THPT Lưu Hoàng – Huyện Ứng Hòa TÀI LIỆU THAM KHẢO 1. Phạm Gia Đức (Chủ biên), Bùi Huy Ngọc, Phạm Đức Quang (2007), Giáo trình phương pháp dạy học các nội dung môn toán, NXB ĐHSP 2. Trần Văn Hạo (Tổng chủ biên)-Nguyễn Mộng Hy (Chủ biên)-Khu Quốc Anh- Trần Đức Huyên (2008), Hình học 12, Nxb Giáo dục. 3. Trần Văn Hạo (Tổng chủ biên)-Nguyễn Mộng Hy (Chủ biên)-Khu Quốc Anh- Trần Đức Huyên (2008), Hình học 12-Sách giáo viên, Nxb Giáo dục. 4. Tạp chí toán học và tuổi trẻ, Nxb Giáo dục Việt Nam 5. Nguyễn Mộng Hy (Chủ biên)-Khu Quốc Anh-Trần Đức Huyên (2008), Bài tập hình học 12, Nxb Giáo dục. 6. Nguyễn Bá Kim (2009), Phương pháp dạy học môn Toán, Nxb Đại học Sư phạm. 7. Đào Tam, Phương pháp dạy học hình học ở trường trung học phổ thông, NXB ĐHSP. 8. Các đề thi Minh họa, thử nghiệm, tham khảo, chính thức môn Toán từ năm 2017 đến 2019. 9. Các đề thi, đề thi thử, tài liệu được khai thác trên một số trang Website như: hocmai.vn, moon.vn, k2pi.net.vn, dethi.violet.vn,... 20/20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm THPT: Phương pháp rèn luyện kĩ năng sử dụng Atlat và thực hành biểu đồ Địa lí lớp 12
26 p | 160 | 15
-
Sáng kiến kinh nghiệm THPT: Một số biện pháp tổ chức hoạt động trải nghiệm, nhằm phát huy tính tích cực, sáng tạo của học sinh trong dạy học môn Công nghệ trồng trọt 10
12 p | 34 | 9
-
Sáng kiến kinh nghiệm THPT: Rèn kỹ năng cảm thụ văn xuôi Việt Nam hiện đại trong chương trình Ngữ văn 12
27 p | 48 | 9
-
Sáng kiến kinh nghiệm THPT: Giải pháp rèn luyện kĩ năng điều chỉnh và quản lí cảm xúc nhằm hình thành khả năng ứng phó với căng thẳng của học sinh trường THPT Kim Sơn C
50 p | 19 | 9
-
Sáng kiến kinh nghiệm THPT: Sử dụng phiếu học tập dưới dạng đề kiểm tra sau mỗi bài học, để học sinh làm bài tập về nhà, làm tăng kết quả học tập môn Hóa
13 p | 29 | 8
-
Sáng kiến kinh nghiệm THPT: Rèn luyện kỹ năng phát âm thông qua hoạt động lồng tiếng phim tiếng Anh cho học sinh lớp 10A4 trường THPT Yên Mô B
32 p | 33 | 7
-
Sáng kiến kinh nghiệm THPT: Một số hình thức tổ chức rèn luyện kỹ năng vận dụng kiến thức phần Sinh học tế bào – Sinh học 10, chương trình Giáo dục Phổ thông 2018 vào thực tiễn cho học sinh lớp 10 trường THPT Vĩnh Linh
23 p | 19 | 7
-
Sáng kiến kinh nghiệm THPT: Giáo dục kỹ năng sống và sử dụng ngôn ngữ cho học sinh THPT qua tác phẩm Chí Phèo
19 p | 29 | 7
-
Sáng kiến kinh nghiệm THPT: Một số phương pháp giáo dục kỹ năng sống hiệu quả khi dạy phần đạo đức môn Giáo dục công dân lớp 10
11 p | 121 | 7
-
Sáng kiến kinh nghiệm THPT: Hệ thống bài tập Hóa học rèn kĩ năng vận dụng kiến thức vào thực tiễn trong chương trình Hóa học THPT
47 p | 18 | 6
-
Sáng kiến kinh nghiệm THPT: Hướng dẫn học sinh khai thác có hiệu quả kênh hình trong sách giáo khoa Địa lí 11
28 p | 70 | 6
-
Sáng kiến kinh nghiệm THPT: Hướng dẫn học sinh lớp 12 một số kĩ năng học và làm bài thi trắc nghiệm khách quan môn Vật lí trong kì thi Trung học phổ thông quốc gia
14 p | 30 | 6
-
Sáng kiến kinh nghiệm THPT: Dạy học theo nhóm góp phần giáo dục và rèn luyện kĩ năng sống cho học sinh
10 p | 16 | 5
-
Sáng kiến kinh nghiệm THPT: Một số kinh nghiệm rèn kĩ năng viết đoạn văn nghị luận xã hội cho học sinh lớp 12 ở trường THPT Vĩnh Linh
20 p | 16 | 5
-
Sáng kiến kinh nghiệm THPT: Vận dụng dạy học STEM phần hóa học phi kim lớp 11 nhằm phát triển năng lực và phẩm chất cho học sinh
71 p | 17 | 5
-
Sáng kiến kinh nghiệm THPT: Rèn luyện kỹ năng giải toán bằng phương pháp lượng giác hóa
39 p | 19 | 4
-
Sáng kiến kinh nghiệm THPT: Rèn kĩ năng làm bài đọc hiểu văn bản trong đề thi trung học phổ thông Quốc gia
61 p | 21 | 4
-
Sáng kiến kinh nghiệm THPT: Rèn luyện kĩ năng giải các bài toán cực trị hàm số cho học sinh lớp 12 THPT
49 p | 35 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn