intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

SKKN: Một số dạng toán về số phức giúp học sinh ôn tốt nghiệp và đại học

Chia sẻ: Nhi Nhi | Ngày: | Loại File: PDF | Số trang:25

388
lượt xem
46
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Đổi mới sự nghiệp giáo dục và đào tạo phụ thuộc vào nhiều yếu tố , trong đó một yếu tố quan trọng là đổi mới phương pháp dạy học trong đó có phương pháp dạy học môn toán. Bài sáng kiến kinh nghiệm Một số dạng toán về số phức giúp học sinh ôn tốt nghiệp và đại học, mời các bạn tham khảo.

Chủ đề:
Lưu

Nội dung Text: SKKN: Một số dạng toán về số phức giúp học sinh ôn tốt nghiệp và đại học

  1. SỞ GIÁO DỤC & ĐÀO TẠO QUẢNG NAM TRƯỜNG THPT LÊ QUÝ ĐÔN --------------------------- SÁNG KIẾN KINH NGHIỆM Tên đề tài: MỘT SỐ DẠNG TOÁN VỀ SỐ PHỨC GIÚP HỌC SINH ÔN TỐT NGHIỆP VÀ ĐẠI HỌC Người thực hiện : Lê Xuân Phương Tổ : Toán tin Năm : 2010 – 2011 Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 1
  2. I. TÊN ĐỀ TÀI : MỘT SỐ BÀI TOÁN VỀ SỐ PHỨC GIÚP HỌC SINH ÔN THI TỐT NGHIỆP VÀ ĐẠI HỌC II. ĐẶT VẤN ĐỀ : - Đất nước ta trên đường đổi mới cần có những con người phát triển toàn diện, năng động và sáng tạo. Muốn vậy phải bắt đầu từ sự nghiệp giáo dục và đào tạo , đòi hỏi sự nghiệp giáo dục và đào tạo phải đổi mới để đáp ứng nhu cầu xã hội. Đổi mới sự nghiệp giáo dục và đào tạo phụ thuộc vào nhiều yếu tố , trong đó một yếu tố quan trọng là đổi mới phương pháp dạy học trong đó có phương pháp dạy học môn toán. - Nhằm giúp học sinh ôn luyện thi tốt nghiệp và thi vào các trường Đại học , Cao đẳng, tôi nghiên cứu và biên soạn nhóm bài tập , đưa ra các phương pháp để học sinh có thể tự ôn luyện. III.CƠ SỞ LÝ LUẬN : Đổi mới phương pháp dạy học là sự thay đổi từ các phương pháp dạy học tiêu cực đến các phương pháp tích cực, sáng tạo. Nhưng không phải thay đổi ngay lập tức bằng những phương pháp hoàn toàn mới lạ mà phải là một quá trình áp dụng phương pháp dạy học hiện đại trên cơ sở phát huy các yếu tố tích cực của phương pháp dạy học truyền thống nhằm thay đổi cách thức, phương pháp học tập của học sinh chuyển từ thụ động sang chủ động. Trong chương trình giải tích 12 mới hiện nay, chương số phức được đưa vào,trong đó gồm các phần : khái niệm về số phức, cộng trừ nhân chia hai số phức,phương trình bậc hai với hệ số thực, phương trình bậc hai với hệ số phức (nâng cao) và biểu diễn số phức dưới dạng lượng giác(nâng cao ) chiếm vị trí khá quan trọng và thường có trong các đề thi tốt nghiệp ,Đại học và Cao đẳng. Phần lớn học sinh còn lúng túng trong việc phân tích đề để tìm lời giải. Chính vì thế mà tôi đã nghiên cứu, biện soạn vấn đề này nhằm giúp học sinh đi đúng hướng và tìm ra lời giải . IV. CƠ SỞ THỰC TIỄN : Đây là vấn đề mới đối với học sinh phổ thông ,Bộ giáo dục đã chuyển tải nội dung này từ nội dung học đại học năm thứ nhất xuống lớp 12 vừa tròn được hai năm.Với thời lượng cho phép dạy trên lớp môn toán có hạn . Chất lượng học sinh trong lớp không đồng đều , nếu dạy cho các học sinh yếu , trung bình hiểu thì học sinh khá giỏi sẽ chán , và nguồn học sinh thi đậu đại học lại mong manh. Để phát huy tính năng động và sáng tạo của học sinh khá giỏi tôi đã biên soạn nhóm bài tập này và sắp xếp thứ tự các bài tập từ dễ đến khó ,nhằm giúp học sinh làm bài tốt phần số phức trong các kỳ thi sắp tới . Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 2
  3. V. NỘI DUNG NGHIÊN CỨU : Dạng 1 : Tìm mô đun ,căn bậc hai của số phức, giải phương trình ,hệ phương trình trên tập số phức Phương Pháp : Cho số phức : z = a + bi với a,b là các số thực + Mô đun của số phức z là : z  a 2  b2 +Gọi w = x + yi với x,y  R là một căn bậc hai của số phức z 2  x2  y 2  a Ta có w 2  a  bi   x  yi   a  bi   giải hệ phương trình trên  2 xy  b tìm được các căn bậc hai của số phức z +Việc giải phương trình ,hệ phương trình được giải tương tự như giải trên trường số thực nhưng chú ý đến việc tìm căn bậc hai của số âm hoặc căn bậc hai của số phức. Bài 1: 3 Tìm môđun của số phức z  1  4i  1  i  3 Lời giải: Vì 1  i   13  3i  3i 2  i 3  1  3i  3  i  2  2i 2 Suy ra: z  1  2i  z   1  22  5 Bài 2: z1 z Cho hai số phức: z1  3  5i ; z2  3  i . Tính và 1 z2 z2 Lời giải: z1  3  5i   3  5i  3  i   8  4 3i  2  3i z2 3 i  3  i  3  i  4 z1 2 z2  22   3   7 Bài 3: Gọi z1 và z2 là hai nghiệm phức của phương trình: z 2  2 z  10  0 . 2 2 Tính giá trị của biểu thức A = z1  z2 Lời giải: Ta có:  = 12 - 10 = -9 = 9i2 Phương trình có các nghiệm: z1 = - 1 - 3i; z2 = - 1 + 3i 2 2 2 2 2 Ta có: z1  z2   1   3    1  32  20 Bài 4: Tìm số phức z thỏa mãn: z   2  i   10 và z.z  25 Lời giải: Đặt z = a + bi với a, b  , ta có: Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 3
  4.  z.z  25   a 2  b 2  25   a 2  b 2  25       2 2  z   2  i   10    a  2    b  1 i  10   a  2    b  1  10  a  3  a 2  b 2  25 b  4     a  5 2a  b  10   b  0  Vậy có hai số phức cần tìm : z = 3 + 4i , z = 5 + 0i Bài 5: z  z2 Cho số phức z = 4 - 3i. Tìm z 2 2 Lời giải: z  z   4  3i    4  3i   11  27i z  z 2 11  27i 11  27i  4  3i  37  141i     z 4  3i 42  32 25 Bài 6: 2 Giải phương trình sau (ẩn z): z  2 z  1  5i  2 Lời giải: Giả sử z  a  bi ; z  2 z  1  5i   (*)  a  bi  2  a  bi   1  10i  25i 2 3a  24  a  8  3a  bi  24  10i     z  8  10i b  10 b  10 Bài 7: 3 2 3 3 Tìm căn bậc hai của số phức sau: z   i 2 2 3 2 3 3  2 2   3 3  Lời giải: Ta có: z   i  3  2  i 2   3  cos 4  isin 4   2 2     Suy ra z có hai căn bậc hai là:  3 k 2   3 k 2   w = 3 cos      isin     k  0;1   8 2   8 2   3 3  + Khi k  0  w = 3  cos   isin   8 8   3 3  + khi k  1  w = 3 cos      isin            8   8  11 11  = 3  cos   isin   8 8  Bài 8: Tìm các căn bậc hai của số phức: z  21  20i Lời giải: Gọi x  yi  x, y   là một căn bậc hai của z.  x 2  y 2  21 (1) Ta có:   2 xy  20 (2) Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 4
  5. 10 (2)  y   x 10 100 Thay y   vào (1) ta được: x 2  2  21 x x  x 4  21x 2  100  0  x 2  25  x  5 x  5  y  2; x  5  y  2 Vậy số phức đã cho có hai căn bậc hai là: 5  2i và 5  2i 2 2 * Cách khác: z  25  2.5.2i   2i    5  2i  Vậy số phức đã cho có hai căn bậc hai là: 5  2i và 5  2i Bài 9: Giải phương trình: z 2  2  2  i  z   7  4i   0 Lời giải: Ta có:  '  35  12i . Ta tìm các căn bậc hai x  yi của ' : 2  x 2  y 2  35  x  yi   35  12i    2 xy  12 Do đó ta giải được 2 căn bậc hai là:  1  6i  ;1  6i nên phương trình có hai nghiệm: z1  3  4i và z2  2  2i Bài 10: Giải phương trình sau trên (ẩn z): z 4  2 z 3  z 2  2 z  1  0 Lời giải: 1  1 z 4  2z3  z2  2 z 1  0  z2  2  2  z    1  0 (do z  0) z  z 1 1 Đặt w = z+  z 2   w 2  2 , ta được: z z2  w=1 w 2  2  2w  1  0  w 2  2w  3  0    w=-3 1 1 Do đó: z   1 (1) hay z   3 (2) z z + Giải (1)  z 2  z  1  0 2 Ta có:   1  4  3   3i  1  3i 1  3i Vậy phương trình (1) có hai nghiệm phân biệt: z1  ; z2  2 2 + Giải (2)  z 2  3 z  1  0 . Ta có:   9  4  5 3  5 3  5 Vậy phương trình (2) có hai nghiệm phân biệt: z3  ; z4  2 2 Tóm lại phương trình đã cho có bốn nghiệm: 1  3i 1  3i 3  5 3  5 z1  ; z2  ; z3  ; z4  2 2 2 2 Bài 11: Giải phương trình sau trên (ẩn z): 2 z 4  2 z 3  z 2  2 z  2  0 Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 5
  6. 1   1 Lời giải: 2 z 4  2 z 3  z 2  2 z  2  0  2  z 2   2   2 z   1  0  z   z 1 1 Đặt w = z   z 2  2  w 2  2 , ta được: z z   2 w 2  2  2 w  1  0  2 w2  2 w  5  0 + Giải: 2 w2  2 w  5  0 (*) Ta có:  '  1  10  9   3i 2 1  3i 1  3i Vậy phương trình (*) có hai nghiệm phân biệt: w1  ; w2  2 2 1  3i 1 1 1  3i Do đó: z   (1) hay z   (2) z 2 z 2 1  3i  + Giải (1)  z 2     z  1  0  2 z  1  3i  z  2  0 2  2  2 Ta có:   1  3i   16  8  6i Số phức z  x  yi ( x, y  ) là căn bậc hai của   8  6i khi và chỉ khi 2  x2  y 2  8 z 2  8  6i   x  yi   8  6i  x 2  y 2  2 xyi  8  6i   (**)  2 xy  6  2 9  x  x2  8  x 4  8x 2  9  0 x2  9 Giải (**)      3   3 y  3 y  y    x  x  x  x  3  x  3  x  3  3  hay  y  x y 1  y  1  Suy ra có hai căn bậc hai của  là 3  i và 3  i 1  3i  3  i 1  3i  3  i 1 1 Vậy phương trình (1) có hai nghiệm: z1   1  i; z2    i 4 4 2 2 1  3i  + Giải (2)  z 2     z  1  0  2 z  1  3i  z  2  0 2  2  2 Ta có:   1  3i   16  8  6i Số phức z  x  yi  x, y   là căn bậc hai của   8  6i khi và chỉ khi 2 2 2 2  x2  y 2  8 z  8  6i   x  yi   8  6i  x  y  2 xyi  8  6i   (***) 2 xy  6  2 9  4 2  x  x 2  8  x  8x  9  0  Giải (***)    3 y   3 y     x  x  x  3  x2  9  x  3       y  1 3 3 y   y   x    x  3  x  y  1  Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 6
  7. Suy ra có hai căn bậc hai của  là 3  i và 3  i 1  3i  3  i 1  3i  3  i 1 1 Vậy phương trình (2) có hai nghiệm: z3   1  i; z4    i 4 4 2 2 Tóm lại phương trình đã cho có bốn nghiệm: 1 1 1 1 z1  1  i; z2    i ; z3  1  i; z4    i 2 2 2 2 Bài 12:  Z  Z  2  3i Giải hệ phương trình sau trên tập số phức:  12 22   Z1  Z 2  5  4i   Z1  Z 2  2  3i Lời giải: hpt    Z1.Z 2  5  8i Z1 và Z2 là 2 nghiệm phương trình: Z2 - (2 + 3i)Z - 5 + 8i = 0 2 Có  = 15  20i   5  2  i     3 5   Z1  1  5  2 i   3 5    Z2  1  5  2 i Dạng 2: Tìm tập hợp điểm biểu diễn số phức Phương pháp : + Gọi số phức có dạng : z = x + yi với x,y là các số thực + Dựa vào giả thiết bài toán tìm xem với điểm M( x; y) thỏa mãn phương trình nào . + Kết luận tập hợp điểm biểu diễn số phức z đã cho. Bài 13: Trong mặt phẳng toạ độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện z   3  4i   2 Lời giải: Đặt z = x + yi; x, y  , ta có: 2 2 z   3  4i   2   x  3   y  4  i 2   x  3   y  4  2 2 2   x  3   y  4  2 Vậy tập hợp các điểm trên mặt phẳng phức biểu diễn các số phức z = x + yi thỏa mãn điều kiện đã cho là đường tròn tâm I(3; -4); bán kính R = 2 Bài 14: Tìm tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện: 2 z  i  z  z  2i Lời giải: Gọi z = x + yi (x, y  ) Ta có: 2 z  i  z  z  2i  2 x   y  1 i   2  2 y  i 2 2  2 x 2   y  1  2  2 y Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 7
  8. 1 2  y x 4 Bài 15: Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện z   5i  2   2 Lời giải: Đặt z = x + yi (x, y  ) Ta có: z - 5i + 2 = (x + 2) + (y - 5)i 2 2 2 2 Suy ra: z   5i  2   2   x  2    y  5   2   x  2    y  5   4 Vậy tập hợp các điểm biểu diễn số phức z là đường tròn tâm I(-2; 5), bán kính R = 2. Dạng 3: Biểu diễn số phức dưới dạng đại số , dạng lượng giác Phương pháp : + Nắm vững Acgumen của số phức z  0 + Dạng đại số : z = a + bi với a,b  R + Dạng lượng giác : z  r  cos +i.sin  với r là mô đun của số phức z và  là một Acgumen của số phức z + Nhân và chia hai số phức dưới dạng lượng giác n + Công thức Moivre :  r  cos + i.sin   r n (cosn + i.sinn )   Bài 16: 9 Viết số phức sau dưới dạng đại số: z   3 i  5 1  i   3 1        Lời giải: + Xét z1   3  i   2    i   2 cos     isin       2 2    6  6    9   9   9    z19  29  cos     isin      2  cos  isin    6   6   2 2 1 1   + Xét z2  1  i   2   i   2  cos  isin      2 2   4 4  5 5 5   5 5  5    z2  2  cos  4  isin 4    4 2  cos  4  isin  4  z9   3   3    1 1   z  15  64 2  cos     isin      64 2    i   64  64i z2   4   4   2 2  Bài 17: Viết dạng lượng giác của số phức z  1  3i 1 3        Lời giải: z  1  3i  2    i   2  cos     sin    i   2 2    3  3  Bài 18: Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 8
  9. 2010 Viết dưới dạng lượng giác rồi tính: 1  i  2010 2010 2010  Lời giải: 1  i  2010   2  cos  4  isin 4       21005  cos  isin   2 2 1005 1005  2  0  i   2 .i Bài 19: 1 i 3 Tìm dạng lượng giác của số phức sau: z  3 i Lời giải: 1 3        2  i 2 cos     isin     z 1 i 3  2 2     3  3         1  cos     isin     3 i  3 1       2  2  2  i 2 cos  isin   6 6  2 2  Bài 20: 2008 Tìm phần thực và phần ảo của số phức sau: z   2  6i  2009   5   sin  isin   3 6  2008  1 3  2008 2 2   i  Lời giải: z   2  6i      2 2   2009 2009   5      sin  isin   cos  isin   3 6   6 6 2008          2 2  cos     isin        3  3    2009       cos   6   isin   6        2008  2008   2008   2 2   cos   3   isin   3          2009   2009  cos     isin     6   6  2008   2008 2009   2008 2009    2 2  cos   3  6   isin   3  6         669   669    23012  cos     isin   3012   2 i   2   2   Do đó: phần thực bằng 0; phần ảo bằng -2 3012. Bài 21: Cho số phức z  a  bi  a, b   . Hỏi các số sau đây là số thực hay số ảo: Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 9
  10. 2 2 2 z2   z  a) z   z  b) 1  zz Lời giải: 2 2 2 a) z 2   z    a  bi    a  bi   4abi là số ảo b) z2   z  2  2  a  bi    a  bi  2   2 a 2  b2  lầ số thực 1  zz 1   a  bi  a  bi  2 1 a  b 2 Bài 22: Tìm phần thực và phần ảo của số phức z  2010i 2009  2009i 2010 Lời giải: z  2010i 2009  2009i 2010  2010(i 2 )1004 .i  2009(i 2 )1005  2010i  2009  phần thực và phần ảo Bài 23: Giải phương trình sau trên tập hợp số phức: z 2  2 1  2i  z  8i  0 CÁC BÀI TOÁN VỀ SỐ PHỨC CÓ HƯỚNG DẪN VÀ ĐÁP SỐ Phần 1: Dạng đại số của số phức Bài 1: Tính z + z và z . z với : a) z = 2 + 3i b) z = -5 + 3i . ĐS: a) 4 và 13 b) -10 và 34 Bài 2: Tìm phần thực và phần ảo của các số phức sau : a) (4 – i) + (2 + 3i) – (5 + i) b) (1 + i)2 – (1 – i)2 c) (2 + i)3 – (3 – i)3 d) 3 i 2 i  1 i i 3  3 2 2 1 3 ĐS: a) 1 và 1 b) 0 và 4 c) -16 và 37 d) và 2 2 Bài 3: Tính : 9 5 a) 1  i t anx b) a  bi c) 1  i  d) 1  i   1 7 5 1  i t anx a  bi (1  i ) 1  i   1 a 2  b2 2ab 1  32i ĐS: a) cos2x + isin2x b) 2 2  2 2 c) 2 d) a b a b 25 n 3 3 1  i  (với n là số nguyên dương)  1 i 3 b)    1 i 3 Bài 4: Tính: a)  2     . ĐS: a) - 2  2 2  n2 1  i      1 i 3 2in+1 b) 2 1 3 Bài 5: Giả sử     i , tính : 2 2 3 3 a)  a  b  c 2  a  b 2  c  b)  a  b  a  b   a  b 2  c)  a  b  c 2    a  b 2  c  1 i 3 d)  a 2  b  b 2  a  HD: Để ý :  2    và 3  1 2 2 a) a2 + b2 + c2 – (ab + bc + ac) b) a3 + b3 c) 2(a3 + b3 + c3) – 3(a2b + a2c + b2a + c2a + c2b) + 12abc d) a2 – ab + b 2 Bài 6: Giải các hệ phương trình sau với x, y, z là số phức : Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 10
  11.  3  i  x   4  2i  y  2  6i  2  i  x  (2  i ) y  6 a)   b)    4  2i  x   2  3i  y  5  4i  (3  2i ) x  (3  2i ) y  8  ĐS: a) x = 1 + i , y = i b) x = 2 + i , y = 2 – i Bài 7: Tìm các số liên hợp với : a) Bình phương của chính nó. b) Lập phương của chính nó. 1 i 3 1 i 3 ĐS: a) 0; 1;   ;  b) 0; 1; -1; i; -i 2 2 2 2 Bài 8: Cho số phức z = x + iy (x, y thuộc R). Tìm phần thực và phần ảo của các số phức: z i a) z2 – 2z + 4i b) iz  1 2xy y 2  x2  1 ĐS: a) x2 – y2 – 2x và 2(xy – y + 2); b) 2 và 2 x  ( y  1)2 x  ( y  1)2 Bài 9: Giải các phương trình sau (ẩn z) : 2i 1  3i 1 22 4 a) z b)   2  i  z  3  i   iz     0 . ĐS: a)  i b) -1 + i , ½ 1 i 2i  2i  25 25 Bài 10: a) Chứng minh : i 2 k 1  (1) k .i, k  N ; i 2 k  (1)k , k  N . b) Giả sử z k  i 2 k  i 2 k 1 , k  N . Tính tổng zk + zk+1 . ĐS: b) 0. Bài 11: Thực hiện các phép tính : 3i (1  2i) 2  (1  i )2 (2  i ) 3  (2  i) 3 6 a) ; b) ; c) ; d) (2 – i) (1  i )(1  2i) (3  2i )2  (2  i) 2 (2  i )3  (2  i )3 4 3 21 9 2 ĐS: a)  i b)  i c)  i d) -117 – 44i 5 5 34 17 11 Bài 12: Cho hai số phức z = a + bi và z’ = a’ + b’i a) Với điều kiện nào giữa a, b, a’, b’ thì tổng của chúng là số thực ? số ảo? b) Cũng câu hỏi trên đối với hiệu z – z’ . ĐS: a) z + z’ là số thực nếu b = -b’ , là số ảo nếu a = -a’ , b  b b) z – z’ là số thực nếu b = b’ , là số ảo nếu a = a’, b  b . Bài 13: a) Với điều kiện nào giữa a, b thì bình phương của z = a + bi là số thực, số ảo? b) Cũng câu hỏi trên đối với z3. HD: a) z2 = a2 – b2 + 2abi. Z2 là số thực nếu a = 0 hoặc b = 0 hoặc a = b = 0 . Z2 là số thuần ảo nếu a  b  0 b) z3 = a3 – 3ab 2 + (3a2b – b3)i z3 là số thực nếu b = 0 hoặc b2 = 3a2 z3 là số ảo nếu a = 0, b  0 hoặc a2 = 3b2, b  0 . 1 Bài 14: Xác định tập điểm biểu diễn số phức z thỏa mãn : a) z  a  ai, a  R b) z i là số ảo ĐS: a) Đường thẳng y = x b) Trục ảo Oy trừ (i) Bài 15: Xác định tập điểm biểu diễn số phức z thỏa mãn : a) z2 là số thực âm b) z  i  2  z  i  9 . ĐS: a) Trục thực Ox từ gốc O. b) Elip Bài 16: Tìm tập hợp các điểm biểu diễn số phức z = x + yi với x, y thuộc R và thỏa mãn : Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 11
  12. x  y  1 a) 1  z  3 b)   x  0, y  0 Bài 17: Chứng minh rằng : a) Bình phương của hai số phức liên hợp cũng là liên hợp. b) Lập phương của hai số phức liên hợp cũng là liên hợp. c) Lũy thừa bậc n của 2 số phức liên hợp cũng là liên hợp. Bài 18: Cho z = a + bi. Chứng minh z 2  a  b . Khi nào thì đẳng thức xảy ra ? ĐS: b  a Bài 19: a) Các điểm A, B, C và A’, B’, C’ trong mặt phẳng phức biểu diễn theo thứ tự các số : 1 – i ; 2 + 3i ; 3 + i và 3i ; 3 – 2i ; 3 + 2i. CMR ABC và A’B’C’ là 2 tam giác có cùng trọng tâm. b) Biết các số phức biểu diễn bởi ba đỉnh nào đó của một hình bình hành trong mặt phẳng phức , hãy tìm số biểu diễn bởi đỉnh còn lại. HD: b) z1 + z2 – z3 , z2 + z3 – z1 , z3 + z1- z2 Bài 20: a) Xác định tập hợp các điểm M trong mặt phẳng phức biểu diễn các số phức z = x + yi 2  x, y  R  thỏa mãn điều kiện z 2   z   0 2 z 1 b) Tìm số phức z thỏa mãn đồng thời các điều kiện : z 2   z   0và 1 z 3 2 2 HD: a) z 2   z   2  x 2  y 2  . Suy ra z 2   z   0  x 2  y 2 Vậy tập hợp cần tìm là hai đường thẳng : y =  x z 1 b)  1  x  2 nên có hai số phức thỏa mãn đề bài là : z1 = 2(1 + i) và z2 = 2(1 – i) z 3 Bài 21: A, B, C, D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số : 1 + 2i , 1  3  i,1  3  i,1  2i Chứng minh rằng ABCD là một tứ giác nội tiếp đường tròn. Hỏi tâm đường tròn đó biểu diễn số phức nào? HD: vì mỗi cặp số 1 + 2i, 1 – 2i và 1  3  i,1  3  i là cặp số phức liên hiệp nên hai điểm A, D và hai điểm B, C đối xứng qua Ox; phần thực của hai số đầu khác phần thực của hai số sau nên ABCD là một hình thang cân . Do đó nó là một tứ giác nội tiếp đường tròn có tâm J nằm trên trục đối xứng Ox; J biểu diễn số thực x sao cho :    JA  JB  1  x  2i  1  x  3  i  x  1 . Từ đó suy ra tâm đường tròn biểu diễn : z = 1     3  3i * Cách khác: AB biểu diễn số phức 3  i, DB biểu diễn số phức 3  3i . Mà  3i nên 3 i     AB.DB  0 .   T/tự (hay vì lí do đ/x qua Ox), DC. AC  0 .Từ đó suy ra AD là một đ/kính của đ/tròn đi qua các điểm A, B, C, D. Phần 2: Căn bậc hai và phương trình Bài 1: Tìm các căn bậc hai của số phức: a) z = 200 b) z = - 13. ĐS: a) 10 2 b) i 13 Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 12
  13. Bài 2: Tìm các căn bậc hai của số phức: a) 3 + 4i b) 1  2i 2 1  2i 2 . ĐS: a)   2  i  b)   2  i  Bài 3: Tìm các căn bậc hai của mỗi số phức sau: a) 1  4 3i b) -8i. ĐS: a)   3  2i  b)   2  2i  Bài 4: Tìm các căn bậc hai của số phức: a) -8 + 6i b) -8 – 6i c) 8 – 6i d) 8 + 6i ĐS: a)  1  3i  b)  1  3i  c)   3  i  d)   3  i  Bài 5: Gọi z là căn bậc hai của 4 + i, z’ là căn bậc hai của 4 – i. Tính z + z’. ĐS:  8  2 17 , i 8  2 17 3 i 3 i Bài 6: Tìm số phức z mà z3 = -i. ĐS: Có 3 số phức : i,  ;  2 2 2 2 2 2 Bài 7: Tìm số phức z mà z4 = -1. ĐS: Có 4 số phức : 1  i  và  1  i  2 2 2 Bài 8: Cho z = a + bi có các căn bậc hai là   m  ni  . Tìm các căn bậc hai của –a – bi và a – bi ĐS:   n  mi  và   m  ni  Bài 9: Giải các phương trình bậc hai sau đây trong tập hợp các số phức C: a) z2 – z + 2 = 0 b) 2z2 – 5z + 4 = 0 (Tốt nghiệp THPT 2006) 1 i 7 5i 7 ĐS: a) z  b) z  2 4 Bài 10: Giải các phương trình : 1  i 3 3 1 a) z2 + z + 1 = 0 b) z 2  z 3  1  0 ĐS: a) z  b)  i 2 2 2 Bài 11: Trong C hãy giải các phương trình sau đây: a) x2 - (3 – i)x + 4 – 3i = 0 b) 3x 2 2  2 x 3  2  0 . ĐS: a) 2 + i ; 1 – 2i b) 6 6 i 6 6 Bài 12: Giải các phương trình sau: a) x2 + 3ix + 4 = 0 b) 2x 2 – (4 + i)x = 1 1 593  23  1  593  23  ĐS: a) x1 = i ; x2 = -4i b) x1 = 4   1  i 4 2  4 2      1 593  23  1  593  23  x2 =  4    1  i 4 2  4 2      1 Bài 13: Giải các phương trình z   k trong các trường hợp sau: z 1 i 3 2 a) k = 1 b) k = 2 ĐS: a) z = b) z = 1  i  2 2 Bài 14: Giải các phương trình trong C: a) z 2  z  0 b) (z2 + z)2 + 4(z2 + z) – 12 = 0 HD: Đặt z = x + yi dẫn đến hệ phương trình hai ẩn x, y: Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 13
  14. 1 3 1 3 Kết quả: z1 = 0 ; z2 = -1 ; z3 = i ; z4   i 2 2 2 2 1  23i 1  23i b) 1, -2 , , 2 2 Bài 15: Lập phương trình bậc hai có hai nghiệm: z1 = 6 – 3i và z2 = i. ĐS: z2 – (6 – 2i)z + 6i + 3 = 0 Bài 16: Chứng minh rằng: Nếu phương trình: anz n + an-1zn-1 + … a2z2 + a1z + a0 = 0 với các hệ số thực có nghiệm là z0 thì z0 cũng là nghiệm của phương trình. Bài 17: Giải các phương trình trong tập C: 7 i a) x4 – 3x2 + 4 = 0 b) x 4 – 30x2 + 289 = 0 ĐS: a) x =   b) x = 4  i 2 2 Bài 18: Giải phương trình trong C: x3 + 8 = 0  x  2  x  2 HD: Ta có: x3 + 8 = 0   x  2   x 2  2x  4   0   2   x  2x  4  0 x  1 i 3 Bài 19: Cho phương trình 3z4 – 5z3 + 3z2 + 4z – 2 = 0 a) Chứng tỏ rằng 1 + i là nghiệm của phương trình. b) Tìm các nghiệm còn lại. 1  13 13  1 ĐS: b) z2 = 1 – i ; z3 = - ; z4  6 6 Bài 20: Giải phương trình z4 + 4 = 0 và biểu diễn tập nghiệm trên mặt phẳng phức. HD: Ta có : z4 + 4 = (z2 + 2i)(z2 – 2i) = 0 Nghiệm của z2 + 2i = 0 là các căn bậc hai của -2i, đó là: z1 = 1 –i , z2 = -1 + i Nghiệm của z2 – 2i = 0 là các căn bậc hai của 2i, đó là: z3 = 1 + i, z4 = -1 – i Vậy z4 + 4 = 0 có 4 nghiệm z1, z2, z3, z4 . Phần 3: Dạng lượng giác của số phức Bài 1: Viết dạng đại số của số phức sau:       3 3 a) 2 cos     i.sin     b) 2  cos  i.sin      4  4   4 4       2 2 HD: a) 2 cos     i.sin      2   i.   1  i    4  2   4    2   3 3  2 2 b) 2  cos  i.sin   2    i    2  i 2      4 4   2 2  1 3 Bài 2: Biểu diễn các số phức sau dưới dạng lượng giác: a) -1 + i b)   i 2 2 1 3 c) i 2 2 3 3   2 2 ĐS: a) 2  cos  i sin    b) 8  cos  i sin    c) cos  i.sin  4 4   2 2 3 3 Bài 3: Tìm số phức z thỏa : (1 – z)(1 + 2i) + (1 – iz)(3 – 4i) = 1 + 7i . Viết số phức z dưới dạng lượng giác. Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 14
  15. 3 6 3 5 1 2 3 ĐS: z = -  i   cos  i sin   trong đó : cos   ,sin    (    5 5 5 5 5 5 Bài 4: Tìm một acgumen của mỗi số phức sau:    5   a)  sin  icos b) 1  sin   icos (0    ) ĐS: a)  ; b)  8 8 2 8 4 2 Bài 5: Viết dưới dạng lượng giác của các số phức:  a) 1  i tan b) 1  cos  i sin  (  k 2 , k  z ) 5  sin  5  1    1       HD: a) Ta có : 1  i tan  1  i  cos  i sin   cos   5   i sin   5   5    5 5  cos       cos cos 5 5 5    b) 1  cos  i sin   2 sin 2  2i sin cos 2 2 2 Bài 6: a) Với điều kiện nào thì môđun của tổng hai số phức bằng tổng các môđun của hai số hạng? b) Khi nào thì môđun của tổng hai số phức bằng hiệu các môđun của hai số hạng ? ĐS: a) Nếu hiệu hai acgumen bằng 2k  , k là số nguyên. b) Nếu hiệu hai acgumen bằng   2k , với k nguyên. Bài 7: Tìm hệ thức liên hệ giữa hai acgumen của 2 số phức z1, z2 : Arg z1 và Arg z2trong từng trường hợp sau: z1    a) z1z2 = k , k < 0 b) z1z2 = -i c) z1 = -3z2 d)  2  cos  i sin  z2  3 3  ĐS: a) Argz1  Argz 2    k 2 b) Argz1  Argz 2    k 2 2  c) Argz1    Argz 2  2k d) Argz1  Argz 2    k 2 3 1 Bài 8: Tìm số phức z thỏa : z   1 z z Bài 9: Trong các số phức z thỏa mãn điều kiện : a) z  1  i  1 b) z  5i  3 12 16 tìm các số có acgumen dương nhỏ nhất . ĐS: a) z = i b)  i 5 5 z1 Bài 10: Viết z1 và z2 dưới dạng lượng giác rồi tính z1.z2 và z2   a) z1  1  i 3 và z2 = 1 + i. Suy ra : cos và sin 12 12 5 5 b) z1  3  i và z2 = 1 – i. Suy ra cos và sin 12 12 Bài 11: Tìm vị trí của những điểm biểu diễn các số phức có:    3 a) Môđun bằng 2; 3. b) Acgumen bằng , , , . 6 3 4 4 ĐS: a) Các đường tròn tâm O và bán kính R = 2, R = 3. b) Đó là các tia không kể gốc O , lần lượt là : Oz1, Oz2, Oz3, Oz4. Bài 12: Cho A, B, C D là bốn điểm trong mặt phẳng phức theo thứ tự biểu diễn các số : 4 + (3 + 3)i; 2  (3  3)i;1  3i và 3 + i Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 15
  16. Chứng minh rằng bốn điểm đó cùng nằm trên một đường tròn. HD: Cách 1: Đưa về bài toán tọa độ; Cách 2: Dự đoán tâm i(3 + 3i) Cách 3: Chứng minh góc lượng giác: Bài 13: Dùng công thức Moivre để tính : 5 12   1 3 1 3 a)  cos  i sin   b)   i  c) (1 + i)16. ĐS: a) i b) 1 c)  15 15   2  2   2 2 256 Bài 14: Tính gọn: 10   a)  cos  i sin  i 5 1  3i 7 1  i  1 1     b) 9 c) z 2000  2000 biết rằng z   1  3 3  3 1 z z ĐS: a) 128i b) -1/16 c) -1 Bài 15: Tính : n 1 i 3 1 i 3 n n a) (1 + i)n b) 1n   2n với 1    ; 2    . ĐS: a) 2 2  cos  i sin    b) 2 2 2 2  4 4  2n 2cos 3 3 i 1 i Bài 16: Viết dạng lượng giác các căn bậc hai của số phức: a) b) 2 c) 2  3 i     ĐS: a) z1  cos     i sin        và z2  cos     i sin         8  8  8  8     b) z1  cos  i sin và z2  cos  i sin 12 12 12 12 7 7 7 7 c) z1  2  cos  i sin    và z2   2  cos  i sin     12 12   12 12  Bài 17: Tìm nghiệm phức của phương trình : z4 – 1 = i n 7i  Bài 18: Với n nguyên dương nào thì số phức:    là số thực, số ảo.  4  3i  n 7i  n n  HD:  n     2   cos  i sin  4  3i   4  4 n Số đó là số thực  sin  0  n  4k (k nguyên dương) 4 n Số đó là số ảo  cos  0  n  4k  2 (k là số nguyên không âm) 4 Bài 19: Biểu diễn cos5x.cos6x theo coskx. 1 1 ĐS: cos5x =  cos5x  5cos3x  10cosx  ; cos6x =  cos6x  6cos4x  15cos2x  10  10 32 Bài 20: Chứng minh : 1 1 a) Cn  Cn4  Cn7  ...   2n  2cos  n  2    ; b) 1 Cn  Cn  Cn  ...   2n  2cos 2 5 8  n  4    33  3 3  Bài 21: Cho số phức dạng lượng giác z = r  cos +i sin   Đặt ei  cos  i sin  . Chứng minh : Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 16
  17. ei  e i 1 a) z  r.ei ; b)  r.ei  .  r .ei    rr.ei   ; z n  r n .ein ; c) cos  ;sin 3    3sin   sin 3  2 4 Phần 4: Bài tập tổng hợp về số phức Bài 1: Viết các số phức sau dưới dạng đại số: a) z = 2i10 + i3 b) z = i2007 + i2008 ĐS: a) -2 –i ; b) 1 – i Bài 2: Viết dưới dạng a + bi các số phức sau: a) z = (1 + i)2– (1 – i)2 b) z = (2 + i)(-1 + i)(1 + 2i)2 3 1 1 c) z  1  i 3  d) z   1 i 1 i ĐS: a) 4i b) 5 – 15i c) -8 d) 1 6 Bài 3: Tính : a) (1 + 2i) b) (2 + i) + (2 – i)7 7 ĐS: a) 117 + 44i ; b) -556 Bài 4: Giải hệ phương trình với ẩn số thực: (1  i) x  (1  2i ) y  (1  3i ) z  (1  4i)t  1  5i  ĐS: x = -2; y = 3/2; z = 2 ; t = -1/2 (3  i) x  (4  2i) y  (1  i ) z  4it  2  i Bài 5: Cho hai số phức z = a + bi và z’ = a’ + b’i Với điều kiện nào giữa a, b, a’ ,b’ thì tích z.z’ của chúng là số thực ?số ảo? ĐS: ab’ + a’b = 0 và aa’ – bb’ = 0 ; ab’ + a’b  0 2 2 2 2 Bài 6: Tính: a)  3 i   3 i  b)  3 i   3 i  2 3 3  3  i c)    3 i  3 i  d) 2  3  i 2 HD: a) 4 3i b) 2(3 + i2) = 4 c) 2i.8 = 16i d)  3 i   1  3i 1  3i  2  3  i 1  3i 2 Bài 7: Tìm phần thực và phần ảo của số phức: z = (x + iy)2 – 2(x + iy) + 5 (x, y  R) Với x, y nào thì số phức đó là số thực? z2 Bài 8: Cho các số phức: z1 = 1 + i , z2 = 1 – 2i. Hãy tính: z12 .z1 z2 ; 2z1  z2 ; z1 z2 và z1 3 1 i m ai a a i b Bài 9: Thực hiện phép tính: a) b) c) d) e) 1  2i 1 i i m a i a i a Bài 10: Phân tích ra thừa số phức : a) a2 + 1 b) 2a2 + 3 c) 4a2 + 9b2 d) 3a2 + 5b2 Bài 11: Tìm tập hợp các điểm biểu diễn các số phức z thỏa mãn các điều kiện : 2 2 a) z  1  2i  0 b) 1  i  z  1  i  z c) lg z  i  1 d) z  2  z  2  26 1 Bài 12: Tìm tập hợp điểm biểu diễn số phức z : z   1 z z Bài 13: Cho số phức z = a + bi . Một hình vuông tâm là gốc tọa độ O, các cạnh song song với các trục tọa độ có độ dài bằng 4. Hãy xác định điều kiện của a và b để điểm biểu diễn của z: a) Nằm trong hình vuông b) Nằm trên đường chéo hình vuông. Bài 14: X/định tập hợp các điểm M trên mphẳng phức biểu diễn các số phức 1  i 3  z  2 , trong đó z  1  2 . Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 17
  18. Bài 15: Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau: a) 2i  2 z  2z  1 b) 2iz  1  2 z  3 Bài 16: Tìm các căn bậc hai của số phức : a) 6 b) -2 ĐS: a)  6 b)  2i Bài 17: Tìm các căn bậc hai của số phức : a) -5 + 12i b) 17  20 2i 2 Bài 18: Giải các phương trình trong tập số phức: a) x + 81 = 0 b) x2 – x + 2 = 0 Bài 19: Giải các phương trình: a) z2 – (3 – i)z + (4 – 3i) = 0 b) 3ix2 – 2x – 4+ i = 0 Bài 20: Tìm số phức B để pt bậc hai z2 + Bz + 3i = 0 có tổng bình phương hai nghiệm bằng 8. Bài 21: Lập phương trình có ẩn số x mà x phải thỏa mãn: Nếu số phức z = x + iy là một nghiệm của phương trình z2 + pz + q = 0, trong đó p, q là những số thực. z2 Bài 22: Giải phương trình: a) z4 – z3 + +z+1=0 2 b) (z2 + 3z + 6)2 + 2z(z2 + 3z + 6) – 3z2 = 0 Bài 23: Tìm điều kiện cần và đủ về các số thực p,q để phương trình: z4 + pz2 + q = 0 a) Chỉ có nghiệm thực. b) Không có nghiệm thực. c) Có cả nghiệm thực và nghiệm không thực. Bài 24: Gọi j là số phức có hệ số ảo dương và thỏa mãn j3 = 1.Chứng minh rằng mọi số phức z = a + bi đều viết được dưới dạng z = x + yj với x và y thực. Nêu qui tắc cộng và 1 nhân hai số phức dưới dạng đó.Viết số dưới dạng đó. z Bài 25: Định a để phươnh trình z3 – az2 + 3az + 37 = 0 có một nghiệm bằng -1. Tính các nghiệm z1 và z2 còn lại trong C. Vẽ ảnh A, M, N của -1, z1,z2. Tính chất của tam giác AMN? Bài 26: Viết dạng đại số của số phức: 4 4  5 5  a) cos  + isin  b) 2  cos   i sin  c) 2  cos  i sin    3 3   3 3    3 3 Bài 27: Cho z1 = 5  cos  i sin  ,   z2 = 2  cos  i sin  . Tính z1, z2; z1.z2 và arg(z1.z2).    7 7  7 7  Bài 28: Viết dạng lượng giác của số phức:  3  i; 3  i; 4; 3i Bài 29: Cho số phức z1,z2 có một acgumen tương ứng là 1, 2 . Tìm quan hệ 1, 2 để: a) z1z2 = k, k > 0 b) z1z2 = 2i c) z1 = 3. z2 1 Bài 30: Viết các số sau đây dưới dạng lượng giác: a) z = b) z = 1  i tan  1  cos  i sin  Bài 31: Chứng minh mọi số phức z  -1 mà môđun bằng 1, đều có thể đặt dưới dạng : z= 1  ti ,trong đó t là một số thực nào đó. 1  ti z i Bài 32: Tìm tập hợp các điểm M biểu diễn số phức z biết rằng một acgumen của bằng z i  . 3 Bài 33: a) Xét các điểm trong mặt phẳng biểu diễn các số 2 + i, 3 + i để chứng minh rằng 1 nếu tan a = , 2 Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 18
  19. 1   tan b = với a, b   0;  thì a + b = .   5  2 4 b) Xét các điểm trong mặt phẳng phức biểu diễn các số 2 + i, 5 + i, 8 + i để chứng minh rằng nếu 1 1 1   tan a = ,tan b = , tan c = với a, b, c   0;  thì a + b + c = .   2 3 8  2 4 6   c) 1  cos  i sin  n Bài 34: Tính gọn : a) (1 + i) 25 b)  3 i    12  12  15 15  1 2 3  Bài 35:Tính gọn: a)  20  b) 1  3 i  24 c)  1  i 3  +  1  i 3   1 i    2   20 20     1  i  1  i  1  i Bài 36: Viết dạng lượng giác các căn bậc hai của số phức: a) 1 + i 3 b) 2 3 5 Bài 37: Tìm nghiệm phức của phương trình: a) x + 2i = 2 b) (x + 2) + 1 = 0. 1 i 3 Bài 38: Cho z = .Tìm n  N* để : a) zn là số thực. b) zn là số ảo. 1 i 1 1 1 Bài 39: Tìm tổng hữu hạn: a) Cn  Cn3  Cn5  Cn7  ... 1 b) Cn3  Cn7  Cn  ... 11 3 9 27 Bài 40: Biểu thị: a) sin 7x theo sinx, cosx. b) tan 6x theo tan x Bài 41 :( Đại học KA 2010) Tìm phần ảo của số phức z biết : 2 z  2 i  1  2i   Bài 41: ( Đại học KA 2010) Tim modun của số phức z  iz Biết số phức z thỏa mãn 3  (1  3i) z 1 i Bài 42: :( Đại học KB 2010) Trong mp tọa độ Oxy tìm tập hợp các điểm biểu diễn số phức z thỏa mãn : z  i  (1  i) z VI. KẾT QUẢ NGHIÊN CỨU: Kết quả thử nghiệm cuối năm học 2008 - 2009 ,tôi đã chọn 30 học sinh dự thi khối A ,tôi đã khảo sát và kết quả cụ thể như sau : Lớp Giỏi Khá Trung Yếu bình 12/A1 2 6,7% 8 26,7% 5 16,7% 15 50% 12/A2 1 3,3% 5 16,7% 6 20% 18 60% Kết quả thử nghiệm cuối tháng 4 năm học 2009 - 2010 ,tôi đã chọn ngẫu nhiên 30 học sinh dự thi khối A và đã khảo sát và kết quả cụ thể như sau : Lớp Giỏi Khá Trung Yếu bình 12/A2 10 33,3% 12 40 % 6 20 % 2 6,7% 12/A3 8 26,7% 10 33,3% 5 16,6% 7 23,3% Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 19
  20. Kết quả thử nghiệm cuối tháng 4 năm học 2010 - 2011 ,tôi đã chọn ngẫu nhiên 30 học sinh dự thi khối A và đã khảo sát và kết quả cụ thể như sau : Lớp Giỏi Khá Trung Yếu bình 12/A2 12 36,6% 12 40 % 4 17 % 2 6,7% 12/A3 9 29,7% 10 33,3% 4 13,6% 7 23,3% Rõ ràng qua ba năm thực hiện đề tài này, kết quả là học sinh học phần số phức có tiến bộ rõ rệt. VII. KẾT LUẬN: Việc viết sáng kinh nghiệm là một trong những vấn đề cấp thiết nhất cho gian đoạn hiện nay ,giai đoạn công nghiệp hóa hiện đại hóa đất nước, một đất nước đang phát triển như Việt nam ta nói chung ,riêng đối với ngành giáo dục cần phải đổi mới nhanh chóng, song ở mỗi bộ môn đặc biệt các môn tự nhiên điều cốt lõi mà chương trình lớp trên kế thừa và áp dụng thì mỗi giáo viên chúng ta nên chỉ ra và tạo mọi điều kiện để các em nắm bắt được. Có như vậy, tình trạng hỏng kiến thức cơ bản mới hạn chế và dần khắc phục được.Hy vọng rằng với đề tài này có thể giúp học tự học và thích học phần số phức . VIII. ĐỀ NGHỊ: Đề tài này cần thiết giới thiệu rộng rãi cho học sinh và đồng nghiệp dạy 12. Tuy nhiên các ví dụ cũng cần được sưu tập thêm, với sự cộng tác của độc giả chắc chắn đề tài sẽ đem lại nhiều lợi ích . Ngoài ra phương pháp giải các ví dụ có thể chưa tối ưu cần sự góp ý bổ sung của bạn đọc. \ Lê Xuân Phương - Trường THPT Lê Quý Đôn Trang 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2