Tiểu luận Hóa sinh đại cương: Aminoacid chứa lưu huỳnh và các ứng dụng thực tiễn của chúng trong đời sống
lượt xem 9
download
Tiểu luận Hóa sinh đại cương "Aminoacid chứa lưu huỳnh và các ứng dụng thực tiễn của chúng trong đời sống" có nội dung giới thiệu chung về các axit amin chứa lưu huỳnh; Tìm hiểu về Aminoacid chứa lưu huỳnh và các ứng dụng thực tiễn của chúng trong đời sống. Mời các bạn cùng tham khảo nội dung chi tiết.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tiểu luận Hóa sinh đại cương: Aminoacid chứa lưu huỳnh và các ứng dụng thực tiễn của chúng trong đời sống
- TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN KỸ THUẬT HÓA HỌC TIỂU LUẬN HÓA SINH “Aminoacid chứa lưu huỳnh và các ứng dụng thực tiễn của chúng trong đời sống”. Giảng viên hướng dẫn: TS. Giang Thị Phương Ly Sinh viên thực hiện : Đỗ Thị Kim Oanh MSSV : 20175058 Lớp : HH.01K62
- Hà Nội,5/2020 Mục lục I. Giới thiệu chung về các axit amin chứa lưu huỳnh Lưu huỳnh đóng vai trò quan trọng cơ thể như vai trò cấu trúc, tham gia tạo cầu liên kết trong phân tử protein, tạo thành phân tử protein thong qua các acid amin,tham gia vào nhiều phân tử quan trọng như insulin hay protein P53, một phân tử chống ung thư, duy trì dạng cần thiết để chúng hoạt động, làm giảm cholesterol,giảm lượng chất béo… Trong cơ thể lưu huỳnh không tồn tại dưới dạng đơn thuần mà tồn tại trong các phân tử đặc biệt là dưới dạng các acid amin.Các acid amin có chứa lưu huỳnh là methionine,cystine, cysteine,…Acid amin có chứa lưu huỳnh có rất nhiều ở tóc,da,móng,niêm mạc, bề mặc và bên trong tế bào.Ở đó nó có nhiệm vụ cần thiết là tổng hợp glutathione và khử độc cho tế bào. Nhu cầu về acid amin có chứa lưu huỳnh được ước tính mỗi ngày khoảng 13mg/kg trọng lượng đối với phụ nữ và 14mg/kg trọng lượng đố với nam giới. Nguồn gốc của các acid amin có chứa lưu huỳnh : Các acid amin có chứa lưu huỳnh được tìm thấy nhiều nhất trong các loại thức ăn biển, tỏi, nấm, hạt có dầu, thịt, cá, trứng ( nhất là lòng đỏ ), sữa bò, …
- Các acid amin có chứa lưu huỳnh là các acid amin cần thiết trong cơ thể, chúng không tự tổng hợp được trong cơ thể mà cần được cung cấp thường xuyên qua đường thức ăn. Thiếu các acid amin này sẽ dẫn đến các triệu chứng như bị stress, nhiễm trùng, chậm mọc tóc, móng, giảm tính đề kháng, tăng tính tổn thương, …. Một số acid amin có chứa lưu huỳnh như : Methionine, Cystine, Cysteine… II. Methionine 1. Định nghĩa Công thức phân tử: C5H11NO2S Công thức cấu tạo: HO2CCH(NH2)CH2CH2SCH3 O S H3C OH NH 2 Cấu trúc không gian: Tên gọi: Tên theo IUPAC: (S)2amino4(methylsulfanyl)butanoic acid ,pI=5.74
- Tên thông thường: methionine Kí hiệu: Met Khối lượng phân tử: M=149,21 g/mol Điểm đẳng điện: pI = 5.74 Đây là loại axit amin thiết yếu không phân cực. Cùng với cysteine, methionine là một trong hai amino acid có chứa sulfur trong cấu trúc proteinogenic. Nó bắt nguồn từ Sadenosyl methionine (SAM). Methionine là một trong hai amino acid được ghi mật mã bởi một codon đơn giản (AUG) trong tiêu chuẩn mã di truyền. Codon AUG đóng vai trò quan trọng trong việc mang thông tin “bắt đầu” cho một ribosome báo hiệu khởi đầu sự phiên dịch protein từ mRNA. 2. Nguồn gốc Methionine được tìm thấy trong mè,thịt, cá, trứng, sữa,…Bánh mì chứa nhiều methionine nhưng thiếu trystophan. Methionine có nhiếu trong trứng, đặc biệt trong lòng trắng trứng. Dựa trên cơ sở lòng trắng trứng người ta tính toán hàm lượng methionine trong các thực phảm khác: Acid amin Protein Lòng trắng Thịt bò Thịt gà Đậu tương Nấm men trứng Methionine 3.6% 2.6% 2.7% 1.3% Cysteine 2.5% 1.3% 0.3% 1.3%
- Nhu cầu methionine tùy thuộc vào từng người và trọng lượng cơ thể,trung bình người lớn cần khoảng 8001000mg/ngày. Trẻ em cần gấp đôi lượng trên,trẻ sơ sinh cần gấp 5 lần. 3. Sinh tổng hợp methionine Là một amino acid cần thiết , methionine không tự tổng hợp được trong cơ thể con người ,do đó chúng ta phải cung cấp methionine hay các protein có chứa methionine vào cơ thể qua đường thức ăn. Trong thực vật và vi sinh vật, methionine được tổng hợp bằng cách sử dụng acid aspartic và cysteine. Cơ chế sinh tổng hợp:Đầu tiên, acid aspartic bị biến đổi thành βaspartate semialdehyde rồi thành homoserine . Homoserine biến đổi thành Osuccinyl homoserine,sau đó chất này tác động lại với cystein tạo ra cystathionine, cystathionine được tách ra tạo thành homocysteine.Cuối cùng methionine được tạo ra từ homocysteine. Các phản ứng sinh tổng hợp methionine:
- Các enzym tham gia vào quá trình sinh tổng hợp methionine: 1. aspartokinase 2. βaspartate semialdehyde dehydrogenase
- 3. homoserine dehydrogenase 4. homoserine Otranssuccinylase 5. cystathionineγsynthase 6. cystathionineβlyase 7. methionine synthase (ở các loài động vật có vú, enzym thay thế là homocysteine methyltransferase) Cả hai enzym cystathionineγsynthase và cystathionineβlyase đều cần coenzym là pyridoxal5'phosphate, trong khi đó homocysteine methyltransferase cần coenzym là vitamin B12 Các con đường hóa sinh khác: Mặc dù methionine không được tổng hợp ở các loài động vật có vú, chúng có thể sử dụng methionine trong nhiều con đường sinh hóa khác nhau: Sự tạo homocysteine: Methionine được chuyển hóa thành Sadenosylmethionine (SAM) nhờ methionine adenosyltransferase. SAM đóng vai trò là chất cung cấp nhóm methyl trong nhiều phản ứng cần enzym methyltransferase, và nó bị biến đổi thành S adenosylhomocysteine (SAH). Adenosylhomocysteinase biến đổi SAH thành homocysteine. Đến đây có hai khả năng tiếp theo: homocysteine được sử dụng để tái tạo methionine, hoặc được dùng để tổng hợp cysteine.
- Tái tạo methionine Methionine có thể được tái tạo từ homocysteine nhờ phản ứng được xúc tác bởi enzym methionine synthase, phản ứng này cần coenzym Vitamin B12 Homocysteine có thể bị methyl hóa trở lại bởi glycine betaine (N,N,N trimethyl glycine, TMG) để trở thành methionine nhờ sự xúc tác của enzyme betainehomocysteine methyltransferase (E.C.2.1.1.5, BHMT). BHMT chiếm 1.5% trong tổng các proten tan được trong nước của gan, và nghiên cứu gần đây cho thấy nó có thể có ảnh hưởng nhiều hơn methionine synthase trong việc giữ cân bằng nồng độ methionine và homocysteine trong cơ thể. Sự chuyển hóa thành cysteine Homocysteine có thể được chuyển hóa thành cysteine. Cystathionineβsynthase (một enzym phụ thuộc PLP) kết hợp homocysteine với serine để tạo thành cystathionine. Thay vì bị thoái hóa bởi enzym cystathionineβlyase, trong con đường sinh tổng hợp này, cystathionine bị bẻ gãy thành cysteine và αcetobutyrate nhờ enzym (6) cystathionineγlyase. Enzyme αcetoacid dehydrogenase biến đổi αcetobutyrate thành propionylCoA, rồi được chuyển hóa thành succinylCoA qua ba giai đoạn (xem propionylCoA).
- 4. Ứng dụng Trong các quá trình sinh hóa, methionine chuyển đổi thành SAM(S adenosylmethionine). SAM được nghiên cứu là có hiệu quả trong điều trị viêm khớp, giảm stress và chứng trầm cảm,cải thiện chức năng gan. Methionine tăng cường tổng hợp glutathion và được sử dụng thay thế cho acetylcysteine để điều trị ngộ độc paracetamol, đề phòng tổn thương gan. Biệt dược lobamine với hoạt chất là methionine rất được ưa chuộng để giải độc gan. Methionine là một acid amin có chứa lưu huỳnh có tác dụng bảo vệ đặc hiệu tế bào gan, là yếu tố hướng mỡ (lipotrope), tác nhân methyl hóa và sulfur hóa, ngoài ra còn có tác dụng chống nhiễm độc. Methionine còn được dùng như là một yếu tố ngăn ngừa tế bào gan thoái hóa mỡ. Tuy nhiên ở những người đã bị suy gan, methionine có thể làm cho tổn thương gan nặng. Methionine còn là chất tạo vị, nó được dùng để tạo vị ngọt của một số loại sản phẩm. III. Cystine 1. Định nghĩa Là 1 amino acid dạng nhị trùng được tạo thành khi 2 phân tử Cysteine liên kết với nhau nhờ liên kết disulfua Công thức phân tử : C6H12N2O4S2 Công thức cấu tạo : (SCH2CH(NH2)CO2H)2 NH2 O HO S S OH O NH 2 Cấu trúc không gian:
- Khối lượng phân tử: 240.30 g/mol Điểm đẳng điện pI: 4.8 2. Nguồn gốc Cystine được phát hiện ra năm 1810 bởi William Hyde Wollaston nhưng lúc đó nó chưa được nhận ra là 1 thành phần của proteins mãi đến khi nó được phân lập từ sừng bò năm 1899. Trong việc hình thành liên kết disulfua bên trong và giữa các phân tử protein, cystine là một thành phần quan trọng của cấu trúc bậc 3 protein. Cystine được tìm thấy nhiều ở các tế bào của hệ miễn dịch, có nhiều trong chất sừng, protein của móng tay da và tóc. Tóc người có khoảng 5% lượng cystine. LCystine là một chế phẩm amino acid tự nhiên có sẵn khoảng 20% trong Cervus Cornu (nhung hươu). Đồng thời, 1 số thực phẩm như trứng, thịt, sản phẩm sữa cũng là nguồn cung cấp cystine rất tốt . 3. Lý tính Cystine là chất rắn không màu khó khăn để hòa tan trong nước, tan trong rượu, benzene, ether, chloroform, hòa tan trong acid và alkali.
- Nóng chảy ở 247249 °C Liên kết disulfua có thể bị phá hủy ở 150oC, đăc biệt ở độ ẩm thấp (khoảng dưới 20%) 4. Hóa tính Là 1 acid amin nên Cystine có các tính chất thông thường của 1 acid amin như: Có tính điện ly lưỡng cực nên có thể tác dụng cả với acid và base :Phản ứng với acid Nitro HNO2 Phản ứng với Formol ( Formaldehyd) Phản ứng desamin hoá + Desamin hoá theo phản ứng thuỷ phân + Desamin hoá theo phản ứng khử + Desamin hoá theo phản ứng oxy hoá + Desamin hoá theo phản ứng khử nội phân tử Phản ứng chuyển hoá gốc –COOH: Decarboxyl hoá Phản ứng chuyển hoá gốc R2 Tạo phức với kim loại nặng Sự tạo thành ester Các gốc hoá học trong phân tử Cystine còn có thể thực hiện các phản ứng: + Phản ứng tạo muối do nhóm –NH2, COOH + Phản ứng oxy hoá khử do nhóm SS Phản ứng alkyl hoá, acid hoá, ester hoá do nhóm –NH2, OH, COOH
- + Phản ứng amid hoá do nhóm –COOH Phản ứng khử amin hoá do có nhóm NH2 + Phản ứng phosphoryl hoá và sulfo hoá do nhóm –OH Đặc biệt, do liên kết disulfua dễ bị khử tạo ra thiol và cystein, ta có thêm phản ứng chuyển hoá từ Cystine sang Cysteine : (SCH2CH(NH2)CO2H)2 + 2RSH → 2 HSCH2CH(NH2)CO2H + RSSR NH3+ O O O S S O HS O O NH3+ NH3+ NADH + H+ NAD+ LCystine LCysteine 5. Ứng dụng Cystine có công dụng gần giống như glutathione là vận chuyển các độc tố từ gan.. Nó bảo vệ gan và nảo chống lại chất độc của rượu và thuốc lá và có thể ngăn cản có hiệu quả trong việc ngăn cản dư vị khó chịu do dùng thức uống có nồng độ cồn cao LCystine là một amino acid tự nhiên, có tác dụng tăng chuyển hóa protein. Ngoài ra trong thành phần có chứa gốc SH, có tác dụng khử các gốc tự do, là tác nhân đóng vai trò chủ yếu trong nhiều bệnh thoái hóa và lão hóa (như đục thủy tinh thể, đái đường, ung thư, viêm gan, viêm khớp...). Do vậy LCystine có tác dụng chống lão hóa, tăng tuổi thọ. Lcystine là một thành phần cơ bản của các hiện bộ (18% trong tóc, 14% trong móng) và chiếm một tỷ lệ ít hơn trong da (2 đến 4%). Lcystine tham giam vào quá trình tổng hợp kératine (chất sừng) của tóc và móng. Nó thúc đẩy sự sinh trưởng của các tế bào mầm ở các vùng tạo chất sừng và có ảnh
- hưởng đến sự tăng trưởng của các hiện bộ. Tác động này đã được chứng minh qua các thử nghiệm có đánh dấu bằng đồng vị phóng xạ ở các nhân của tế bào mầm. Ở người, các nồng độ cao của cystine, đặc biệt là ở tóc, đạt được sau khi uống thuốc từ 4 đến 6 tuần. LCystine có đủ trong hắc tố bào sẽ tác dụng với dopaquinone tạo ra cystinydopa có tác dụng điều chỉnh sự cấu tạo hắc tố ở da. LCystine ứng chế Collagenaseezym phá hủy chất tạo kẹo, làm hư hại giác mạc. Collagenase được tạo thành ở nơi tổn thương giác mạc gây ra do chấn thương, hóa chất, virus hoặc vi khuẩn LCystine là một chế phẩm amino acid tự nhiên có sẵn khoảng 20% trong Cervus Cornu (nhung hươu) giúp tăng cường sinh lực và có tác dụng chống viêm nhờ chứa gốc SH trong đó. Nó có tác dụng phân giải keratin, đào thải melanin và giải độc, do đó có hiệu quả điều trị đặc biệt trên chứng mụn nhọt, sạm da, da biến màu và hiệu quả kháng dị ứng cũng như ngăn ngừa các tổn thương gan. Cystine có nhiều trong chất sừng, protein của móng tay da và tóc. Thỉnh thoảng cystine được bán ở các cửa hang như là những sản phẩm chống lão hóa vì nó kích thích sự tạo thành collagen và làm mịn da. Bổ sung cystine vào dẩy nhanh quá trình chữa lành vết bỏng, vết thương. Vậy tóm lại một số ứng dụng của Cystine Trong dược phẩm như thuốc chống viêm gan, bảo vệ gan trong nhiễm độc kim loại nặng, chống loạn dưỡng da, chống rụng tóc, chống bệnh nghèo đạm và chống nhiễm độc thai nghén. Ngoài ra cystine còn được dùng làm thuốc chống
- bỏng da và viêm loét giác mạc, thuốc phòng và điều trị ung thư, thuốc bổ miễn dịch, thuốc chống xơ hoá và thấp khớp, thuốc chống phóng xạ, phòng chất độc hoá học và hàn gắn nhanh những vết thương, vết mổ v.v... thuốc chống bỏng thuốc chống viêm gan thuốc chống rụng tóc Đối với mỹ phẩm, cystine được làm thuốc trẻ hóa, thuốc sấy tóc bền, thuốc làm mượt tóc v.v... Đối với thực phẩm cystine trở thành loại thực phẩm cao cấp, được dùng vào sữa khô, bánh mỳ khô và súp cao cấp. Với ý nghĩa như vậy, cystine hiện nay trở thành thương phẩm có giá trị trên thị trường Quốc tế, đặc biệt là các nước ở Tây âu và Nhật bản. Riêng ở Nhật mỗi năm tiêu thụ lên tới 500 tấn cysteine. 6. Công nghệ sản xuất Cystine từ nguồn phế liệu Trong các công nghệ phổ biến sản xuất amino acid bằng con đường vi khuẩn, nấm men, con đường tổng hợp enzyme, con đường tổng hợp hoá học, thì cystine vẫn đang được tách chiết từ nguồn nguyên liệu giàu cystine và trong năm 1980, thế giới đã sản xuất được 700 tấn dạng Lcystine. Dưới đây chỉ trình bày việc sản xuất cystine và các amino acid từ nguồn phế liệu là lông gà, lông cánh vịt lông lợn và tóc vụn. Quá trình tách chiết phải trải qua 11 công đoạn sau đây: + Công đoạn 1: Thuỷ phân bằng HCl ở 100oC. + Công đoạn 2: Trung hoà dịch thuỷ phân bằng Na2CO3 + Công đoạn 3: Lắng , lọc và thu tủa. + Công đoạn 4: Hoà tan tủa bằng HCl 5%, thu lấy dịch trong. + Công đoạn 5: Xử lý than hoạt tính.
- + Công đoạn 6: Trung hoà NaOH, thu cystine thô. + Công đoạn 7: Đến công đoạn 11 lặp lại các bước trên để thu được cystine sạch và cuối cùng phải xác định sản phẩm bằng một trong những phương pháp khác nhau thường sử dụng trong phòng thí nghiệm. Bằng công nghệ trên họ đã thu được hàm lượng cystine từ tóc là 6%; từ lông cánh vịt 2,3%; lông gà 3,5% và lông lợn 2,13% (tính theo hàm lượng amino acid tổng số). IV. Cystein 1. Định nghĩa Cysteine là một αamino acid, là một aa thay thế, do đó con người có thể tổng hợp Cysteine hay Cys CTPT: C3H7NO2S Khối lượng phân tử: M = 121.16 g/mol. pI=5.07 CTHH: HO2CCH(NH2)CH2SH O HS OH NH 2 Cấu trúc không gian:
- Đơn vị mã: UGU and UGC 2. Nguồn gốc Là một trong những 20 aa đã tìm thấy trong protein động vật. Chỉ có đồng phân L tham gia sinh tổng hợp trong protein động vật có vú. Nó có nhiều trong protein của tóc, móng, chất sừng của da. Cystein được tách ra từ nước thải sỏi thận – 1810, từ mô sừng – 1899. Sự biến đổi của cystine thành cystein được công bố vào năm 1884. Cystine và cysteine có thể chuyển đổi qua lại, cysteine được tổng hợp trong cơ thể từ serine và methionine. Được tìm thấy trong thức ăn chứa protein cao, bao gồm: + Động vật: thịt làm xúc xích, lạp xưởng; thịt gà, vịt, lợn; thịt hộp và trong thịt cóc với số lượng ít. Ü + Thức ăn chay : Từ động vật: trứng, sữa, whey protein, phomat, yogurt. Từ thực vật: ớt, c ủ t ỏi, c ủ hành, bông cải xanh, cải bruxen, yến mạch, mầm lúa mì. Trong công nghệ: Hiện nay, Lcysteine có thể được tinh chế bằng cách thủy phân tóc ở người, lông. Thủy phân sừng tê giác cho các acid amin là Tyrosin, axit tiolactic, cysteine. VD: Nghiên cứu quy trình công nghệ bán tổng hợp NaxetylLcystein từ L cystein chiết xuất từ tóc, phụ phẩm móng, sừng, lông gia súc làm nguyên liệu sản xuất thuốc. Định hướng mục tiêu Nội dung nghiên cứu Dự kiến kết quả Thời gian Phương thức, phương án tổ chức thực hiện: Nghiên cứu xây dựng qui trình công nghệ thuỷ phân tóc, móng, sừng, lông gia súc để sản xuất Lcystein.
- Nghiên cứu và triển khai qui trình bán tổng hợp NaxetylLcystein từ Lcystein. Nghiên cứu các điều kiện thuỷ phân các nguồn keratin. Tinh chế Lcystein thu được đạt tiêu chuẩn kỹ thuật cho quá trình bán tổng hợp NaxetylLcystein và đạt tiêu chuẩn dược điển Anh. Nghiên cứu phản ứng axetyl hoá và khử hoá Lcystein điều kiện PTN và pilot. Nghiên cứu tách và tinh chế NaxetylLcystein từ hỗn hợp phản ứng. Kiểm nghiệm Lcystein và NaxetylLcystein theo tiêu chuẩn dược điển Anh. Nghiên cứu đánh giá độ ổn định của nguyên liệu Qui trình công nghệ thuỷ phân tóc, móng, sừng, lông gia súc để sản xuất L cystein qui mô 5kg/mẻ. Qui trình công nghệ bán tổng hợp NaxetylLcystein từ Lcystein qui mô 500g /mẻ. 70 kg Lcystein đạt tiêu chuẩn dược điển Anh. 30 kg NaxetylLcystein đạt tiêu chuẩn dược điển Anh 3. Lý tính Tồn tại ở thể rắn, lỏng, khí. Cysteine được phân loại là một acid amin háo nước, do khả năng phản ứng của thiol. Cysteine là một cấu trúc quan trọng cấu thành những protein và enzyme. Là tiền thân của taurine, hình thành coenzyme A từ vitamin pantothenic acid và hình thành tripeptide glutathione. Có khả năng là độc tố và được kích thích ở đường ruột, huyết thanh.
- Ngược lại, Cysteine tham gia trong suốt quá trình tiêu hóa giống như Cystine chất ổn định đường ruột. Cystein được dùng như một chất gia tăng độ nhão trong bột khi nướng bánh. 4. Hóa tính Phản ứng carboxyl hóa tạo nhóm –COOH ở các acid hữu cơ + Phản ứng mất amin (desamination) • Phản ứng oxy hóa • Phản ứng khử • Phản ứng thủy phân Phản ứng tạo glucoside xảy ra khi tổng hợp tryptophan Phản ứng methyl hóa (gắn nhóm –CH3) Phản ứng ether hóa, ester hóa Phản ứng mất nước Phản ứng tách: khi tổng hợp các chất chỉ được chuyển đổi và tạo ra các hợp chất trung gian, sau đó được biến đổi để tạo thành chất mới Phản ứng kết hợp (ngưng tụ, cô đặc) Phản ứng amin hóa Phản ứng acetyl hóa tạo acetylCoA Phản ứng amylin hóa: cắt bột thành đường Các phản ứng này được thực hiện trong các ngành công nghiệp để sản xuất ra các sản phẩm cần thiết. Ảnh hưởng của nhóm chức sulfhydryl hay thiol:
- Do lưu huỳnh và oxy thuộc về cùng một nhóm trong bảng tuần hoàn các nguyên tố nên chúng chia sẻ một số thuộc tính liên kết hóa học tương tự nhau. => Tính chất hóa học của các hợp chất chứa nhóm sulfhydryl là tương tự như của các rượu; các thiol tạo ra các thioete, thioaxetal và thioeste, trong đó các nguyên tử oxy có nguồn gốc trong rượu được thay thế bằng nguyên tử lưu huỳnh trong các hợp chất tương tự chứa oxy là ete, axetal và este. Nguyên tử lưu huỳnh trong nhóm sulfhydryl có ái lực hạt nhân hơn so với nguyên tử oxy trong rượu. Nhóm SH có tính acid rõ nét (pKa thông thường khoảng 1011). => Trong môi trường base thì các anion thiolat được tạo ra và nó là anion có ái lực hạt nhân rất mạnh. Nhóm (hoặc anion tương ứng của nó) dễ bị oxi hóa bởi các chất oxi hóa như brom, tạo ra disulfua hữu cơ RSSR, hoặc bởi các chất oxi hóa mạnh hơn như natri hypoclorit, tạo ra các axit sulfonic RSO3H. Do có sự chênh lệch về độ âm điện nhỏ giữa lưu huỳnh và hydro, liên kết S H trên thực tế gần như là liên kết cộng hóa trị không phân cực. Các thiol ít bị liên kết bởi các liên kết hydro . Chúng có điểm sôi thấp hơn và hòa tan ít hơn trong nước và các dung môi phân cực khác khi so sánh với rượu có cùng một gốc. Vai trò nhóm chức sulfhydryl hay thiol: Đóng vai trò quan trọng trong các hệ sinh vật. Khi các nhóm sulfhydryl của hai phần còn lại của cysteine (trong đơn phân tử hay trong khối đa phân tử) được đưa lại gần nhau trong quá trình tạo protein,
- phản ứng oxi hóa có thể tạo ra một đơn vị cystine với liên kết disulfua (S S). +Các liên kết disulfua, một yếu tố chính trong: • Hình dạng và chức năng của bộ xương, chuỗi liên kết protein Như góp phần vào cấu trúc cấp ba của protein nếu như các cysteine là một phần của cùng một chuỗi peptit, cấu trúc cấp bốn của các protein nhiều đơn vị bằng cách tạo ra các liên kết không cộng hóa trị tương đối mạnh giữa các chuỗi peptit khác nhau. • Sự ổn định cao về cấu trúc protein như chất sừng Tạo ra các liên kết không cộng hóa trị với chất nền của enzym, góp phần vào hoạt động xúc tác như papain – enzyme từ nhựa cây đu đủ được dùng để làm cho thịt mềm. Chức năng sinh học: Nhóm thiol là nhóm ưa nhân và dễ bị oxi hóa. Phản ứng tăng lên khi nhóm thiol bị ion hóa, và Cysteine còn lại trong protein có giá trị pKa trung tính. Tiền thân của chất chống oxihóa glutathione Bởi vì nhóm thiol có khả năng chịu đựng được phản ứng oxi hóakhử nên cysteine được cho là chất chống oxihóa của các protein. Điển hình nhất là tripeptide glutathione. 5. Sinh tổng hợp và ứng dụng Ở động vật, sinh tổng hợp bắt đầu từ aa Serine. Sulfur được nhận từMethionine được biến đổi thành homocysteine giữa Sadenosylmethionine và Cystathionine betasynthase. Sau đó homocysteine kết hợp với serine hình thành thioether cystathionine không đối xứng. Enzyme cystathionine
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tiểu luận Hóa sinh đại cương: Lịch sử phát triển và ứng dụng của xà phòng và chất tẩy rửa
24 p | 27 | 15
-
Báo cáo tiểu luận Hóa sinh đại cương: Hormon và Vitamin
55 p | 35 | 14
-
Báo cáo tiểu luận Hóa sinh đại cương: Vitamin
31 p | 35 | 13
-
Tiểu luận Hóa sinh đại cương: Tìm hiểu về Axit nucleic
43 p | 33 | 13
-
Tiểu luận Hóa sinh đại cương: Trình bày hiểu biết về protamine, prolamine, gluteline và các ứng dụng thực tiễn của chúng trong đời sống
28 p | 26 | 13
-
Tiểu luận Hóa sinh đại cương: Đường đơn glucose và các ứng dụng của nó trong thực tiễn đời sống
29 p | 34 | 12
-
Tiểu luận Hóa sinh đại cương: Tìm hiểu về messenger RNA
20 p | 18 | 11
-
Tiểu luận Hóa sinh đại cương: Tìm hiểu về glycogen và ứng dụng trong đời sống
13 p | 27 | 11
-
Tiểu luận Hóa sinh đại cương: Glyceride và các ứng dụng thực tiễn của chúng trong đời sống
24 p | 29 | 11
-
Tiểu luận môn Hóa sinh đại cương: Trình bày các hiểu biết của các em về các hormone tuyến yên
35 p | 35 | 11
-
Tiểu luận Hóa sinh đại cương: Cấu tạo của Enzyme
22 p | 24 | 11
-
Tiểu luận Hóa sinh đại cương: Trình bày những hiểu biết của em về rARN
35 p | 25 | 10
-
Tiểu luận môn Hóa sinh đại cương: Trình bày về tRNA
23 p | 35 | 10
-
Tiểu luận Hóa sinh đại cương: Đường đơn Ribulose và các ứng dụng thực tiễn của nó trong đời sống
10 p | 26 | 8
-
Tiểu luận Hóa sinh đại cương: Đường đơn Mannose và các ứng dụng của nó trong đời sống
20 p | 22 | 8
-
Tiểu luận Hóa sinh đại cương: Đường galactose và các ứng dụng của nó trong thực tiễn đời sống
22 p | 27 | 8
-
Tiểu luận Hóa sinh đại cương: Hãy nêu những hiểu biết của em về chất trợ sinh
31 p | 21 | 8
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn