Toán lượng giác - Chương 6: Phương trình đẳng cấp
lượt xem 17
download
Toán lượng giác - Chương 6: Phương trình đẳng cấp gồm các công thức và bài tập có đáp án giúp cho các bạn học sinh lớp 12 có thêm tư liệu tham khảo phục vụ cho ôn tập.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Toán lượng giác - Chương 6: Phương trình đẳng cấp
- CHÖÔNG VI. PHÖÔNG TRÌNH ÑAÚNG CAÁP a sin2 u + b sin u cos u + c cos2 u = d Caù c h giaû i : π • Tìm nghieä m u = + kπ ( luù c ñoù cos u = 0 vaø sin u = ±1) 2 • Chia hai veá phöông trình cho cos2 u ≠ 0 ta ñöôï c phöông trình : ( atg 2u + btgu + c = d 1 + tg 2u ) Ñaë t t = tgu ta coù phöông trình : ( a − d ) t 2 + bt + c − d = 0 Giaû i phöông trình tìm ñöôïc t = tgu Baø i 127 : Giaû i phöông trình cos2 x − 3 sin 2x = 1 + sin2 x ( *) Vì cosx = 0 khoân g laø nghieä m neân Chia hai veá cuû a (*) cho cos2 ≠ 0 ta ñöôïc ( ) ( *) ⇔ 1 − 2 3tgx = 1 + tg 2 x + tg 2 x Ñaë t t = tgx ta coù phöông trình : 2t 2 + 2 3t = 0 ⇔ t = 0∨ t = − 3 π Vaäy ( * ) ⇔ tgx = 0 hay tgx = − 3 ⇔ x = kπ hay x = − + kπ, k ∈ 3 Baø i 128 : Giaû i phöông trình cos3 x − 4 sin 3 x − 3 cos x sin 2 x + sin x = 0 ( *) π • Khi x = + kπ thì cos x = 0 vaø sin x = ±1 2 thì (*) voâ nghieä m • Do cos x = 0 khoâ n g laø nghieä m neâ n chia hai veá cuûa (*) cho cos 3 x ta coù (*) ⇔ 1 − 4tg 3 x − 3tg 2 x + tgx (1 + tg 2 x ) = 0 ⇔ 3tg 3 x + 3tg 2 x − tgx − 1 = 0 ( ⇔ ( tgx + 1) 3tg 2 x − 1 = 0) 3 ⇔ tgx = −1 ∨ tgx = ± 3 π π ⇔ x = − + kπ ∨ x = ± + kπ, k ∈ 4 6 Baø i 129 : Giaû i phöông trình 3 cos4 x − 4 sin 2 x cos2 x + sin 4 x = 0 ( * )
- Do cosx = 0 khoâ n g laø nghieäm neân chia hai veá cuûa (*) cho cos4 x ≠ 0 Ta coù : (*) ⇔ 3 − 4tg 2 x + tg 4 x = 0 ⇔ tg 2 x = 1 ∨ tg 2 x = 3 ⎛ π⎞ ⎛ π⎞ ⇔ tgx = ±1 = tg ⎜ ± ⎟ ∨ tgx = tg ⎜ ± ⎟ ⎝ 4⎠ ⎝ 3⎠ π π ⇔ x = ± + kπ ∨ x = ± + kπ, k ∈ 4 3 Baø i 130 : Giaû i phöông trình sin 2x + 2tgx = 3 ( * ) Chia hai veá cuû a (*) cho cos2 x ≠ 0 ta ñöôïc 2 sin x cos x 2tgx 3 (*) ⇔ 2 + = cos x cos x cos2 x 2 ( ) ⇔ 2tgx + 2tgx 1 + tg 2 x = 3 1 + tg 2 x ( ) ⎧t = tgx ⇔⎨ 3 2 ⎩2t − 3t + 4t − 3 = 0 ⎧t = tgx ⎪ ⇔⎨ ( ⎪( t − 1) 2t − t + 3 = 0 ⎩ 2 ) ⇔ tgx = 1 π ⇔x= + kπ, k ∈ 4 Baø i 131 : Giaû i phöông trình sin x sin 2x + sin 3x = 6 cos3 x ( * ) ( *) ⇔ 2 sin2 x cos x + 3sin x − 4 sin3 x = 6 cos3 x • Khi cos x = 0 ( sin x = ± 1 ) thì ( * ) voâ nghieä m • Chia hai veá phöông trình (*) cho cos3 x ≠ 0 ta ñöôïc 2sin2 x 3sin x 1 sin3 x ( *) ⇔ + . −4 =6 cos2 x cos x cos2 x cos3 x ( ) ⇔ 2tg 2 x + 3tgx 1 + tg 2 x − 4tg 3 x = 6 ⇔ tg 3 x − 2tg 2 x − 3tgx + 6 = 0 ( ⇔ ( tgx − 2 ) tg 2 x − 3 = 0) ⇔ tgx = 2 = tgα ∨ tgx = ± 3 π ⇔ x = α + kπ ∨ x = ± + kπ, k ∈ ( vôù i tgα = 2) 3
- Baø i 132 : (Ñeà thi tuyeån sinh Ñaï i hoï c khoá i A, naê m 2003) Giaû i phöông trình cos 2x 1 cot gx − 1 = + sin2 x − sin 2x ( *) 1 + tgx 2 Ñieà u kieän sin 2x ≠ 0 vaø tgx ≠ −1 Ta coù : cos 2x cos2 x − sin2 x cos x cos x − sin x = = 2 ( 2 ) 1 + tgx sin x cos x + sin x 1+ cos x = cos x ( cos x − sin x ) ( do tgx = −1 neâ n, sin x + cos x ≠ 0 ) cos x 1 Do ñoù : ( *) ⇔ sin x ( ) − 1 = cos2 x − sin x cos x + sin2 x − sin 2x 2 cos x − sin x ⇔ = 1 − sin 2x sin x 2 ⇔ ( cos x − sin x ) = sin x ( cos x − sin x ) ⇔ cos x − sin x = 0 hay 1 = sin x ( cos x − sin x ) (**) ⎡ tgx = 1 ( nhaä n so vôù i tgx ≠ −1) ⇔⎢ 1 sin x ⎢ = − tg 2 x ( do cos x ≠ 0 ) ⎢ cos x cos x ⎣ 2 ⎡ π ⇔ ⎢ x = 4 + kπ, k ∈ ⎢ ⎢2tg x − tgx + 1 = 0 ( voâ nghieä m ) 2 ⎣ π ⇔x= + kπ, k ∈ ( nhaän do sin 2x ≠ 0) 4 Löu yù : coù theå laø m caùc h khaùc 1 1 ( * *) ⇔ 1 − sin 2x + (1 − cos 2x ) =0 2 2 ⇔ 3 = sin 2x + cos 2x ⎛ π⎞ ⇔ 3 = 2 sin ⎜ 2x + ⎟ : voâ nghieä m ⎝ 4⎠ Baø i 133 : Giaû i phöông trình sin 3x + cos 3x + 2 cos x = 0 ( * ) ( *) ⇔ ( 3sin x − 4 sin 3 x ) + ( 4 cos3 x − 3 cos x ) + 2 cos x = 0 ⇔ 3sin x − 4 sin3 x + 4 cos3 x − cos x = 0 Vì cosx = 0 khoân g laø nghieä m neâ n chia hai veá phöông trình cho cos3 x ≠ 0 ta ñöôïc ( *) ⇔ 3tgx (1 + tg 2 x ) − 4tg 3 x + 4 − (1 + tg 2 x ) = 0
- ⇔ − tg 3 x − tg 2 x + 3tgx + 3 = 0 ⎧ t = tgx ⇔⎨ 3 2 ⎩ t + t − 3t − 3 = 0 ⎪ t = tgx ⎧ ⇔⎨ ( ⎪( t + 1) t − 3 = 0 ⎩ 2 ) ⇔ tgx = −1 ∨ tgx = ± 3 π π ⇔ x = − + kπ ∨ x = ± + kπ, k ∈ 4 3 5sin 4x.cos x Baø i 134 : Giaû i phöông trình 6sin x − 2 cos3 x = ( *) 2 cos 2x Ñieà u kieän : cos 2x ≠ 0 ⇔ cos2 x − sin2 x ≠ 0 ⇔ tgx ≠ ±1 ⎧ 10 sin 2x cos 2x cos x ⎪6 sin x − 2 cos x = 3 Ta coù : (*) ⇔ ⎨ 2 cos 2x ⎪cos 2x ≠ 0 ⎩ ⎧6 sin x − 2 cos3 x = 5 sin 2x cos x ⇔⎨ ⎩ tgx ≠ ±1 ⎧6 sin x − 2 cos3 x = 10 sin x cos2 x ( * *) ⎪ ⇔⎨ ⎪tgx ≠ ±1 ⎩ Do cosx = 0 khoâ n g laø nghieäm cuûa (**), chia hai veá phöông trình (**) cho cos3 x ta ñöôïc ⎧ 6tgx − 2 = 10tgx ( * *) ⇔ ⎪ cos2 x ⎨ ⎪tgx ≠ ±1 ⎩ ⎧t = tgx vôù i t ≠ ±1 ⎪ ⇔⎨ (2 ) ⎪6t 1 + t − 2 = 10t ⎩ ⎧ t = tgx vôù i t ≠ ±1 ⎧t = tgx vôù i t ≠ ±1 ⇔⎨ 3 ⇔⎨ ⎩3t − 2t − 1 = 0 ⎩(t − 1) (3t + 3t + 1) = 0 2 ⎧ t = tgx vôù i t ≠ ±1 ⇔⎨ : voâ nghieä m ⎩t = 1 Baø i 135 : Giaû i phöông trình sin x − 4 sin 3 x + cos x = 0 ( * ) • Vì cosx = 0 khoâ n g laø nghieäm neân chia hai veá phöông trình cho cos3 x thì ( *) ⇔ tgx (1 + tg 2 x ) − 4tg 3 x + 1 + tg 2 x = 0
- ⎧t = tgx ⇔⎨ 3 2 ⎩−3t + t + t + 1 = 0 ⎧t = tgx ⎪ ⇔⎨ ( ⎪( t − 1) 3t + 2t + 1 = 0 ⎩ 2 ) ⇔ tgx = 1 π ⇔x= + kπ, k ∈ 4 Baø i 136 : Giaû i phöông trình tgx sin 2 x − 2 sin 2 x = 3 ( cos 2x + sin x cos x ) ( * ) Chia hai veá cuû a phöông trình (*) cho cos2 x ( *) ⇔ tg x − 2tg x = 3 2 ( 3 cos2 x − sin 2 x + sin x cos x ) cos2 x ⇔ tg 3 x − 2tg 2 x = 3 (1 − tg 2 x + tgx ) ⇔ tg 3 x + tg 2 x − 3tgx − 3 = 0 ⎧ t = tgx ⇔⎨ 3 2 ⎩ t + t − 3t − 3 = 0 ⎧ t = tgx ⎪ ⇔⎨ ( ⎪( t + 1) t − 3 = 0 ⎩ 2 ) ⇔ tgx = −1 ∨ tgx = ± 3 π π ⇔x=− + kπ ∨ x = ± + kπ, k ∈ 4 3 Baø i 137 : Cho phöông trình ( 4 − 6m ) sin 3 x + 3 ( 2m − 1) sin x + 2 ( m − 2 ) sin 2 x cos x − ( 4m − 3) cos x = 0 ( *) a/ Giaû i phöông trình khi m = 2 ⎡ π⎤ b/ Tìm m ñeå phöông trình (*) coù duy nhaá t moä t nghieä m treâ n ⎢ 0, ⎥ ⎣ 4⎦ π Khi x = + kπ thì cosx = 0 vaø sin x = ±1 neâ n 2 (*) thaø n h : ± ( 4 − 6m ) ± 3 ( 2m − 1) = 0 ⇔ 1 = 0 voâ nghieä m chia hai veà (*) cho cos x ≠ 0 thì 3 ( *) ⇔ ( 4 − 6m ) tg 3 x + 3 ( 2m − 1) tgx (1 + tg 2 x ) + 2 ( m − 2 ) tg 2 x − ( 4m − 3) (1 + tg 2 x ) = 0 ⎧t = tgx ⎪ ⇔⎨ 3 ⎪t − ( 2m + 1) t + 3 ( 2m − 1) t − 4m + 3 = 0 ( * *) 2 ⎩
- ⎧t = tgx ⎪ ⇔⎨ ( ⎪( t − 1) t − 2mt + 4m − 3 = 0 ⎩ 2 ) ⎧t = tgx ⎪ a/ Khi m = 2 thì (*) thaø n h ⎨ ( ⎪( t − 1) t − 4t + 5 = 0 ⎩ 2 ) π ⇔ tgx = 1 ⇔ x = + kπ, k ∈ 4 ⎡ π⎤ b/ Ta coù : x ∈ ⎢ 0, ⎥ thì tgx = t ∈ [ 0,1] ⎣ 4⎦ Xeù t phöông trình : t 2 − 2mt + 4m − 3 = 0 ( 2 ) ⇔ t 2 − 3 = 2m ( t − 2 ) t2 − 3 ⇔ = 2m (do t = 2 khoâ n g laø nghieä m ) t−2 t2 − 3 Ñaë t y = f ( t ) = ( C ) vaø (d) y = 2m t−2 t 2 − 4t + 3 Ta coù : y ' = f ( t ) = 2 ( t − 2) Do (**) luoâ n coù nghieäm t = 1 ∈ [ 0,1] treân yeâu caàu baø i toaùn ⎡( d ) y = 2m khoâ ng coù ñieå m chung vôù i ( C ) ⇔⎢ ⎢( d ) caé t ( C ) taï i 1 ñieå m duy nhaá t t = 1 ⎣ 3 ⇔ 2m < ∨ 2m ≥ 2 2 3 ⇔ m< ∨m≥1 4 Caù c h khaù c : Y C B T ⇔ f(t) = t 2 − 2mt + 4m − 3 = 0 ( 2 ) voâ nghieä m treâ n [ 0,1 ) . ⎧Δ ≥ 0 ⎪af (0 ) ≥ 0 ⎪ ⎪ Ta coù (2) coù nghieä m ∈ [ 0,1] ⇔ f (0). f (1) ≤ 0 hay ⎨af (1) ≥ 0 ⎪ ⎪0 ≤ S ≤ 1 ⎪ ⎩ 2
- ⎧m2 − 4 m + 3 ≥ 0 ⎪ ⎪4m − 3 > 0 3 ⇔ ( 4 m − 3) (2m − 2) ≤ 0 hay ⎨ ⇔ ≤ m ≤1 ⎪ 2m − 2 > 0 4 ⎪0 ≤ m ≤1 ⎩ 3 Do ñoù (2) voâ nghieäm treâ n [ 0,1 ) ⇔ m < hay m >1 hay f (1) = 0 4 3 ⇔m< ∨m≥1 4
- BAØI TAÄP 1. Giaû i caùc phöông trình sau : a/ cos3 x + sin x − 3sin2 x cos x = 0 b/ sin 2 x ( tgx + 1) = 3sin x ( cos x − sin x ) + 3 c/ 2 cos2 x + cos 2x + sin x = 0 1 − cos3 x d/ tg 2 x = 1 − sin3 x e/ sin3 x − 5sin2 x cos x − 3sin x cos2 x + 3cos3 x = 0 f/ cos3 x + sin x − 3sin2 x cos x = 0 g/ 1 + tgx = 2 2 sin x h/ sin3 x + cos3 x = sin x − cos x k/ 3tg 2 x + 4tgx + 4 cot gx + 3cot g 2 x + 2 = 0 3(1 + sin x) π x m/ 3tg 2 x − tgx + 2 − 8 cos 2 ( − ) = 0 cos x 4 2 sin x + cos x n/ =1 sin 2x 2. Cho phöông trình : sin 2 x + 2 ( m − 1) sin x cos x − ( m + 1) cos2 x = m a/ Tìm m ñeå phöông trình coù nghieä m b/ Giaû i phöông trình khi m = -2 ( ÑS : m ∈ [ −2,1])
CÓ THỂ BẠN MUỐN DOWNLOAD
-
15 Chuyên đề luyện thi đại học môn Toán
146 p | 1885 | 1084
-
Giáo trình tự học toán 11
24 p | 1288 | 603
-
Lượng giác - 6.Lượng giác và các bài toán dãy số
12 p | 747 | 116
-
6 Đề thi HK1 môn Toán lớp 11
32 p | 383 | 108
-
Chuyên đề 6 : TỌA ĐỘ ĐIỂM VÀ VECTƠ
16 p | 294 | 103
-
Bộ 6 đề kiểm tra toán học kì 1 lớp 11 môn toán
6 p | 488 | 96
-
các dạng toán cơ bản và nâng cao lượng giác 11 (bài tập tự luận và trắc nghiệm): phần 1
128 p | 305 | 45
-
ĐỀ THI HỌC KỲ I MÔN TOÁN 11Trường THPT Thạnh Lộc
3 p | 231 | 38
-
Luyện thi ĐH môn Toán: Nguyên hàm lượng giác (Phần 6) - Thầy Đặng Việt Hùng
4 p | 172 | 23
-
Chuyên đề LTĐH: Chuyên đề 6 - Ôn tập lượng giác phương trình lượng giác
13 p | 159 | 22
-
Hình học lớp 9 Tiết 6: TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN
9 p | 288 | 9
-
giáo án toán học: hình học 9 tiết 5+6
11 p | 117 | 9
-
Đề thi thử đại học lần 1 năm 2008-2009 môn Toán - Khối chuyên toán - tin trường Đại học khoa học tự nhiên - Đại học quốc gia Hà Nội
4 p | 67 | 6
-
Tuyển chọn bất đẳng thức và bài toán Min - Max: Phần 1
177 p | 49 | 5
-
Giáo án môn Toán lớp 10 sách Kết nối tri thức: Bài 6
11 p | 43 | 5
-
Bài 8. NĂNG LƯỢNG TRONG DAO ĐỘNG ĐIỀU HỊA
5 p | 57 | 4
-
Đề khảo sát chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2014-2015 – Trường THCS An Hòa
4 p | 96 | 3
-
KỲ THI TUYỂN SINH LỚP 10 THPT MÔN TOÁN 2012- 2013
5 p | 62 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn