Tóm tắt Luận án tiến sĩ Vật lí kỹ thuật: Nghiên cứu cấu trúc và sự không đồng nhất động học trong vật liệu Silicát ba nguyên PbO.SiO2, Al2O3.2SiO2 và Na2O.2SiO2 ở trạng thái lỏng và vô định hình
lượt xem 2
download
Mục đích của luận án nhằm nghiên cứu về DH của các hệ vật liệu Al2O3.2SiO2 và Na2O.2SiO2 lỏng qua việc phân tích chuyển động nhanh và chậm của một nhóm các nguyên tử. Nghiên cứu mối tương quan giữa động học và cấu trúc của hệ vật liệu Al2O3.2SiO2 và Na2O.2SiO2 lỏng.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tóm tắt Luận án tiến sĩ Vật lí kỹ thuật: Nghiên cứu cấu trúc và sự không đồng nhất động học trong vật liệu Silicát ba nguyên PbO.SiO2, Al2O3.2SiO2 và Na2O.2SiO2 ở trạng thái lỏng và vô định hình
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN VĂN YÊN NGHIÊN CỨU CẤU TRÚC VÀ SỰ KHÔNG ĐỒNG NHẤT ĐỘNG HỌC TRONG VẬT LIỆU SILICÁT BA NGUYÊN PbO.SiO2, Al2O3.2SiO2 và Na2O.2SiO2 Ở TRẠNG THÁI LỎNG VÀ VÔ ĐỊNH HÌNH Chuyên ngành : VẬT LÝ KỸ THUẬT Mã số: 62520401 TÓM TẮT LUẬN ÁN TIẾN SĨ VẬT LÝ KỸ THUẬT HÀ NỘI – 2017
- Công trình được hoàn thành tại: Trường Đại học Bách khoa Hà Nội Người hướng dẫn khoa học: 1. PGS.TS. NGUYỄN VĂN HỒNG 2. PGS.TS. LÊ THẾ VINH Phản biện 1: GS.TS. Đặng Văn Soa Phản biện 2: PGS.TS. Hoàng Nam Nhật Phản biện 3: PGS.TS. Hoàng Văn Tích Luận án được bảo vệ trước Hội đồng đánh giá luận án tiến sĩ cấp Trường họp tại Trường Đại học Bách khoa Hà Nội Vào hồi …….. giờ, ngày ….. tháng ….. năm …… Có thể tìm hiểu luận án tại thư viện: 1. Thư viện Tạ Quang Bửu - Trường ĐHBK Hà Nội 2. Thư viện Quốc gia Việt Nam
- MỞ ĐẦU 1. Lý do chọn đề tài Silicát là nhóm vật liệu được ứng dụng rộng rãi trong nhiều lĩnh vực công nghiệp (điện tử, quang học, siêu dẫn, cơ khí...) cũng như đời sống (gốm, men, thủy tinh...). Ví dụ như nhôm-silicát được ứng dụng trong công nghiệp hóa học, công nghiệp cao su, sản xuất ra các vật liệu chuyên dụng như gạch men, da giày nhân tạo v.v..., đặc biệt trong một số ứng dụng công nghệ cao như chì-silicát dùng che chắn phóng xạ. Hiện tại cấu trúc và động học không đồng nhất của các hệ vật liệu silicát vẫn đang là vấn đề mang tính chất thời sự, được nhiều nhà khoa học quan tâm nghiên cứu. Các nghiên cứu trước đó đã chỉ ra rằng các hệ vật liệu silicát có cấu trúc mạng ngẫu nhiên liên tục, bao gồm các đơn vị cấu trúc SiOx. Trong đó sự chuyển pha mật độ được cho có liên quan đến sự thay đổi tỷ phần các đơn vị cấu trúc. Ngoài ra, cấu trúc không đồng nhất được tạo ra là do sự phân bố khác nhau của các đơn vị cấu trúc trong mô hình, từ đó hình thành nên vùng giàu cation. Giữa các đơn vị cấu trúc được kết nối với nhau thông qua nguyên tử O, mức độ polymer hóa (DOP) cũng được đánh giá qua các nguyên tử Oxy cầu Qn. Tuy nhiên, thông tin chi tiết về sự hình thành các cụm với kích thước bao nhiêu, các đơn vị cấu trúc phân bố đồng đều hay tách ra thành các cụm riêng biệt vẫn chưa được làm rõ. Đặc biệt hơn trong hệ silicát ba nguyên, với sự có mặt của hai loại cation thì sự kết nối giữa các đơn vị cấu trúc của hai loại như thế nào? có thực sự tồn tại các vùng mà ở đó các cation tách nhau ra không? Trong phạm vi luận án này chúng tôi sẽ làm rõ hơn, chi tiết hơn về vấn đề này. Ngoài ra, để làm sáng tỏ hiện tượng không đồng nhất cấu trúc, chúng tôi đưa ra hai phương pháp mới để phân tích là simplex và shell-core (SC). Vấn đề động học không đồng nhất (DH) trong các hệ chất lỏng đã được ghi nhận, trong đó quan tâm đến vùng chuyển động nhanh và các vùng chuyển động chậm. DH được nghiên cứu khá chi tiết 1
- trong các hệ keo qua việc phân tích các hạt chuyển động nhanh và chuyển động chậm. Theo tác giả Antonio M. Puertas, những hạt chuyển động nhanh thì lân cận của chúng cũng chuyển động nhanh, hạt chuyển động chậm thì lân cận của chúng cũng chuyển động chậm. Điều này tạo nên vùng nhanh chậm tách nhau ra, hơn nữa mật độ vùng nhanh và chậm là rất khác nhau. Ngoài ra, phân bố không gian của các vùng nhanh và chậm cũng được Claudio Donati quan tâm nghiên cứu, trong đó tác giả cho rằng phân bố không gian của những hạt chuyển động nhanh thì lớn hơn những hạt chuyển động chậm. Điều này dẫn đến vùng mật độ cao là vùng chứa các hạt chuyển động chậm và mật độ thấp chứa các hạt chuyển động nhanh. Ngoài các hệ keo thì các kết quả tương tự cũng được quan sát thấy trên các chất lỏng nguội nhanh, tuy nhiên với các hệ ôxít lỏng đặc biệt là các hệ silicát thì số lượng các công trình nghiên cứu về DH là rất ít. Cho đến nay chỉ mới ghi nhận tác giả K.D. Vargheese và các cộng sự của ông nghiên cứu về DH trên hệ nhôm-silicát năm 2010. Tuy nhiên tác giả chỉ mới dừng lại ở mức độ định tính, theo tác giả trong mô hình có tồn tại các vùng chuyển động nhanh và chuyển động chậm, và các vùng chuyển động chậm là vùng giàu Si và O, các vùng chuyển động nhanh là vùng giàu Al và Ca. Ngoài ra mật độ vùng chuyển động nhanh như thế nào? liệu rằng các hạt chuyển động nhanh có sự kết cụm hay không? Các liên kết của chúng giảm như thế nào theo thời gian? Tất cả những vấn đề này vẫn chưa được làm rõ, hơn nữa có tồn tại hay không sự tương quan giữa động học và cấu trúc trong hệ vật liệu silicát và cụ thể ra sao? Đây đều là những câu hỏi còn bỏ ngỏ, trên cơ sở đó chúng tôi chọn đề tài “Nghiên cứu cấu trúc và sự không đồng nhất động học trong vật liệu Silicát ba nguyên PbO.SiO2, Al2O3.2SiO2 và Na2O.2SiO2 ở trạng thái lỏng và vô định hình” nhằm đưa đến cái nhìn rõ ràng hơn về cấu trúc cũng như động học của hệ silicát ba nguyên. 2. Mục đích đối tượng và phạm vi nghiên cứu 2
- Đối tượng nghiên cứu của luận án là các hệ silicát ba nguyên gồm PbO.SiO2 (lỏng), Al2O3.2SiO2 (lỏng và vô định hình) và Na2O.2SiO2 (lỏng). Trong đó phạm vi nghiên cứu của đề tài chủ yếu là cấu trúc và động học với nội dung như sau: + Nghiên cứu vi cấu trúc của các hệ vật liệu PbO.SiO2 (lỏng), Al2O3.2SiO2 (lỏng và vô định hình) dưới ảnh hưởng của áp suất. Trong đó đánh giá vi cấu trúc thông qua các thông số cơ bản như hàm phân bố xuyên tâm, số phối trí và phân bố góc. + Nghiên cứu cấu trúc không đồng nhất của hệ vật liệu Al2O3.2SiO2 và Na2O.2SiO2 lỏng qua việc phân tích các quả cầu simplex và các hạt shell-core (SC). + Nghiên cứu về DH của các hệ vật liệu Al2O3.2SiO2 và Na2O.2SiO2 lỏng qua việc phân tích chuyển động nhanh và chậm của một nhóm các nguyên tử. + Nghiên cứu mối tương quan giữa động học và cấu trúc của hệ vật liệu Al2O3.2SiO2 và Na2O.2SiO2 lỏng. 3. Phương pháp nghiên cứu + Phương pháp mô phỏng động lực học phân tử + Phương pháp phân tích cấu trúc địa phương + Phương pháp simplex và SC phân tích cấu trúc không đồng nhất. + Phương pháp phân tích cấu trúc bằng kỹ thuật trực quan hóa. + Phương pháp phân tích DH qua việc đánh giá chuyển động nhanh và chuyển động chậm của một nhóm các nguyên tử. 4. Ý nghĩa khoa học và thực tiễn của đề tài Các kết quả của Luận án cho một cái nhìn tổng quan về mặt cấu trúc của các hệ silicát ba nguyên PbO.SiO2 (lỏng), Al2O3.2SiO2 (lỏng và vô định hình) và Na2O.2SiO2 (lỏng), đây sẽ là những thông tin hữu ích cho những nghiên cứu tiếp theo. Bên cạnh đó, những nghiên cứu của chúng tôi cũng cho thấy sự ảnh hưởng của áp suất hay số hạt lên vi cấu trúc của các hệ silicát ba nguyên. 3
- Luận án cũng cho thấy một số cấu trúc đặc biệt tồn tại trong các mô hình vật liệu silicát ba nguyên như, giữa hai đơn vị liền kề tồn tại các liên kết góc, liên kết cạnh và liên kết mặt. Ngoài ra trong mô hình nhôm-silicát lỏng tồn tại các subnet Si-O, Al-O. Trong đó, subnet Si-O có kích thước rất lớn, subnet Al-O có kích thước nhỏ hơn nhưng số lượng thì lớn hơn. Luận án chỉ ra trong các mô hình Na2O.2SiO2, Al2O3.2SiO2 lỏng tồn tại DH, với vùng chuyển động nhanh và vùng chuyển động chậm của các nguyên tử O và các cation, trong đó mật độ vùng chuyển động nhanh và chuyển động chậm là khác nhau. 5. Những đóng góp mới của luận án Luận án lần đầu tiên chỉ ra được cấu trúc không đồng nhất của hệ Al2O3.2SiO2 và Na2O.2SiO2 lỏng bằng phương pháp phân tích mới là simplex và Shell-core (SC). Phương pháp simplex cho phép tìm ra các quả cầu đi qua bốn nguyên tử bất kỳ mà trong đó xảy ra các trường hợp như không có nguyên tử nào bên trong, hoặc chỉ chứa nguyên tử O, hoặc chỉ chứa cation. Với phương pháp phân tích cấu trúc bằng SC thì cho phép tìm ra các quả cầu với phần lõi chứa cation phần vỏ chứa O. Các kết quả phân tích cho thấy các nguyên tử phân bố không đồng đều về không gian cũng như thành phần hóa học, trong đó hình thành các cụm giàu cation hay O. Ngoài ra, với hệ nhôm-silicát còn tồn tại các subnet Si-O lớn và các subnet Al-O nhỏ hơn. Luận án cũng lần đầu tiên xác định DH cho hệ nhôm và natri- silicát thông qua phân tích chuyển động của từng loại nguyên tử, và đánh giá DH thông qua sự kết cụm của các nguyên tử chuyển động nhanh và chuyển động chậm. Trong đó đối với mô hình nhôm-silicát lỏng thì vùng chuyển động nhanh là vùng có mật độ cao các nguyên tử O, vùng chuyển động chậm là vùng có mật độ thấp các nguyên tử O, với hệ natri-silicát thì ngược lại. Sự tương quan giữa cấu trúc và động học trong hệ nhôm và natri- silicát lỏng cũng được nghiên cứu, trong mô hình tồn tại các hạt (siêu 4
- phân tử SM và SLP) có kích thước lớn gồm nhiều nguyên tử chuyển động cùng nhau theo thời gian. Trong đó thời gian sống các hạt này có liên quan đến các liên kết bền Si-O và các liên kết kém bền Al-O. 6. Cấu trúc của luận án Ngoài phần mở đầu và kết luận, thì nội dung của luận án được chia là 5 chương cụ thể như sau: Chương 1 tổng quan: nội dung chính của chương này là trình bày những hiểu biết chung về cấu trúc cũng như động học của ba hệ silicát là nhôm-silicát, chì-silicát và natri-silicát. Chương 2 phương pháp nghiên cứu: nội dung của chương này trình bày về cách xây dựng các mô hình PbO.SiO2 lỏng, Al2O3.2SiO2 lỏng và vô định hình và Na2O.2SiO2 lỏng. Phương pháp phân tích cấu trúc simplex và SC, phương pháp phân tích DH. Chương 3 vi cấu trúc của hệ chì-silicát và nhôm-silicát trong đó phân tích cấu trúc của hai hệ thông qua các thông số cơ bản như hàm phân bố xuyên tâm, phân bố góc và phân bố số phối trí. Chương 4 phân tích cấu trúc không đồng nhất bằng phương pháp simplex và shell-core, trong đó chỉ ra các cấu trúc không đồng nhất của hệ nhôm và natri-silicát lỏng bằng cách phân tích simplex cũng như shell-core. Chương 5 động học không đồng nhất của hệ natri và nhôm silicát trong đó chỉ ra sự không đồng nhất bằng các chuyển động nhanh nhất và chậm nhất xét cho từng loại loại nguyên tử. Chương 1 TỔNG QUAN Vật liệu silica và silicát có vai trò quan trọng trong các lĩnh vực kỹ thuật cũng như đời sống. Vì vậy để tối ưu hóa các quá trình công nghệ thì các đặc trưng của chúng vẫn không ngừng được nghiên cứu bằng cả thực nghiệm và mô phỏng. Trong đó đặc trưng về cấu trúc và động học đang là vấn đề mang tính thời sự, nhận được nhiều sự quan tâm từ các nhà khoa học trong và ngoài nước. Vật liệu silicát chính là sự pha trộn của các ôxít với với silica, các ôxít khác nhau khi pha trộn cho những tính chất và đặc tính rất khác nhau. Ngoài ra 5
- tỷ lệ pha trộn cũng ảnh hưởng không nhỏ đến đặc tính của vật liệu, hơn nữa điện tích các nguyên tố là khác nhau điều này cũng tạo ra sự cân bằng điện tích khác nhau dẫn đến cấu trúc mật độ địa phương và động học cũng rất khác nhau. Cấu trúc và động học của hệ silicát ba thành phần được nghiên cứu trong thời gian rất dài, đã cho những kết quả rất quan trọng, đặt nền móng cho những nghiên cứu tiếp theo. Một trong những kết quả đó, là sự tồn tại cấu trúc mạng trong cấu trúc mạng silicát, trong đó tồn tại các đơn vị cấu trúc kết nối với nhau thông qua các nguyên tử O cầu. Với hệ nhôm-silicát bằng phương pháp thực nghiệm cộng hưởng từ hạt nhân tác giả S.H. Risbud lần đầu tiên phát hiện ra sự tồn tại các đơn vị cấu trúc AlO4, AlO5 và AlO6 năm 1987. Những kết quả này sau đó được S.Sen và R.K. Sato khẳng định lại, ngoài ra với tỷ lệ ôxít nhôm tăng lên thì số phối trí của O quanh Al cũng có xu thế tăng lên và vuợt trội so với Si (J. Am. Ceram. Soc. 70, C10 (1987), J. Chem. Phys. 95 4483(1991), J. Phys.Chem. B 108, 7557 (2004)). Sự tách pha vi mô được tìm có liên quan đến vùng giàu Al và giàu Si, mạng cấu trúc Al-O được hình thành các cụm lớn và một phần lồng vào mạng của Si-O. Với hệ chì-silicát, một trong những nghiên cứu sớm phải kể đến Bair 1936 bằng phương pháp thực nghiệm X-ray, cấu trúc của nó được cho là tương tự như sôđa silicát. Nhiều nghiên cứu sau đó cho thấy chì-silicát có cấu trúc tồn tại các mạng nguyên tử, trong đó ôxít PbO có cấu trúc tạo thành các chuỗi polymer (J. Am. Ceram. Soc 19(1–12), 339–347(1936), Condens. Matter, 13(43), 9781–9797(2001), J. Am. Ceram. Soc, 88(6), 1591–1596 (2005), Physical Review B, 82(13), 134209 (2010)). Với hệ natri-silicát, Na đóng vai trò là nguyên tố thay đổi cấu trúc mạng silica, nghiên cứu đã chỉ ra rằng cấu trúc của natri-silicát không tồn tại các đơn phân tử Na2O, SiO2, Na2Si2O5 và Na2SiO3 một cách rời rạc tách biệt. Kỹ thuật tán xạ Nơtron cũng đã được sử dụng để thăm dò cấu trúc của các hệ silicát của kiềm. Tác giả Misawa và các cộng sự (J. Non- Cryst. Solids 37, 85-97(198)) đã khảo sát cấu trúc trật tự gần của hệ 6
- kiềm silicát là natri-silicát và liti-silicát và thấy rằng, nó gồm các mạng tứ diện của Si. Song song với việc nghiên cứu cấu trúc của hệ silicát là vấn đề động học, và giữa cấu trúc và động học có một sự tương quan, tức là một thay đổi của cấu trúc cũng ảnh hưởng lên quá trình động học. Các quá trình động học cũng được cho là liên quan chặt chẽ đến cấu trúc của nguyên tử O cầu, với sự khảo sát về mức độ polymer hóa (DOP). Nó được đo bằng tỷ số (Q3 + Q4)/(Q1 + Q2), khi tỷ số này tăng lên cho thấy DOP tăng lên, điều này dẫn đến làm tăng hệ số khuếch tán và giảm độ nhớt mô hình ( ISIJ International, Vol. 52 No. 3, pp. 342(2012), Materials Sciences and Applications, 5, 73 (2014)). Ngoài sự ảnh hưởng của nguyên tử O cầu, thì nguyên tử O không cầu và O tricluter cũng là yếu tố gây nên những ảnh hưởng đến quá trình động học. Ở đây cơ chế chủ yếu của khuếch tán là do sự đứt gãy và hình thành liên tục theo chuỗi các liên kết các NBO và O tricluter (J. Non-Cryst. Solids 357, 1780 (2011)). Chương 2 PHƯƠNG PHÁP TÍNH TOÁN Trong luận án chúng tôi sử dụng phương pháp mô phỏng động lực học phân tử với thế tương tác cặp Born – Meyer và thế tương tác ba thành phần (J.Phys.Chem.C, 113(49) 20773-20784(2009), Z. Phys. A: Hadrons Nucl, 75(1) 1-18(1932)). Với mô hình chì và nhôm-silicát chúng tôi sử dụng thế tương tác cặp Born – Meyer có phương trình: U(rij) = qiqj + Aijexp(-Bijrij) (2.2) ị Trong đó các giá trị qi và qj tương ứng là các điện tích của nguyên tử thứ i và thứ j, Aij và Bij tương ứng là các thông số thế. Với hệ Na2O.2SiO2 được xây dựng với thế tương tác hai và ba thành phần, với thế hai thành phần có phương trình như sau: 7
- ị Uij = qiqj + fo(bi + bj)exp( )+ + D1ijexp(- rij) + D2ijexp(- ị ị rij) (2.3) Trong đó Uij là thế năng tương tác, qi và qj tương ứng là điện tích của nguyên tử i và j, rij là khoảng cách giữa nguyên tử thứ i và nguyên tử thứ j, fo là hằng số có giá trị là 41.865 kJ nm-1mol-1. Số hạng thứ nhất là lực tương tác tĩnh điện, số hạng thứ hai là các tương tác gần, thành phần thứ ba mô tả tương tác Van der Waals, thành phần thứ tư và thứ năm liên quan đến ảnh hưởng của bán kính các liên kết cộng hóa rị. Ngoài ra hệ Na2O.2SiO2 còn được xây dựng với thế tương tác ba thành phần theo như phương trình: Uijk= -f[cos{2( ị - )}-1] ị (2.4) Kij = (2.5) [ ( ị )] Với f là hằng số lực; ị là góc giữa ba nguyên tử i-j-k; , gr, rm là các thông số điều chỉnh các liên kết hóa trị. Từ các thế tương tác cặp và thế tương tác ba thành phần như ở trên, qua các bước chạy thống kê hồi phục với NPT và NVE, chúng tôi xây dựng được bốn mẫu mô hình, gồm chì-silicát lỏng, nhôm- silicát lỏng và vô định hình và Natri-silicát lỏng. Riêng với hệ natri- silicát thì được xây dựng tại viện Riken nhật bản ở nhiệt độ 1873K với 7992 nguyên tử trong đó có 1776 nguyên tử Na và Si và 4440 nguyên tử O, mẫu được xây dựng với hai mô hình ở áp suất 0 GPa và 8 GPa. Chương 3 VI CẤU TRÚC CỦA HỆ NHÔM-SILICÁT VÀ CHÌ- SILICÁT Trong chương này chúng tôi sẽ nghiên cứu cấu trúc vi mô của các hệ ba nguyên silicát của nhôm và chì. Cấu trúc vi mô của các hệ sẽ được nghiên cứu chi tiết thông qua các đơn vị cấu trúc, phân bố góc và hàm phân bố xuyên tâm. Trật tự gần được khảo sát trong một 8
- đơn vị cấu trúc TOx (trong đó T là các cation, x là số nguyên tử Oxy lân cận nguyên tử T), trật tự khoảng trung được khảo sát giữa hai đơn vị cấu trúc liên kề. Qua đó vi cấu trúc của hệ được khảo sát một cách chi tiết như sự phụ thuộc của vi cấu trúc vào sự thay đổi áp suất hoặc thay đổi thành phần hóa học. Bảng 3.1. So sánh thực nghiệm của các đặc trưng cấu trúc của hệ PbO.SiO2 lỏng. rLK và θT-O-T Luận án Thực nghiệm [68] rSi-O(Å) 1.64 1.60 rPb-O(Å) 2.34 2.28 rO-O(Å) 2.64 2.58 rSi-Si(Å) 3.24 2.88 rPb-Si(Å) 3.60 3.10 rPb-Pb(Å) 3.64 3.20 θO-Si-O(độ) 1050 109.50 0 θO-Pb-O(độ) 60 620 Bảng 3.2. So sánh thực nghiệm và mô phỏng các thông số cấu trúc của hệ Al2O3.2SiO2 vô định hình. rLK và θT-O-T Luận án Mô phỏng [6, 126] Thực nghiệm [132] rSi-O(Å) 1.60 1.65 1.59 rAl-O(Å) 1.66 1.67 1.70 rO-O(Å) 2.60 2.68 - rSi-Si(Å) 3.18 3.15 - rAl-Si(Å) 3.18 3.23 - rAl-Al(Å) 3.16 3.15 - θO-Si-O(độ) 980 1010 - θO-Al-O(độ) 950 92.50 - Để khẳng định các mô phỏng của các hệ ba nguyên silicát có độ tin cậy cao, chúng tôi đã so sánh các đặc trưng cấu trúc của hệ với các kết quả thực nghiệm cũng như các kết quả mô phỏng khác. Thật vậy các thông số về đặc trưng cấu trúc cơ bản của các hệ chì- silicát lỏng và nhôm-silicát vô định hình và lỏng được tổng hợp như trong bảng 3.1, bảng 3.2 và bảng 3.3. Trong đó khoảng cách liên kết rLK là 9
- vị trí đỉnh đầu tiên của hàm phân bố xuyên tâm, θT-O-T là các góc liên kết. Các kết quả trên cho thấy phù hợp với thực nghiệm và mô phỏng, tức là các hệ chì-silicát và nhôm-silicát mà chúng tôi xây dựng có độ tin cậy cao. Từ những kết quả này chúng tôi tiến hành các nghiên cứu khác về cấu trúc cũng như động học không đồng nhất, phần này sẽ được trình bày chi tiết hơn trong các chương sau. Bảng 3.3. So sánh thực nghiệm và mô phỏng các thông số cấu trúc của hệ Al2O3.2SiO2 lỏng. rLK và θT-O-T Luận án Mô phỏng [6, 126] Thực nghiệm [51] rSi-O(Å) 1.58 1.63 1.61 rAl-O(Å) 1.64 1.64 1.69 rO-O(Å) 2.64 2.68 - rSi-Si(Å) 3.16 3.10 - rAl-Si(Å) 3.16 3.16 - rAl-Al(Å) 3.16 3.10 - θO-Si-O(độ) 920 940 - θO-Al-O(độ) 900 870 - Chương 4 PHÂN TÍCH CẤU TRÚC BẰNG PHƯƠNG PHÁP SIMPLEX VÀ SHELL-CORE 4.1. Phương pháp simplex 4.1.1. Mô hình Na2O.2SiO2 lỏng Voi- simplex (VS) là quả cầu đi qua bốn nguyên tử bất kỳ mà ở bên trong là trống rỗng ký hiệu các loại VS là abc, với a, b và c tương ứng là nguyên tử O, Si và Na. Cation-simplex(CS) và oxy- simplex(OS) là các vòng tròn đi qua bốn nguyên tử chỉ chứa cation hoặc Oxy bên trong, ký hiệu a1b1c1 trong đó a1, b1 và c1 tương ứng là số lượng các nguyên tử O, Si và Na. Trong bảng 4.1 là đặc trưng các VS của hệ Na2O.2SiO2 lỏng tại 1873K với áp suất 0.1 MPa và 8 GPa, trong đó mVS là tỷ lệ VS trung bình tính trên mỗi nguyên tử, RVS là bán kính VS tương ứng. Từ kết quả cho trong bảng 4.1 có thể thấy tỷ lệ VS cho loại 211 là lớn nhất, nhưng chúng có bán kính nhỏ nhất, tỷ lệ VS giảm theo thứ tự từ 211 đến 013. Khi nén thì bán kính các simplex đều giảm, 10
- đồng thời các simplex lớn bị biến mất, phân bố bán kính simplex có giá trị trong khoảng 1.6 Å đến 2.8 Å. Trong bảng 4.2 và bảng 4.3 là số OS và CS, trong đó số nguyên tử oxy có trong các OS là từ 3 đến 9 và tỷ lệ loại 300 là lớn nhất. Khi số nguyên tử oxy bên trong tăng lên, thì bán kính các OS tăng nhưng số lượng các OS giảm dần. Các CS có số lượng từ 1 đến 5 nguyên tử, khi nén các CS có kích thước lớn hơn 3 Å bị mất đi. Ngoài ra, những CS có kích thước lớn thì số lượng các nguyên tử cation bên trong cũng tăng lên, điều này đúng cho cả CS ở áp suất cao và áp suất thấp. Có thể thấy trong mô hình tồn tại các vùng có điện tích âm và vùng điện tích dương, và tạo nên sự không đồng nhất về thành phần hóa học. Sự dịch chuyển của các nguyên tử O bên trong các OS có kích thước lớn thì chậm hơn các nguyên tử còn lại, điều này cho thấy các vùng có điện tích âm là vùng chuyển động chậm hơn những vùng còn lại. Bảng 4.1. Đặc trưng của voi-simplex; mVS là số voi-simplex trung bình cho mỗi nguyên tử; RVS là bán kính trung bình của voi-simplex tương ứng ở cấu hình áp suất 0.1MPa và 8 GPa. abc Áp suất thấp (0.1 Áp suất cao Mpa) (8GPa) mVS RVS, Å mVS RVS, Å 211 1.9401 2.00 2.1682 1.84 301 1.6086 2.31 1.5552 2.03 202 1.5892 2.29 1.4057 1.97 310 1.0875 2.14 1.2397 1.96 400 0.2745 2.40 0.2580 2.12 103 0.2232 2.46 0.1222 2.03 112 0.1220 2.23 0.1524 1.99 220 0.0677 2.12 0.0937 1.99 121 0.0045 2.36 0.0090 2.09 004 0.0043 2.78 0.0010 2.13 013 0.0010 2.46 0.0005 2.30 022 - - 0.0001 2.17 11
- Bảng 4.2: Đặc trưng cấu trúc Oxy-simplex (OS) với mOS là tỷ lệ OS trung bình tính trên mỗi nguyên tử, ROS là bán kính OS tương ứng. a1b1c1 Tại áp suất thấp Tại áp suất cao (0.1 MPa) (8GPa) mOS ROS, Å mOS ROS, Å 300 0.9592 2.42 1.0421 2.19 400 0.6696 2.60 0.6804 2.33 200 0.2734 2.28 0.2923 2.03 500 0.2444 2.77 0.1957 2.47 600 0.0563 2.89 0.0345 2.56 700 0.0115 3.19 0.0043 2.72 800 0.0029 3.45 0.0002 2.79 900 0.0005 3.03 - - Bảng 4.3: Đặc trưng cấu trúc CS với mCS là số simplex trung bình của mỗi nguyên tử, RCS là bán kính simplex tương ứng. a1b1c1 Tại áp suất thấp Tại áp suất cao (0.1 Mpa) (8GPa) mCS RCS, Å mCS RCS, Å 011 1.1230 1.97 1.2052 1.84 002 0.3840 2.25 0.4420 1.96 003 0.2362 2.50 0.1357 2.07 012 0.1869 2.30 0.2193 2.05 020 0.0414 2.09 0.0543 1.98 004 0.0282 2.86 0.0090 2.28 013 0.0104 2.63 0.0082 2.30 021 0.0099 2.44 0.0206 2.16 010 0.0034 2.22 0.0008 2.00 005 0.0020 3.06 0.0003 2.69 022 0.0011 2.42 0.0008 2.38 014 0.0006 2.91 - - 023 0.0003 3.94 - - 030 0.0003 2.43 - - 12
- 4.1.2. Mô hình Al2O3.2SiO2 lỏng Như đã trình bày ở phần trên (mục 4.1.1), với hệ Na2O.2SiO2 lỏng chúng tôi đã xét đến các Voi-simplex (VS), Cation-simplex (CS) và Oxy-simplex (OS). Trong phần này chúng tôi chỉ tính toán CS và OS cho hệ Al2O3.2SiO2 lỏng, ngoài ra chúng tôi sẽ tính thêm Cation-simplex-cluster (CSC) như đã nói trong chương 2. Trong bảng 4.4 và 4.5 biểu thị các loại OS và CS, có thể nhận thấy rằng bán kính ROS của OS và RCS của CS có xu thế giảm với sự tăng lên của áp suất. Điều này cho thấy rằng quá trình nén của chất lỏng là quá nén các loại simplex. OS chứa số nguyên tử O từ 2 đến 12 nguyên tử, trong khi CS chỉ chứa từ 1 đến 3 nguyên tử cation, các CS có kích thước và số lượng nhỏ hơn so với OS. Số lượng CS ít thay đổi với áp suất, trong khi số lượng OS giảm khi tăng áp suất. Mặt khác có 90% OS trong AS20 (20GPa) có giá trị NS từ 3 đến 5, còn số lượng này ở áp suất 0 GPa là 65%. Điều này cho thấy nguyên tử Oxy phân bố không gian ở áp suất cao thì đồng nhất hơn so với áp suất thấp. Bảng 4.4. Số OS tại các áp suất từ 0 GPa đến 20GPa, với mOS là số lượng OS, ROS là bán kính tương ứng, NS là số nguyên tử O có trong OS. AS0 AS10 AS20 NS mOS ,Å mOS ,Å mOS ,Å 2 84 2.21 192 1.83 221 1.80 3 1197 2.41 2094 1.97 2456 1.87 4 2438 2.62 3234 2.17 3465 2.03 5 2748 2.84 2175 2.35 1753 2.19 6 1793 3.05 854 2.51 563 2.34 7 892 3.25 241 2.65 134 2.49 8 395 3.41 72 2.80 17 2.63 9 148 3.60 11 2.93 8 2.92 10 52 3.69 5 3.00 - - 11 11 3.81 2 3.08 - - 12 7 4.28 - - - - 13
- Bảng 4.5. Số CS tại các áp suất từ 0 GPa đến 20GPa, với mCS là số CS, RCS là bán kính tương ứng, NS là số cation có trong các CS. AS0 AS10 AS20 NS mCS ,Å mCS ,Å mCS ,Å 1 700 1.65 578 1.63 609 1.61 2 1130 2.19 1274 1.85 1257 1.74 3 15 2.46 15 1.97 14 1.92 4.2. Phương pháp Shell-Core cho mô hình Al2O3.2SiO2 lỏng 4.1.1. Shell-Core-particles Shell-core-particles (SCP) là hạt chứa phần lõi và phần vỏ, phần lõi bao gồm các cation, phần vỏ bao gồm các nguyên tử oxy như đã trình bày trong chương 2. Bảng 4.7 và 4.9 thống kê các loại SCP tương ứng ở các áp suất 0 GPa và 20 GPa. Trong đó, [S, C] loại SCP với S là số nguyên tử O vỏ và C số cation ở lõi, NSCP là số lượng hạt SCP, RSCP bán kính core, DSCL độ dài shell, ρ"#$ mật độ hạt trong SCP. Số cation ở lõi có số lượng từ 1 đến 4 nguyên tử, số nguyên tử O ở vỏ có số lượng từ 4 đến 13, trong đó số lượng chiếm chủ yếu là loại có 1 hoặc 2 cation. Số lượng loại SCP (có số O vỏ lớn), thì ít hơn số lượng loại SCP (có số O ở vỏ nhỏ). Đáng chú ý số lượng loại SCP loại [4, 1] chiếm tỷ lệ cao nhất, loại này có thể được so sánh với đơn vị cấu trúc TO4. Mật độ số hạt ρSCP trong các SCP được tính theo công thức (4.1) như sau: % & % & ρSCP = ' =+ (4.1) ()* -(.()* /()* ), , Trong đó, C là số hạt cation bên trong lõi, S là số hạt Oxy bên ngoài shell, RSCP là bán kính core, DSCP là độ dài shell, VSCP là thể tích các hạt SCP. 14
- Bảng 4.7: Đặc trưng của SCP tại áp suất 0 GPa. Loại [S, C] Số lượng Bán kính Độ dài Mật độ, hạt SCP, Core, RSCP Shell, DSCP ρ"#$ NSCP (Å) (Å) (số hạt/ Å3) [4,1] 643 2.07 0.64 0.060 [5,1] 268 2.43 0.42 0.062 [6,1] 101 2.71 0.39 0.056 [7,1] 20 2.86 0.40 0.055 [8,1] 6 3.06 0.30 0.057 [9,1] 2 3.62 0.56 0.033 [10,1] 1 4.28 0.32 0.027 [4,2] 143 2.22 0.52 0.070 [5,2] 223 2.31 0.63 0.066 [6,2] 167 2.51 0.64 0.061 [7,2] 86 2.64 0.64 0.061 [8,2] 26 2.83 0.65 0.057 [9,2] 7 3.05 0.44 0.062 [10,2] 3 3.24 0.49 0.055 [11,2] - - - - [5,3] 2 2.97 0.28 0.056 [6,3] 1 2.64 0.25 0.089 [7,3] 2 2.8 0.59 0.061 [8,3] 2 2.96 0.77 0.051 [9,3] 1 2.66 0.75 0.072 [10,3] 1 3.07 0.92 0.049 [13,4] 1 3.98 0.37 0.049 Sự phụ thuộc của bán kính core vào số nguyên tử Oxy ở shell còn được thể hiện chi tiết trong hình 4.9, trong đó hình 4.9a, hình 4.9b tương ứng là loại 1 và 2 cation ở core. Ở góc nhìn này ta có thể thấy rõ rằng, khi áp suất càng tăng thì bán kính core cũng càng lớn và xu thế chung ở các áp suất khác nhau thì bán kính core là tăng lên khi số nguyên tử Oxy ở vỏ tăng lên. 15
- 4 0 GPa 15 GPa b) 5 GPa 20 GPa B¸n kÝnh trung b×nh cña core 10 GPa 3 2 5 a) 4 3 2 4 5 6 7 8 9 10 Sè Oxy cã trong sell Hình 4.9. Bán kính trung bình của core như một hàm của số nguyên tử Oxy trong shell tại các áp suất từ 0 GPa đến 20 GPa, với loại một cation trong core (a), loại 2 cation trong core (b). 4.1.2. Shell-core-cluster Shell-Core-cluster (SCC) được xác định là số lượng các SCP có chung 1 hoặc nhiều cation. Vậy có thể hiểu SCC được tạo thành từ các SCP, vì thế SCP cũng chính là một SCC với cấu tạo chỉ một SCP. Loại SCC chỉ chứa một SCP chúng tôi gọi là SCC nhỏ, loại SCC chứa nhiều hơn một SCP gọi là các SCC lớn. Hình 4.11 cho thấy sự phụ thuộc của các loại SCC vào áp suất, trong đó k là số SCP chứa trong một SCC, có thể thấy số lượng SCC nhỏ (k = 1) là lớn nhất, sau đó giảm dần theo thứ tự k = 2, k = 3 và k = 4. Các SCC với k= 2, 3, 4 thì ít thay đổi hơn với áp suất, còn với SCC chỉ chứa một SCP có k = 1 thì biến đổi mạnh hơn. Ngoài ra để chi tiết hơn về thành phần hóa học có trong các CSC chúng tôi xét các tỷ số CAl/(CAl+CSi) và CO/(CAl+CSi), với CAl, CSi, CO tương ứng là nồng độ Al, Si và O có trong các SCC. Hình 4.12 cho thấy sự phụ thuộc các tỷ lệ CAl/(CAl+CSi) và CO/(CAl+CSi) vào áp suất, có thể thấy tỷ lệ CO/(CAl+CSi) loại SCC nhỏ (k=1) là lớn nhất và 16
- bằng 4.75, khi k > 1 thì CO/(CAl+CSi) giảm tức là số Oxy có trong các SCC lớn (k>1) bị giảm đáng kể. Trong khi đó tỷ lệ CAl/(CAl+CSi) với loại nhỏ (k=1) là 0.3 có xu hướng tăng lên khi k tăng, tức là ở các SCC lớn thì Al có tỷ lệ so với tổng cation lớn. 1200 6 k=1 k=2 k=3 k=4 CO/(CSi+CAl) 5 1000 4 Sè l−îng SC-cluster 800 3 600 k=1 k=2 k=3 k=4 1.0 CAl/(CSi+CAl) 400 0.8 200 0.6 0.4 0 0.2 0 5 10 15 20 0 5 10 15 20 ¸p suÊt, GPa ¸p suÊt, GPa Hình. 4.11. Sự phụ thuộc áp suất của Hình 4.12. Sự phụ thuộc áp suất của tỷ lệ số SCC, với k là số SCP chứa trong CO/(CAl + CSi) và CAl/(CAl + CSi) cho các một SCC. SCC; với k là số SCP có chứa trong một SCC. Bảng 4.10. Đặc trưng của các SCC lớn tại áp suất 0 GPa. Số lượng SCP 11 12 13 14 18 19 CAl/(CAl+CSi) 0.82 0.83 0.85 0.79 0.89 0.89 CO/(CAl+CSi) 3.00 4.17 3.23 3.57 2.56 3.16 Chi tiết về tỷ lệ CAl/(CAl+CSi) và CO/(CAl+CSi) SCC với số SCP rất lớn (k >10), được thể hiện trong bảng 4.10. Có thể thấy, với SCP càng lớn thì tỷ lệ CAl/(CAl+CSi) cũng càng lớn, trong khi CO/(CAl+CSi) càng nhỏ. Điều này cho thấy Al có xu thế phân bố tại nơi có SCC lớn và nguyên tử O và Si thì có xu thế phân bố tại nơi có SCC nhỏ. Chương 5 ĐỘNG HỌC KHÔNG ĐỒNG NHẤT CỦA NATRI VÀ NHÔM SILICÁT 5.1. Động học không đồng nhất 17
- 5.1.1. Mô hình Na2O.2SiO2 lỏng Để làm rõ quá trình động học và động học không đồng nhất của hệ Na2O.2SiO2 lỏng chúng tôi xét 10% các chuyển động ngẫu nhiên, chậm nhất và nhanh nhất của các nguyên tử O. Hình 5.1 là đồ thị xét trên thời gian 100ps của 10% số các nguyên tử O nhanh nhất chậm nhất và ngẫu nhiên ở áp suất thấp 0.1 MPa. Trong đó, các thông số để đánh giá DH như dịch chuyển bình phương trung bình (< rt2 >), kích thước cụm trung bình ( < SC > ), số liên kết trung bình ( < NLK > ) và số lượng cụm ( NC). Có thể thấy rằng, với các nguyên tử O nhanh nhất chậm nhất có < SC > và < NLK > lớn và NC nhỏ. Điều này cho thấy các nguyên tử O nhanh nhất và chậm nhất có sự kết cụm, dẫn đến các nguyên tử O có DH. Môi trường quanh các nguyên tử O nhanh và chậm nhất được khảo sát thông qua phân tích các nguyên tử lân cận của chúng. Các kết quả nghiên cứu cho thấy, các nguyên tử O nhanh nhất thì lân cận của chúng cũng dịch chuyển nhanh, các nguyên tử O chậm nhất thì dịch chuyển của chúng chậm. Điều này thì đã được quan sát trong hệ keo (Nature 320, 27(1986), J. Phys. Chem. B, 109, 6666-6675 (2005)). 3 .2 1 .5 Liªn kÕt trung b×nh < NLK> b) c) 1 0 % O N g É u n h iª n trung b×nh < SC> KÝch th−íc côm 10% O C hËm nhÊt 2 .4 10% O N hanh nhÊt 1 .0 1 .6 0 .5 0 .8 0 .0 39 a) d) DÞch chuyÓn b×nh ph−¬ng 400 C trung b×nh, Å Sè l−îng côm, N 26 2 t 300 13 200 0 0 20 40 60 80 100 0 20 40 60 80 100 B − í c th ê i g ia n , p s B − í c th ê i g ia n , p s Hình 5.1. Sự phụ thuộc thời gian của dịch chuyển bình phương trung bình, rt2 (a), kích thước đám trung bình, (b), số liên kết trung bình trên mỗi nguyên tử (c), số lượng cụm nguyên tử O của Na2O.2SiO2 lỏng tại áp suất 0.1Mpa. . 18
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tóm tắt Luận án Tiến sĩ Kinh tế: An ninh tài chính cho thị trường tài chính Việt Nam trong điều kiện hội nhập kinh tế quốc tế
25 p | 312 | 51
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Chiến lược Marketing đối với hàng mây tre đan xuất khẩu Việt Nam
27 p | 189 | 18
-
Tóm tắt Luận án Tiến sĩ Kinh tế: Thúc đẩy tăng trưởng bền vững về kinh tế ở vùng Đông Nam Bộ đến năm 2030
27 p | 212 | 17
-
Tóm tắt Luận án Tiến sĩ Luật học: Hợp đồng dịch vụ logistics theo pháp luật Việt Nam hiện nay
27 p | 280 | 17
-
Tóm tắt Luận án Tiến sĩ Y học: Nghiên cứu điều kiện lao động, sức khoẻ và bệnh tật của thuyền viên tàu viễn dương tại 2 công ty vận tải biển Việt Nam năm 2011 - 2012
14 p | 272 | 16
-
Tóm tắt Luận án Tiến sĩ Triết học: Giáo dục Tư tưởng Hồ Chí Minh về đạo đức cho sinh viên trường Đại học Cảnh sát nhân dân hiện nay
26 p | 156 | 12
-
Tóm tắt luận án Tiến sĩ Kỹ thuật: Nghiên cứu tính toán ứng suất trong nền đất các công trình giao thông
28 p | 224 | 11
-
Tóm tắt Luận án Tiến sĩ Kinh tế Quốc tế: Rào cản phi thuế quan của Hoa Kỳ đối với xuất khẩu hàng thủy sản Việt Nam
28 p | 183 | 9
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển kinh tế biển Kiên Giang trong tiến trình hội nhập kinh tế quốc tế
27 p | 62 | 8
-
Tóm tắt Luận án Tiến sĩ Xã hội học: Vai trò của các tổ chức chính trị xã hội cấp cơ sở trong việc đảm bảo an sinh xã hội cho cư dân nông thôn: Nghiên cứu trường hợp tại 2 xã
28 p | 151 | 8
-
Tóm tắt Luận án Tiến sĩ Luật học: Các tội xâm phạm tình dục trẻ em trên địa bàn miền Tây Nam bộ: Tình hình, nguyên nhân và phòng ngừa
27 p | 209 | 8
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phản ứng của nhà đầu tư với thông báo đăng ký giao dịch cổ phiếu của người nội bộ, người liên quan và cổ đông lớn nước ngoài nghiên cứu trên thị trường chứng khoán Việt Nam
32 p | 185 | 6
-
Tóm tắt Luận án Tiến sĩ Luật học: Quản lý nhà nước đối với giảng viên các trường Đại học công lập ở Việt Nam hiện nay
26 p | 137 | 5
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các yếu tố ảnh hưởng đến xuất khẩu đồ gỗ Việt Nam thông qua mô hình hấp dẫn thương mại
28 p | 22 | 4
-
Tóm tắt Luận án Tiến sĩ Ngôn ngữ học: Phương tiện biểu hiện nghĩa tình thái ở hành động hỏi tiếng Anh và tiếng Việt
27 p | 124 | 4
-
Tóm tắt Luận án Tiến sĩ Kỹ thuật: Nghiên cứu cơ sở khoa học và khả năng di chuyển của tôm càng xanh (M. rosenbergii) áp dụng cho đường di cư qua đập Phước Hòa
27 p | 9 | 4
-
Tóm tắt luận án Tiến sĩ Kinh tế: Các nhân tố ảnh hưởng đến cấu trúc kỳ hạn nợ phương pháp tiếp cận hồi quy phân vị và phân rã Oaxaca – Blinder
28 p | 29 | 3
-
Tóm tắt luận án Tiến sĩ Kinh tế: Phát triển sản xuất chè nguyên liệu bền vững trên địa bàn tỉnh Phú Thọ các nhân tố tác động đến việc công bố thông tin kế toán môi trường tại các doanh nghiệp nuôi trồng thủy sản Việt Nam
25 p | 173 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn