Lý thuyết Nevanlinna
-
Tóm tắt Luận án Tiến sĩ Toán học "Một số vấn đề của lý thuyết Nevanlinna và ứng dụng cho đa thức vi phân" được nghiên cứu với mục tiêu là: Nghiên cứu phân bố giá trị của các đa thực vi phân; Tính duy nhất của các hàm phân hình trong trường hợp các đa thức vi phân chung một hàm nhỏ.
27p vimulcahy 02-10-2023 9 4 Download
-
Luận án Tiến sĩ Toán học "Một số vấn đề của lý thuyết Nevanlinna ứng dụng cho đa thức vi phân" trình bày các nội dung chính sau: Không điểm của các đa thức vi phân của hàm phân hình; Phân bố giá trị của đa thức vi phân của hàm phân hình; Tính duy nhất của các hàm phân hình trong trường hợp các đa thức vi phân chung một hàm nhỏ.
88p vimurdoch 02-10-2023 13 5 Download
-
Mục đích nghiên cứu của luận án "Về lý thuyết Nevanlinna cho hình vành khuyên và vấn đề duy nhất" nhằm xây dựng một số dạng định lý cơ bản (thứ nhất và thứ hai) cho đường cong chỉnh hình trên hình vành khuyên với các mục tiêu là siêu mặt bằng cách thiết lập quan hệ giữa hàm đặc trưng Nevanlinna-Cartan với các hàm xấp xỉ, hàm đếm hay hàm đếm bội cắt cụt.
95p matroicon2510 30-11-2022 22 6 Download
-
Đề tài nghiên cứu của luận văn là nhằm trình bày một cách ngắn gọn về lý thuyết Nevanlinna và ứng dụng của nó đối với phương trình vi phân P-ADIC. Mời các bạn cùng tham khảo nội dung chi tiết.
43p badbuddy10 21-04-2022 24 8 Download
-
Một trong những hướng nghiên cứu quan trọng của lý thuyết Nevanlinna là nghiên cứu vấn đề duy nhất của các hàm phân hình. Năm 1926, R. Nevanlinna được chứng tỏ hai hàm phân hình chung nhau ð giá trị riêng biệt không kể bội thì sẽ trùng nhau. Công trình này của Ông được xem là khởi nguồn cho các nghiên cứu về vấn đề duy nhất của hàm phân hình. Đề tài nghiên cứu này được tiến hành nhằm tìm hiểu vấn đề hàm phân hình được xác định một cách duy nhất bởi điều kiện đại số của đa thức chứa đạo hàm.
48p guitaracoustic05 15-12-2021 19 3 Download
-
Đề tài tiến hành nghiên cứu nhằm trình bày một cách ngắn gọn về lý thuyết Nevanlinna và ứng dụng của nó đối với phương trình vi phân P-Adic. Mời các bạn cùng tham khảo nội dung chi tiết.
43p guitaracoustic02 08-12-2021 24 5 Download
-
Mục đích của đề tài này là trình bày lại các kết quả nghiên cứu gần đây của A. Banerjee and B. Chakraborty năm 2016 và của B. Chakraborty năm 2018 về một số dạng tổng quát của giả thuyết Bruck và sử dụng nó để nghiên cứu một số kết quả về vấn đề duy nhất.
52p capheviahe26 02-02-2021 15 4 Download
-
Năm 1929, Nevanlinna công bố bài báo nghiên cứu sự phân bố giá trị của các hàm phân hình trên mặt phẳng phức. Vấn đề này sau đó nhanh chóng được mở rộng sang trường hợp ánh xạ chỉnh hình từ mặt phẳng phức vào không gian xạ ảnh bởi Cartan. Luận văn sẽ giúp các bạn hiểu hơn về vấn đề này.
40p capheviahe26 02-02-2021 40 3 Download
-
Mục đích chính của luận văn là trình bày lại một số kết quả nghiên cứu gần đây của C. Meng ([9]) và S. Shahoo and S. Seikh ([10]) về các điều kiện đại số xác định duy nhất hàm phân hình qua đa thức chứa đạo hàm bậc nhất. Mời các bạn tham khảo!
50p hiepsikhonggian26 06-03-2019 51 5 Download
-
Luận văn Thạc sĩ Toán học: Lý thuyết Nevanlinna cho siêu mặt P-adic giới thiệu tới các bạn những nội dung về những kiến thức cơ bản; độ cao của hàm chỉnh hình P-adic; độ cao của hàm chỉnh hình nhiều biến và lý thuyết Nevanlinna chom siêu mặt.
52p maiyeumaiyeu08 01-09-2016 60 6 Download
-
Luận văn Thạc sĩ Toán học: Tính duy nhất của hàm phân hình P-adic được thực hiện nhằm ứng dụng hai định lý cơ bản của lý thuyết Nevanlinna P-adic để chứng minh các định lý về tính duy nhất của hàm phân hình P-adic; đồng thời giới thiệu một số đa thức và các tập duy nhất của hàm phân hình P-adic.
64p maiyeumaiyeu08 01-09-2016 86 9 Download
-
Luận văn Thạc sĩ Toán học: Ứng dụng của lý thuyết Nevanlinna cho phương trình vi phân và điểm bất động của hàm nguyên siêu việt đưa ra lý thuyết Nevanlinna của hàm phân hình P-adic; phương trình vi phân đại số P-adic; điểm bất động của hàm nguyên P-adic.
53p maiyeumaiyeu08 01-09-2016 61 9 Download
-
Luận văn Thạc sĩ Toán học: Tính chất Hyperbolic trên trường không Acsimet tập trung tìm hiểu về định lý Picard cho đường cong đại số trên trường không Acsimet; phỏng đoán Kobayashi-Zaidenberg trên trường không Acsimet; bổ đề Schwartz trên trường không Acsimet.
51p maiyeumaiyeu03 21-07-2016 59 5 Download
-
Mục đích của luận văn này trình bày được một số kiến thức cơ sở lý thuyết Nevanlinna, trong đó đặc biệt là bổ đề đạo hàm logarit và ứng dụng của nó trong việc chứng minh định lý cơ bản thứ hai. Nội dung của luận văn gồm 2 chương.
48p change15 08-07-2016 65 8 Download
-
Vào năm 1925, Nevanlinna đã phát triển lý thuyết phân phối giá trị với xuất phát điểm là công thức nổi tiếng Jensen. Lý thuyết có nội dung chủ yếu là định lý cơ bản thứ nhất, định lý cơ bản thứ 2...
60p qsczaxewd 19-09-2012 97 10 Download
-
Trong toán học, lý thuyết phân bố giá trị là một phân ngành của phân tích toán học. Lý thuyết phân bố giá trị được nhà toán học R. Nevanlinna đưa ra năm 1926. Chính vì thế lý thuyết này còn được gọi là lý thuyết Nevanlinna. Mục đích chính của lý thuyết phân bố giá trị là thiết lập định lý cơ bản thứ nhất và định lý cơ bản thứ hai đối với các ánh xạ phân hình. Một trong những ứng dụng quan trọng bậc nhất của lý thuyết Nevanlinna chính là vấn đề duy nhất, tức là tìm...
59p greengrass304 11-09-2012 97 15 Download
-
ý thuyết phân bố giá trị của Nevanlinna được đánh giá là một trong những thành tựu đẹp đẽ và sâu săc của toán học trong thế kỷ hai mươi. Được hình thành từ những năm đầu của thế kỷ, lý thuyết Nevanlinna có nguồn gốc từ những công trình của Hadamard Borel và ngày càng có nhiều ứng dụng trong các lĩnh vực khác nhau
45p greengrass304 11-09-2012 87 14 Download
-
Lý thuyết phân phối giá trị các hàm phân hình (lý thuyết Nevanlinna ) là một trong những hướng nghiên cứu cơ bản của giải tích phức và vẫn đang thu hút được sự quan tâm rộng rãi của các nhà toán học trên thế giới. Đề tài luận văn thuộc hướng nghiên cứu nói trên, với mục đích trình bày một số kết quả gần đây của lý thuyết phân phối giá trị.
41p greengrass304 11-09-2012 147 30 Download
-
Vấn đề phân tích hàm phân hình, hàm nguyên là một trong những vấn đề quan trọng của lý thuyết hàm và giải tích phức, có nhiều ứng dụng trong lý thuyết hệ động lực. Trong những năm gần đây, các kết quả và công cụ của lý thuyết Nevanlinna được áp dụng rộng rãi vào bài toán phân tích các hàm nguyên và hàm phân hình.
56p greengrass304 11-09-2012 120 25 Download
-
Lý thuyết Nevanlinna ra đời vào những năm đầu của thế kỷ 20 và đã nhận được sự quan tâm của nhiều nhà toán học trên thế giới. Lý thuyết Nevanlinna cổ điển nghiên cứu sự phân bố giá trị của hàm phân hình f thông qua hàm đặc trưng T(f; a; r) - hàm đo cấp tăng của hàm phân hình, hàm đếm N(f; a; r) - đếm số lần hàm f nhận giá trị a trong đĩa bán kính r, và hàm xấp xỉ m(f; a; r) - đo độ gần đến a của hàm f (xem Định nghĩa 1.1.3, 1.1.1, và 1.1.2)....
45p greengrass304 11-09-2012 74 15 Download