intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Thống kê ứng dụng trong kinh doanh: Chương 14 - ThS. Nguyễn Tiến Dũng

Chia sẻ: Sơn Tùng | Ngày: | Loại File: PDF | Số trang:30

344
lượt xem
19
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng "Thống kê ứng dụng trong kinh doanh - Chương 14: Dự báo dựa trên dữ liệu chuỗi thời gian" cung cấp cho người học các kiến thức: Chuỗi thời gian, các phương pháp dự báo dựa trên chuỗi thời gian, dự báo bằng mô hình nhân. Mời các bạn cùng tham khảo nội dung chi tiết.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Thống kê ứng dụng trong kinh doanh: Chương 14 - ThS. Nguyễn Tiến Dũng

  1. CHƯƠNG 14 DỰ BÁO DỰA TRÊN DỮ LIỆU CHUỖI THỜI GIAN Ths. Nguyễn Tiến Dũng Viện Kinh tế và Quản lý, Trường ĐH Bách khoa Hà Nội Email: dung.nguyentien3@hust.edu.vn
  2. MỤC TIÊU CỦA CHƯƠNG ● Sau khi học xong chương này, người học sẽ ● Phát biểu được chuỗi thời gian là gì ● Phân biệt được các khái niệm và các cách tiếp cận trong dự báo ● Thực hiện được các phương pháp dự báo dựa trên chuỗi thời gian: lượng tăng giảm tuyệt đối, tốc độ phát triển bình quân ● Thực hiện được một số phương pháp dự báo theo mô hình nhân © Nguyễn Tiến Dũng Thống kê ứng dụng 2
  3. CÁC NỘI DUNG CHÍNH 14.1 Chuỗi thời gian 14.2 Các phương pháp dự báo dựa trên chuỗi thời gian 14.3 Dự báo bằng mô hình nhân © Nguyễn Tiến Dũng Thống kê ứng dụng 3
  4. 14.1 CHUỖI THỜI GIAN ● 14.1.1 Khái niệm ● 14.1.2 Các đại lượng mô tả chuỗi thời gian © Nguyễn Tiến Dũng Thống kê ứng dụng 4
  5. 14.1.1 Khái niệm ● Time-series data ● Chuỗi các giá trị của một chỉ tiêu NC (đại lượng) được sắp xếp theo thứ tự thời gian ● Y = {Y1, Y2, Y3, ... Yn} ● Chuỗi số thời kỳ: ● DL thu thập trong kỳ ● Có tính cộng: cộng các thời kỳ khác nhau với nhau được ● TD ● Chuỗi số thời điểm ● DL thu thập tại một thời điểm ● Không cộng lại với nhau để đưa ra con số tích luỹ được ● TD © Nguyễn Tiến Dũng Thống kê ứng dụng 5
  6. Phân biệt DL thời kỳ và DL thời điểm ● DL thời kỳ: có tính ● DL thời điểm: không có tính cộng cộng ● Số lao động của một ● Lượng bán, Doanh doanh nghiệp thu ● Giá bán ● Tài sản, vốn chủ sở hữu, ● Chi phí SXKD, Lợi nợ phải trả nhuận = Doanh thu – ● CPI – Chỉ số giá tiêu Chi phí dùng ● GDP, thu nhập ● Điểm TB học tập của từng học kỳ (GPA học kỳ) ● Chi tiêu sinh hoạt ● Mức độ hài lòng của khách hàng – khảo sát theo quý. © Nguyễn Tiến Dũng Thống kê ứng dụng 6
  7. 14.1.2 Các đại lượng mô tả chuỗi thời gian ● 14.1.2.1 Giá trị TB ● Chuỗi thời kỳ 1 n Y   Yi ● Chuỗi thời điểm n i 1 ● Nếu khoảng cách giữa các thời điểm bằng 1 nhau Y  (0,5Y1  Y2  Y3  ...  Yn 1  0,5Yn ) n 1 n ● Nếu khoảng cách giữa Y t i i các thời điểm không Y  i 1 n bằng nhau, nhưng thời gian NC là liên tục t i i 1 © Nguyễn Tiến Dũng Thống kê ứng dụng 7
  8. 14.1.2.2 Lượng tăng giảm tuyệt đối (so sánh tuyệt đối) ● Lượng tăng giảm tuyệt đối  i  Yi  Yi 1 (i=2,n ) liên hoàn ● Lượng tăng giảm tuyệt đối  i  Yi  Y1 (i=2,n ) định gốc n n   i i 2 ● Lượng tăng giảm tuyệt đối TB 1 n i    i n 1 n  1 i 2   © Nguyễn Tiến Dũng Thống kê ứng dụng 8
  9. 14.1.2.3 Tốc độ phát triển Yi ti  Yi 1 ● Tốc độ phát triển liên hoàn Yi Ti  ● Tốc độ phát triển định Y1 gốc Tn  Yn n   ti Y1 i  2 ● Liên hệ giữa tốc độ phát triển liên hoàn và tốc độ n phát triển định gốc t  n 1  ti  n 1 Tn i 2 ● Tốc độ phát triển TB © Nguyễn Tiến Dũng Thống kê ứng dụng 9
  10. 14.1.2.4 Tốc độ tăng trưởng Yi  Yi 1 ● Tốc độ tăng trưởng liên hoàn ai   ti  1 Yi 1 Yi  Y1  i ● Tốc độ tăng trưởng định gốc Ai    Ti  1 Y1 Y1 ● Tốc độ tăng trưởng TB a  t 1 © Nguyễn Tiến Dũng Thống kê ứng dụng 10
  11. 14.2 DỰ BÁO DỰA TRÊN CHUỖI THỜI GIAN ● Hoạch định tốt  Thành công cao ● Dự báo  hoạch định (lập kế hoạch) ● Các cách tiếp cận trong DB ● Cách tiếp cận định tính: phỏng vấn sâu, thảo luận nhóm đối với chuyên gia và khách hàng ● Cách tiếp cận định lượng: ● Sử dụng X để dự báo Y: PT tương quan và hồi quy ● Sử dụng các GT quá khứ của Y để dự báo các GT tương lai của Y ● Các điều kiện và giả định để DB định lượng ● Có sẵn DL quá khứ ● Có thể lượng hoá DL quá khứ ● Các quy luật quá khứ sẽ tiếp diễn trong tương lai © Nguyễn Tiến Dũng Thống kê ứng dụng 11
  12. 14.2.1 Một số vấn đề liên quan đến dự báo ● 14.2.1.1 Thời đoạn DB ● Là tần suất thời gian mà DL phục vụ dự báo được thu thập, như ngày, tuần, tháng, quý, năm. ● 14.2.1.2 Tầm xa DB ● DB tức thì: dưới 1 tháng ● DB ngắn hạn: từ 1 đến 3 tháng ● DB trung hạn: từ 3 tháng đến hơn 1 năm. ● DB dài hạn: từ 2 năm trở lên © Nguyễn Tiến Dũng Thống kê ứng dụng 12
  13. 14.2.1.3 Các chỉ tiêu đánh giá mức độ phù hợp của mô hình dự báo ● Sai số tuyệt đối TB – MAE Y  {Y1 ; Y2 ;..., Yn } (Mean Absolute Error) F  {F1 ; F2 ;..., Fn } n | e i | ei  Yi - Fi MAE  i 1 n ● Sai số phần trăm tuyệt đối TB – MAPE (Mean Absolute Percent Error) n | e i | /Yi MPAE  i 1 n © Nguyễn Tiến Dũng Thống kê ứng dụng 13
  14. ● Sai số bình phương TB – MSE (Mean Square Error) và Căn bậc hai của sai số bình phương TB n e n i 2 2 i e MSE  i 1 RMSE  M SE  i 1 n n ● Chỉ số U RMSE cuûa moâ hình döï baùo ñang söû duï ng U RMSE cuûa moâ hình döï baùo ngaây thô (naive) © Nguyễn Tiến Dũng Thống kê ứng dụng 14
  15. 14.2.2 Các phương pháp DB đơn giản ● 14.2.2.1 Dự báo dựa vào lượng tăng trưởng tuyệt đối TB ● 14.2.2.2 Dự báo dựa vào tốc độ phát triển TB ● 14.2.2.3 Dự báo bằng phương pháp TB trượt (moving average) © Nguyễn Tiến Dũng Thống kê ứng dụng 15
  16. 14.2.2.1 Dự báo dựa vào lượng tăng trưởng tuyệt đối TB ● L: tầm xa dự báo (L = 1,2,3, ...) Fn  L  Yn   . L ● Ft+L: giá trị dự báo ở thời gian t+L ● 𝛿: lượng tăng trưởng tuyệt đối TB ● TD t 1 2 3 4 Y 100 118 121 ? delta - 18 3 1   (18  3)  10,5 2 F4  F31  Y3  1.  121  10,5  131,5 © Nguyễn Tiến Dũng Thống kê ứng dụng 16
  17. 14.2.2.2 Dự báo dựa vào tốc độ phát triển trung bình t 1 2 3 4 Y 100 118 121 ? Tốc độ PT - 118/100 = 121/118 = liên hoàn 1,18 1,025 Fn  L  Yn .( t ) L t  Y3 / Y1  121 / 100  1,1  (1,18).(1, 025)  1, 099 F4  F31  Y3 .t  121  1,1  133,1 © Nguyễn Tiến Dũng Thống kê ứng dụng 17
  18. 14.2.2.3 Dự báo bằng phương pháp trung bình trượt (Moving Average Method) ● Phạm vi áp dụng và ý nghĩa: ● Chuỗi số liệu có thành phần xu hướng (tăng/giảm tuyến tính) và có thành phần bất thường (nhiễu loạn) ● Số điểm lấy TB: ● m = 2k+1 hoặc m = 2k ● Nếu m lẻ, không phải trung tâm hoá ● Nếu m chẵn, phải trung tâm hoá ● Chọn m bằng bao nhiêu? ● Dãy số có mức độ biến động ít, chọn m nhỏ (TD, m=3) ● Dãy số có mức độ biến động nhiều, chọn m lớn hơn (m = 5, 7 ...) ● Phương pháp “Trial-and-error”: thử các giá trị m khác nhau, phương pháp nào có MSE nhỏ nhất thì chọn. ● m càng lớn, đường dự báo càng trơn © Nguyễn Tiến Dũng Thống kê ứng dụng 18
  19. 14.2.2.4 Mô hình ngoại suy xu thế ● Sử dụng các mô hình hồi quy tuyến tính đơn biến và Yˆ  b0  b1 X đa biến để dự báo © Nguyễn Tiến Dũng Thống kê ứng dụng 19
  20. 14.3 DỰ BÁO BẰNG MÔ HÌNH NHÂN ● Mô hình nhân (Multiplication Model) ● Chuỗi số liệu theo thời gian: Y = {Y1, Y2, ..., Yn} ● Các thành phần có thể có mặt: ● TP xu thế (Trend) Ti ● TP chu kỳ dài hạn (Cyclical) Ci ● TP mùa vụ (Seasonal) Si ● TP bất thường (Erratic) Ei ● Mô hình nhân: Yi=Ti.Ci.Si.Ei ● Quy trình dự báo theo mô hình nhân ● Nhận diện các thành phần của chuỗi ● Tách riêng các thành phần ● Lắp ghép chúng lại để có giá trị dự báo mong muốn © Nguyễn Tiến Dũng Thống kê ứng dụng 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2