1
B`
AI T ˆ
A
.P PHU
.O
.NG TR`
INH VI PH ˆ
AN
1)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
2xyy = y21
HD gia
i:
t
y=p: 2xpp=p21
❱✓
x(p21) 6= 0
t❛
2pdp
p21=dx
xp21 = C1p=±C1x+ 1
p=dy
dx =C1+ 1 y=2
3C1
(C1x+ 1)3
2+C2
2)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
y.y = y
HD gia
i:
t
y=py = pdp
dy
✭❤❛✒♠ t❤❡ ②✮✳ P❤✉♥❣ tr✏✒♥❤ tr
t❤❛✒♥❤✿
ypdp
dy =p
❱✓
p6= 0
t❛ ✖✉
♣❤♥❣ tr✏✒♥❤✿
dp =dy
yp= 2y+C1dy
dx = 2y+C1
dx =dy
2y+C1
✖♦ ♥❣❤✐
t❫
♥❣ q✉❛t✿
x=yC1
2ln |2y+C1|+C2
◆❣♦✒✐ r
y=c
❤✕
♥❣ ❝✉
♥❣ ❧❛ ♥❣❤✐
♠✳
3)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
a(xy+ 2y) = xyy
HD gia
i: a(xy+ 2y) = xyyx(ay)y=2ay
y6= 0
t❛ ♣❤✉♥❣ tr✏✒♥❤ t✉♥❣ ✖✉♥❣ ✈✓
ay
ydy =2a
xdx x2ayaey=C
◆❣♦✒✐ r
y= 0
❝✉
♥❣ ❧❛ ♥❣❤✐
♠✳
4)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
y = yey
HD gia
i:
t
y=py = pdp
dy
t❤❛② ✈❛✒♦ ♣❤✉♥❣ tr✏✒♥❤✿
pdp
dy =pey
❱✓
p6= 0 : dp
dy =eyp=ey+C1dy
dx =ey+C1dy
ey+C1
=dx
❱✓
C16= 0
t❛
Rdy
ey+C1
=1
C1Rey+C1ey
ey+ 1 dy =1
C1
(yReydy
ey+C1
) = y
C1
1
C1
ln(ey+C1)
♥❤✉✈❫
②✿
Rdx
ey+C1
=
eynˆe
´uC1= 0
1
C1
(yln |ey+C1|) nˆe
´uC16= 0.
◆❣♦✒✐ r
y=C:
❤✕
♥❣ ❧❛ ♠❫
t ♥❣❤✐
5)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
xy=y(1 + ln yln x)
✈✓
y(1) = e
w w w .VNM ATH.com
2
HD gia
i:
♣❤✉♥❣ tr✏♥❤
y=y
x(1 + ln y
x)
✖✕
t
y=zx
✖✉
❝✿
xz=zln z
zln z6= 0 dz
zln z=dx
xln z=Cx
❤❛②
ln y
x=Cx y=xeCx
y(1) = eC= 1.
❱❫
y=xex
6)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
y”(1 + y) = y2+y
HD gia
i:
t
y=z(y)z=zdz
dy
t❤❛② ✈❛✒♦ ♣❤✉♥❣ tr✏✒♥❤✿
dz
z+ 1 =dy
y+ 1
z+ 1 = C1(y+ 1) z=C1y+C11dy
C1y+C11=dx ()
C1= 0 ()
❝❤♦
y=Cx
C16= 0 ()
❝❤♦
1
C1
ln |C1y+C11|=x+C2
◆❣♦✒✐ r
y=C
❧❛ ♥❣❤✐
♠✳
❧❛
♥❣❤✐
t❫
♥❣ q✉❛t✿
y=C, y =Cx;1
C1
ln |C1y+C11|=x+C2
7)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
y=y22
x2
HD gia
i:
❇✐
✖❫
✭✸✮
❞❛
♥❣✿
x2y= (xy)22 ()
t
z=xy z=y+xy
t❤❛② ✈❛✒♦
()
s✉② r❛✿
xz=z2+z2dz
z2+z2=dx
x3
rz1
z+x=Cx
❱❫
❚P❚◗✿
xy 1
xy + 2 =Cx3.
8)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
yy + y2= 1
HD gia
i:
t
y=z(y)y = z.dz
dy
❇✐
✖❫
♣❤✉♥❣ tr✏✒♥
z
1z2dz =dy
yz2= 1 + C1
y2
dy
dx =±r1 + C1
y2 ±Rdy
r1 + C1
y2
=dx y2+C1= (x+C2)2
◆❣❤✐
t❫
♥❣ q✉❛t✿
y2+C1= (x+C2)2
9)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
2x(1 + x)y(3x+ 4)y+ 2x1 + x= 0
HD gia
i: y3x+ 4
2x(x+ 1).y =1
x+ 1;x6= 0, x 6=1
◆❣❤✐
t❫
♥❣ q✉❛t ❝✉
♣❤✉♥❣ tr✏♥❤ t❤✉❫
♥❤❫
t✿
Rdy
y=R3x+ 4
2x(x+ 1)dx =R(2
x1
2(x+ 1))dx y=Cx2
x+ 1
w w w .VNM ATH.com
3
❇✐
t❤✐❡♥ ❤✕
♥❣ s❫
C=1
x2C=1
x+ε.
❱❫
♥❣❤✐
t❫
♥❣ q✉❛t✿
y=x2
x+ 1(1
x+ε)
10)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
y = e2y
t❤♦
(y(0) = 0
y(0) = 0
HD gia
i:
t
z=yy = z.dz
dy
♣❤✉♥❣ tr✏✒♥ tr
t❤❛✒♥❤
z.dz
dy =e2yz2
2=e2y
2+ε
y(0) = y(0) = 0 ε=1
2.
❱❫
z2=e2y1.
✖♦
z=dy
dx =e2y1Zdy
e2y1=x+ε. d¯ˆo
i biˆe
´nt=e2y1
arctge2y1 = x+ε
y(0) = 0 ε= 0.
❱❫
♥❣❤✐
r✐❡♥❣ t❤♦
✖✐
❦✐
✒✐✿
y=1
2ln(tg2x+ 1).
11)
❚✏✒♠ ♥❣❤✐
r✐❡♥❣ ❝✉
♣❤✉♥❣ tr✏✒♥❤✿
xy+ 2y=xyy
t❤♦❛
♠❛
✖✐
❦✐
y(1) = 1
HD gia
i:
❱✐
t ♣❤✉♥❣ tr✏♥❤ ❧❛
✐✿
x(1 y)y=2y
❞♦
y(1) = 1
❡♥
y6≡ 0
♣❤✉♥❣ tr✏✒♥ t❛❝❤ ❜✐
♥✿
1y
ydy =2dx
x
t✏❝❤ ♣❤❫❛♥ t❫
♥❣ q✉❛t✿
x2yey=C
❚❤❛② ✖✐
❦✐
✈❛✒♦ t❛
C=1
e
❱❫
t✏❝❤ ♣❤❫❛♥
r✐❡♥❣ ❝❫
t✏✒♠ ❧❛✒✿
x2ye1y= 1
12)
♥❣ ❝❛❝❤
t
y=ux
❤❛
❣✐❛
♣❤✉♥❣ tr✏✒♥❤✿
xdy ydx px2y2dx = 0.(x > 0)
HD gia
i:
t
y=ux;du =udx +xdu
t❤❛② ✈❛✒♦ ♣❤✉♥❣ tr✏✒♥❤ ✈❛ ❣✐❛
x
xdu
1u2dx = 0
r✒♥❣
u±1
❧❛ ♥❣❤✐
♠✳ ❦❤✐
u6≡ ±1
✖✉ ♣❤♥❣ tr✏✒♥❤
t❛❝❤ ❜✐
♥✿
du
1u2=dx
x
❚P❚◗✿
arcsin uln x=C
✭❞♦
x > 0
✮✳
❱❫
◆❚◗ ❝✉
♣❤✉♥❣ tr✏✒♥❤✿
y=±x; arcsin y
x= ln x+C
13)
❚✏✒♠ ♥❣❤✐
r✐❡♥❣ ❝✉
♣❤✉♥❣ tr✏✒♥❤✿
xy=px2y2+y
t❤♦❛
♠❛
✖✐
❦✐
y(1) = 0
HD gia
i:
xy=px2y2+y y=r1y2
x2+y
x
✖✕
t
u=y
x
❤❛②
y=ux
s✉② r
y=xu+u
♣❤✉♥❣ tr✏✒♥ t❤❛✒♥❤✿
xu=1u2 du
1u2=dx
x
w w w .VNM ATH.com
4
arcsin u= ln Cx
t❤♦
♠❛
✖✐
❦✐
✖❫
y(1) = 0
❦❤✐
C= 1
❱❫
♥❣❤✐
y=±x
14)
❚✏✒♠ ♥❣❤✐
r✐❡♥❣ ❝✉
♣❤✉♥❣ tr✏✒♥❤✿
ysin x=yln y
t❤♦❛
♠❛
✖✐
❦✐
y(π
2) = e
HD gia
i:
ysin x=yln y dy
yln y=dx
sin x
ln y=Ctan x
2 y=eCtan x
2
t❤♦
♠❛
✖✐
❦✐
✖❫
y(π
2) = e
❦❤✐
C= 1
❱❫
y=etan x
2
15)
❚✏✒♠ ♥❣❤✐
r✐❡♥❣ ❝✉
♣❤✉♥❣ tr✏✒♥❤✿
(x+y+ 1)dx + (2x+ 2y1)dy = 0
t❤♦❛
♠❛
✖✐
❦✐
y(0) = 1
HD gia
i:
t
x+y=z=dy =dz dx
♣❤✉♥❣ tr✏✒♥❤ t❤❛♥❤✿
(2 z)dx + (2z1)dz = 0
❣✐❛
r
x2z3 ln |z2|=C
❱❫
x+ 2y+ 3 ln |x+y2|=C
t❤♦
♠❛
✖✐
❦✐
✖❫
y(0) = 1
❦❤✐
C= 2
16)
♥❣ ❝❛❝❤
t
y=1
z
r❫
t
z=ux
✱❤❛
❣✐❛
♣❤✉♥❣ tr✏✒♥❤✿
(x2y21)dy + 2xy3dx = 0
HD gia
i:
t
y=1
z
✖✉
❝✿
(z2x2)dz + 2zxdx = 0
r❫
✖✕
t
z=ux
✖✉
(u21)(udx +xdu) + 2udx = 0
dx
x+u21
u3+udu = 0
ln |x|+ ln u2+ 1
|u|= ln C x(u2+ 1)
u=C
t❤❛②
u=1
xy
✖✉
♥❣❤✐
1 + x2y2=Cy
17)
❚✏✒♠ ♥❣❤✐
t
♥❣ q✉❛t ❝✉
♣❤✉♥❣ tr✏✒♥❤ s❛✉✿
yxy =x+x3
HD gia
i:
❛② ❧❛ ♣❤✉♥❣ tr✏✒♥ t✉②
t✏ ❝❫
✈❛ ♥❣❤✐
t❫
♥❣ q✉❛t ❧❛
y=Cex2
2.x2
2+ 1
w w w .VNM ATH.com
5
18)
❚✏✒♠ ♥❣❤✐
t
♥❣ q✉❛t ❝✉
❝❛ ♣❤✉♥❣ tr✏✒♥❤ s❛✉✿
yy=y2.
HD gia
i:
❛② ❧❛ ♣❤♥❣ tr✏✒♥❤ t❛❝❤ ❜✐
✈❛ ♥❣❤✐
t❫
♥❣ q✉❛t ❧❛
ln |y
y+ 1|=x+C.
19)
❚✏✒♠ ♥❣❤✐
❝✉
❝❛ ♣❤✉♥❣ tr✏✒♥❤ s❛✉✿
y+y
x=ex
HD gia
i:
❛② ❧❛ ♣❤✉♥❣ tr✏✒♥ t✉②
t✏ ❝❫
✈❛ ♥❣❤✐
t❫
♥❣ q✉❛t ❧❛
y=C
x+exex
x
20)
❚✏✒♠ ♥❣❤✐
❝✉
❝❛ ♣❤✉♥❣ tr✏✒♥❤ s❛✉✿
yy=y3.
HD gia
i:
❛② ❧❛ ♣❤♥❣ tr✏✒♥❤ t❛❝❤ ❜✐
✈❛ ♥❣❤✐
t❫
♥❣ q✉❛t ❧❛
C+x= ln |y| arctgy.
21)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
y=y
x+ sin y
x
✈✓
y(1) = π
2
HD gia
i: y=zx y=zx+z
♣❤✉♥❣ tr✏✒♥ tr
t❤❛✒♥❤✿
zx= sin xdz
sin z=dx
xln |tg z
2|= ln |x|+ ln Ctg z
2=Cx
❱❫
♥❣❤✐
t❫
♥❣ q✉❛t✿
tg y
2x=Cx;y(1) = π
2C= 1.
❱❫
②✿
tg y
2x=x
22)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
(xycos y
x)dx +xcos y
xdy = 0
HD gia
i:
t
y
x=zy=zx+z
♣❤✉♥❣ tr✏✒♥ ✖✉
✖✉
❞❛
♥❣✿
xcos z.z+ 1 = 0 Zcos zdz =dx
x+Csin z=ln |x|+C
❱❫
❚P❚◗✿
sin y
x=ln |x|+C
23)
●✐❛
♣❤✉♥❣ tr✏✒♥❤✿
(y21)x2y2+y(x4y4) = 0
HD gia
i:
♣❤✉♥❣ tr✏✒♥ ✖✕
♥❣ ❝❫
♥❤✉♥❣ ❣✐❛
❦❤❛ ♣❤ t❛
♣✳
w w w .VNM ATH.com