Bài tập tính đơn điệu của hàm số
lượt xem 338
download
A. Tóm tắt lý thuyết. Chú ý: Trong chương trình phổ thông, khi sử dụng 1., 2. cho các hàm số một quy tắc có thể bỏ điều kiện ¦¢ (x) = 0 tại một số hữu hạn điểm Î (a, b).
Bình luận(2) Đăng nhập để gửi bình luận!
Nội dung Text: Bài tập tính đơn điệu của hàm số
- Bài 2. Tính đơn điệu của hàm số BÀI 2. TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ A. TÓM TẮT LÝ THUYẾT. 1. y = f (x) đồng biến / (a, b) ⇔ ƒ ′ (x) ≥ 0 ∀x∈(a, b) đồng thời ƒ′ (x) = 0 tại một số hữu hạn điểm ∈ (a, b). 2. y = f (x) nghịch biến / (a, b) ⇔ ƒ ′ (x) ≤ 0 ∀x∈(a, b) đồng thời ƒ′ (x) = 0 tại một số hữu hạn điểm ∈ (a, b). Chú ý: Trong chương trình phổ thông, khi sử dụng 1., 2. cho các hàm số một quy tắc có thể bỏ điều kiện ƒ′ (x) = 0 tại một số hữu hạn điểm ∈ (a, b). CÁC BÀI TẬP MẪU MINH HỌA mx 2 + ( 6m + 5 ) x − 2 ( 1 − 3m ) nghịch biến trên [1, + ∞ ) Bài 1. Tìm m để y = x +1 mx 2 + 2mx + 7 ≤ 0 ∀x ≥ 1 Giải: Hàm số nghịch biến trên [1, + ∞ ) ⇔ y ′ = ( x + 1) 2 −7 ≥ m ∀x ≥ 1 u ( x) = mx 2 + 2mx + 7 ≤ 0 ⇔ m ( x 2 + 2 x ) ≤ −7 ∀x ≥ 1 ⇔ ⇔ 2 x + 2x ( ) ⇔ Min u ( x ) ≥ m . Ta có: u ′ ( x ) = 7 22 x + 2 2 > 0 ∀x ≥ 1 ( x + 2 x) x ≥1 −7 ⇒ u(x) đồng biến trên [1, + ∞ ) ⇒ m ≤ Min u ( x ) = u ( 1) = 3 x ≥1 Bài 2. Tìm m để y = −1 x + ( m − 1) x + ( m + 3) x − 4 đồng biến trên (0, 3) 3 2 3 Giải. Hàm số tăng trên (0,3) ⇔ y ′ = − x 2 + 2 ( m − 1) x + ( m + 3) ≥ 0 ∀x ∈ ( 0, 3) (1) Do y ′ ( x ) liên tục tại x = 0 và x = 3 nên (1) ⇔ y′ ≥ 0 ∀x∈[0, 3] 2 ⇔ m ( 2 x + 1) ≥ x 2 + 2 x − 3 ∀x ∈ [ 0, 3] ⇔ g ( x ) = x + 2 x − 3 ≤ m ∀x ∈ [ 0, 3] 2x + 1 2 ⇔ Max g ( x ) ≤ m . Ta có: g ′ ( x ) = 2 x + 2 x + 8 > 0 ∀x ∈ [ 0, 3] x∈[ 0,3] ( 2 x + 1) 2 12 ⇒ g(x) đồng biến trên [0, 3] ⇒ m ≥ Max] g ( x ) = g ( 3) = 7 x∈[ 0,3 m3 Bài 3. Tìm m để y = x − ( m − 1) x + 3 ( m − 2 ) x + 1 đồng biến trên [ 2, +∞ ) 2 3 3 1
- Chương I. Hàm số – Trần Phương Giải: Hàm số tăng / [ 2, +∞ ) ⇔ y ′ = mx 2 − 2 ( m − 1) x + 3 ( m − 2 ) ≥ 0 ∀x ≥ 2 (1) −2 x + 6 ≤ m ∀x ≥ 2 ⇔ m ( x − 1) + 2 ≥ −2 x + 6 ∀x ≥ 2 ⇔ g ( x ) = 2 ( x − 1) 2 + 2 2 ( x 2 − 6 x + 3) Ta có: g ′ ( x ) = =0 ( x 2 − 2 x + 3) 2 x = x1 = 3 − 6 ; x →∞ g ( x ) = 0 lim ⇔ x 2 _0+ CT0 _ x = x2 = 3 + 6 2 Từ BBT ⇒ Max g ( x ) = g ( 2 ) = ≤ m . 3 x≥ 2 Bài 4. y = x 3 − mx 2 − ( 2m 2 − 7 m + 7 ) x + 2 ( m − 1) ( 2m − 3) đồng biến / [ 2, +∞ ) Giải: Hàm số tăng trên [ 2, +∞ ) ⇔ y ′ = 3 x 2 − 2mx − ( 2m 2 − 7m + 7 ) ≥ 0, ∀x ≥ 2 ) ( 2 Ta có V ′= 7 ( m 2 − 3m + 3) = 7 m − 3 + 3 > 0 nên y ′ = 0 có 2 nghiệm x1 < x 2 4 2 BPT g(x) ≥ 0 có sơ đồ miền nghiệm G là: x x Ta có y ′ ( x ) ≥ 0 đúng ∀x ≥ 2 ⇔ [ 2, +∞ ) ⊂ G 1 2 ∆ ′ > 0 −1 ≤ m ≤ 5 ⇔ x1 < x 2 ≤ 2 ⇔ 3 y ′ ( 2 ) = 3 ( −2m 2 + 3m + 5 ) ≥ 0 ⇔ 2 ⇔ −1 ≤ m ≤ 5 2 m < 6 S = m < 2 2 3 2x 2 + ( 1 − m) x + 1 + m đồng biến trên ( 1, +∞ ) Bài 5. Tìm m để y = x−m ( 1, +∞ ) ⇔ Giải: số đồng biến Hàm trên 2 2 y ′ = 2 x − 4mx + m 2 − 2m − 1 ≥ 0 ∀x > 1 ( x − m) g ( x ) = 2 x 2 − 4mx + m 2 − 2m − 1 ≥ 0 ∀x > 1 g ( x ) ≥ 0 ∀x > 1 ⇔ ⇔ m ≤ 1 x − m ≠ 0 Cách 1: Phương pháp tam thức bậc 2 Ta có: ∆ ′ = 2 ( m + 1) 2 ≥ 0 suy ra g(x) = 0 có 2 nghiệm x1 ≤ x 2 . BPT g(x) ≥ 0 có sơ đồ miền nghiệm G là: x1 x 2 Ta có g(x) ≥ 0 đúng ∀x∈(1, + ∞ ) ⇔ ( 1, +∞ ) ⊂ G 2
- Bài 2. Tính đơn điệu của hàm số m ≤ 1, ∆ ′ ≥ 0 m ≤ 1 2 g ( 1) = 2 ( m 2 − 6m + 1) ≥ 0 ⇔ m ≤ 3 − 2 2 ⇔ m ≤ 3 − 2 2 ⇔ x1 ≤ x 2 ≤ 1 ⇔ m ≥ 3 + 2 2 S = −2 ≤ 1 2 Cách 2: Phương pháp hàm số Ta có: g′ (x) = 4(x − m) ≥ 4(x − 1) > 0 ∀x > 1 ⇒ g(x) đồng biến trên [1, + ∞ ) m ≤ 3 − 2 2 Min g ( x ) ≥ 0 g ( 1) = m − 6m + 1 ≥ 0 2 x ≥1 Do đó ( 1) ⇔ ⇔ m ≥ 3 + 2 2 ⇔ m ≤ 3 − 2 2 ⇔ m ≤ 1 m ≤ 1 m ≤ 1 Bài 6. Tìm m để y = ( 4m − 5 ) cos x + ( 2m − 3) x + m 2 − 3m + 1 giảm ∀x ∈ ¡ Giải: Yêu cầu bài toán ⇔ y ′ = ( 5 − 4m ) sin x + 2m − 3 ≤ 0, ∀x ∈ ¡ ⇔ g ( u ) = ( 5 − 4m ) u + 2m − 3 ≤ 0, ∀u ∈ [ −1;1] . Do đồ thị y = g ( u ) , u ∈ [ −1;1] là g ( −1) = 6m − 8 ≤ 0 ⇔1≤ m ≤ 4 một đoạn thẳng nên ycbt ⇔ g ( 1) = −2m + 2 ≤ 0 3 Bài 7. Tìm m để hàm số y = mx + sin x + 1 sin 2 x + 1 sin 3x tăng với mọi x ∈ ¡ 4 9 Giải: Yêu cầu bài toán ⇔ y ′ = m + cos x + 1 cos 2 x + 1 cos 3 x ≥ 0, ∀x ∈ ¡ 2 3 ⇔ m + cos x + ( 2 cos x − 1) + ( 4 cos x − 3cos x ) ≥ 0, ∀x ∈ ¡ 1 1 2 3 2 3 ⇔ m ≥ − 4 u 3 − u 2 + 1 = g ( u ) , ∀u ∈ [ −1,1] , với u = cos x ∈ [ −1,1] 3 2 Ta có g ′ ( u ) = −4u − 2u = −2u ( 2u + 1) = 0 ⇔ u = − 1 ; u = 0 2 2 5 Lập BBT suy ra yêu cầu bài toán ⇔ xMax] g ( u ) = g ( −1) = ≤ m . 6 ∈[ −1,1 Bài 8. Cho hàm số y = 1 ( m + 1) x + ( 2m − 1) x − ( 3m + 2 ) x + m . 3 2 3 Tìm m để khoảng nghịch biến của hàm số có độ dài bằng 4 Giải. Xét y ′ = ( m + 1) x 2 + 2 ( 2m − 1) x − ( 3m + 2 ) = 0 . Do ∆ ′ = 7 m 2 + m + 3 > 0 nên y ′ = 0 có 2 nghiệm x1 < x 2 . Khoảng nghịch biến của hàm số có độ dài bằng 4 ⇔ y ′ ≤ 0; ∀x ∈ [ x1 ; x 2 ] ; x 2 − x1 = 4 ⇔ m + 1 > 0 và x 2 − x1 = 4 . Ta có 3
- Chương I. Hàm số – Trần Phương ( )2 ( ) x 2 − x1 = 4 ⇔ 16 = ( x 2 − x1 ) = ( x 2 + x1 ) − 4 x 2 x1 = 4 2m − 12 + 4 3m + 2 2 2 m +1 ( m + 1) ⇔ 4 ( m + 1) = ( 2m − 1) + ( 3m + 2 ) ( m + 1) 2 2 7 ± 61 kết hợp với m + 1 > 0 suy ra 7 + 61 ⇔ 3m 2 − 7 m − 1 = 0 ⇔ m = m= 6 6 4
- Bài 2. Tính đơn điệu của hàm số B. ỨNG DỤNG TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ I. DẠNG 1: ỨNG DỤNG TRONG PT, BPT, HỆ PT, HỆ BPT Bài 1. Giải phương trình: x 5 + x 3 − 1 − 3x + 4 = 0 . Giải. Điều kiện: x ≤ 1 . Đặt f ( x ) = x 5 + x 3 − 1 − 3 x + 4 = 0 . 3 ( 3 Ta có: f ′ ( x ) = 5 x + 3x + > 0 ⇒ f (x) đồng biến trên −∞, 1 . 4 2 3 2 1 − 3x Mặt khác f (− = 0 nên phương trình f (x) = 0 có nghiệm duy nhất x = − 1) 1. Bài 2. Giải phương trình: x 2 + 15 = 3x − 2 + x 2 + 8 Giải. Bất phương trình ⇔ f ( x ) = 3x − 2 + x 2 + 8 − x 2 + 15 = 0 (1). + Nếu x ≤ 2 thì f (x) < 0 ⇒ (1) vô nghiệm. 3 > 0 ∀x > 2 1 1 + Nếu x > 2 thì f ′ ( x ) = 3 + x − 3 3 2 2 x +8 x + 15 ) ( 2 ⇒ f (x) đồng biến trên 3 , +∞ mà f (1) = 0 nên (1) có đúng 1 nghiệm x = 1 x + 1 + 3 5 x − 7 + 4 7 x − 5 + 5 13 x − 7 < 8 Bài 3. Giải bất phương trình: (*) 5 Giải. Điều kiện x ≥ . Đặt f ( x ) = x + 1 + 3 5 x − 7 + 4 7 x − 5 + 5 13x − 7 7 5 7 13 1 ′( ) Ta có: f x = 2 x + 1 + 3 + + >0 3 ⋅ ( 5x − 7 ) 4 ⋅ 4 ( 7 x − 5) 2 3 5 ⋅ 5 (13x − 7) 4 ) ⇒ f (x) đồng biến trên , +∞ . Mà f (3) = 8 nên (*) ⇔ f (x) < f (3) ⇔ x < 3. 5 7 5 ≤ x
- Chương I. Hàm số – Trần Phương Bài 5. Tìm số m Max để m ( sin x + cos x + 1) ≤ sin 2 x + sin x + cos x + 2 ∀ x (*) Giải. Đặt t = sin x + cos x ≥ 0 ⇒ t 2 = ( sin x + cos x ) = 1 + sin 2 x ⇒ 1 ≤ t 2 ≤ 2 2 ⇒ 1 ≤ t ≤ 2 , khi đó (*) ⇔ m ( t + 1) ≤ t 2 + t + 1 ∀t ∈ 1, 2 t 2 + 2t > 0 Min ( ) 2 ⇔ f ( t ) = t + t + 1 ≥ m ∀t ∈ 1, 2 ⇔ t∈1, 2 f t ≥ m . Do f ′ ( t ) = ( t + 1) 2 t +1 3 nên f (t) đồng biến / 1, 2 ⇒ Min f ( t ) = f ( 1) = 2 ⇒ m ≤ 3 3 ⇒ Max m = 2 2 1, 2 t∈ 2 2 Bài 6. Giải phương trình 2008 sin x − 2008 cos x = cos 2 x 2 2 2 2 + cos 2 x (*) 2008 sin x − 2008 cos x = cos 2 x − sin 2 x ⇔ 2008 sin x + sin 2 x = 2008 cos x Xét f ( u ) = 2008 u + u . Ta có f ′ ( u ) = 2008 u .ln u + 1 > 0 . Suy ra f ( u ) đồng biến. π kπ , k ∈¢ (*) ⇔ f ( sin 2 x ) = f ( cos 2 x ) ⇔ sin 2 x = cos 2 x ⇔ cos 2 x = 0 ⇔ x = + 42 cotg x − cotg y = x − y Bài 7. Tìm x, y ∈ ( 0, π ) thỏa mãn hệ 3 x + 5 y = 2π Giải. cotg x − cotg y = x − y ⇔ x − cotg x = y − cotg y . 1 >0 Xét hàm số đặc trưng f ( u ) = u − cotg u , u ∈ ( 0, π ) . Ta có f ′ ( u ) = 1 + . sin 2 u f ( x) = f ( y) ⇔x= y= π Suy ra f ( u ) đồng biến trên ( 0, π ) . Khi đó 4 3 x + 5 y = 2 π 2 x + 1 = y 3 + y 2 + y Bài 8. Giải hệ phương trình 2 y + 1 = z 3 + z 2 + z (*). 3 2 2 z + 1 = x + x + x Giải. Xét f ( t ) = t 3 + t 2 + t với t ∈ ¡ ⇒ f ′ ( t ) = 2t 2 + ( t + 1) > 0 ⇒ f (t) tăng. 2 Không mất tính tổng quát giả sử x ≤ y ≤ z ⇒ f ( x ) ≤ f ( y ) ≤ f ( z ) ⇒ 2z + 1 ≤ 2x + 1 ≤ 2 y + 1 ⇔ z ≤ x ≤ y ⇒ x = y = z = ± 1 3 x 2 + 2 x − 1 < 0 Bài 9. Giải hệ bất phương trình 3 x − 3x + 1 > 0 Giải. 3x + 2 x − 1 < 0 ⇔ −1 < x < 1 . Đặt f ( x ) = x 3 − 3 x + 1 . Ta có: 2 3 () () 1 = 1 > 0, ∀x ∈ −1, 1 f ′ ( x ) = 3 ( x − 1) ( x + 1) < 0 ⇒ f ( x ) giảm và f ( x ) > f 3 27 3 6
- Bài 2. Tính đơn điệu của hàm số II. DẠ NG 2: ỨNG DỤNG TRONG CHỨNG MINH BẤ T ĐẲ NG THỨC x3 x3 x5 ∀x > 0 Bài 1. Chứng minh rằng: x − < sin x < x − + 3! 3! 5! x3 x3 < sin x ∀x > 0 ⇔ f ( x ) = − x + sin x > 0 ∀x > 0 Giả i x − 3! 3! x2 − 1 + cos x ⇒ f ′′ ( x ) = x − sin x ⇒ f ′′′ ( x ) = 1 − cos x ≥ 0 ∀x > 0 Ta có f ′ ( x ) = 2! ⇒ f ′′ ( x ) đồng biến [0, +∞ ) ⇒ f ′′ ( x ) > f ′′ ( 0 ) = 0 ∀x > 0 ⇒ f ′ ( x ) đồng biến [0, +∞ ) ⇒ f ′ ( x ) > f ′ ( 0 ) = 0 ∀x > 0 ⇒ f ( x ) đồng biến [0, +∞ ) ⇒ f(x) > f(0) = 0 ∀x > 0 ⇒ (đpcm) x3 x5 x5 x3 sin x < x − + ∀x > 0 ⇔ g ( x) = − + x − sin x > 0 ∀x > 0 3! 5! 5! 3! x4 x2 x3 Ta có g′ (x) = + 1 − cos x ⇒ g′ ′ (x) = − x + sin x = f(x) > 0 ∀x > 0 − 4! 2! 3! ⇒ g′ (x) đồng biến [0, +∞ ) ⇒ g′ (x) > g′ (0) = 0 ∀x > 0 ⇒ g(x) đồng biến [0, +∞ ) ⇒ g(x) > g (0) = 0 ∀x > 0 ⇒ (đpcm) π 2x sin x > ∀x ∈ 0, Bài 2. Chứng minh rằng: π 2 π 2x sin x 2 Giải. sin x > ⇔ f ( x) = > ∀x∈ 0, . Xét biểu thức đạo hàm π π 2 x x cos x − sin x g ( x) f ′( x) = = 2 , ở đây kí hiệu g(x) = x cosx − sinx x2 x π Ta có g′ (x) = cosx − xsinx − cosx = − xsinx < 0 ∀x∈ 0, 2 π ⇒ g(x) giảm trên 0, ⇒ g(x) < g(0) = 0 2 π π g ( x) ⇒ f ′( x) = < 0 ∀x∈ 0, ⇒ f (x) giảm trên 0, 2 2 2 x 7
- Chương I. Hàm số – Trần Phương () π 2x π =2 ⇒ f ( x) > f ⇔ sin x > , ∀x ∈ 0, π π 2 2 x+ y x− y > ∀x > y > 0 Bài 3. Chứng minh rằng: ln x − ln y 2 Giải. Do x > y > 0, lnx > lny ⇔ lnx − lny > 0, nên biến đổi bất đẳng thức x −1 x− y x t −1 x y với t = >1 ⇔ ln x − ln y > 2 ⋅ ⇔ ln > 2 ⋅ ⇔ ln t > 2 ⋅ x+ y x +1 y t +1 y y ( t − 1) 2 t −1 1 4 > 0 ∀t >1. Ta có f ′ ( t ) = − = > 0 ∀ t >1 ⇔ f (t ) = ln t − 2 ⋅ t +1 t ( t + 1) 2 t ( t + 1) 2 ⇒ f(t) đồng biến [1, +∞ ) ⇒ f(t) > f(1) = 0 ∀t >1 ⇒ (đpcm) ∀x, y ∈ ( 0,1) 1 x y − ln >4 ln Bài 4. Chứng minh rằng: (1) y − x 1− y 1− x x ≠ y Giải. Xét hai khả năng sau đây: y x y x > 4 ( y − x ) ⇔ ln − ln − 4 y > ln − 4x Nếu y > x thì (1) ⇔ ln + 1− y 1− x 1− y 1− x y x y x < 4 ( y − x ) ⇔ ln − ln − 4 y < ln − 4x Nếu y < x thì (1) ⇔ ln + 1− y 1− x 1− y 1− x t − 4t với t∈(0, 1). Xét hàm đặc trưng f(t) = ln 1− t ( 2t − 1) 2 1 Ta có f ′ ( t ) = −4= > 0 ∀t∈(0,1) ⇒ f(t) đồng biến (0, 1) t (1 − t ) t (1 − t ) ⇒ f(y) > f(x) nếu y > x và f(y) < f(x) nếu y < x ⇒ (đpcm) ∀a > b ≥ e Bài 5. Chứng minh rằng: ab < ba ln a ln b < Giải. ab < ba ⇔ lnab < lnba ⇔ blna < alnb ⇔ . a b ln x ∀x ≥ e. Xét hàm đặc trưng f(x) = x 1 − ln x 1 − ln e Ta có f ′( x) = ≤ = 0 ⇒ f(x) nghịch biến [e, +∞ ) x2 x2 8
- Bài 2. Tính đơn điệu của hàm số ln a ln b < ⇒ f (a ) < f (b ) ⇔ ⇔ ab < ba a b Bài 6. (Đề TSĐH khối D, 2007) ( )( ) b a Chứng minh rằng 2 + 1a ≤ 2 b + 1b a , ∀a ≥ b > 0 2 2 Giải. Biến đổi bất đẳng thức ( )( ) b a b a 4a 4b ⇔ 1+ a ≤ 1+ b 2 a + 1a ≤ 2 b + 1b 2 2 2 2 ( a) ( b) ⇔ ( 1 + 4 a ) ≤ ( 1 + 4 b ) ⇔ ln ( 1 + 4 a ) ≤ ln ( 1 + 4 b ) ⇔ ln 1 + 4 ≤ ln 1 + 4 . b a b a a b ( x) Xét hàm số đặc trưng cho hai vế f ( x ) = ln 1 + 4 với x > 0 . Ta có x ( x) ( x) x x f ′ ( x ) = 4 ln 4 − 21 + 4 x ln 1 + 4 < 0 ⇒ f ( x ) giảm trên ( 0, +∞ ) ⇒ f ( a ) ≤ f ( b ) x (1+ 4 ) Bài 7. (Bất đẳng thức Nesbitt) a b c 3 + + ≥ ∀a , b , c > 0 Chứng minh rằng: (1) b+c c+a a+b 2 Giải. Không mất tính tổng quát, giả sử a ≥ b ≥ c. Đặt x = a ⇒ x ≥ b ≥ c > 0. x b c + + Ta có (1) ⇔ f (x) = với x ≥ b ≥ c > 0 b+c c+ x x+b 1 b c 1 b c ⇒ f ′( x) = − − > − − =0 b + c ( x + c) b + c ( b + c) ( x + b) ( b + c) 2 2 2 2 2b + c ⇒ f(x) đồng biến [b, +∞ ) ⇒ f ( x ) ≥ f (b) = (2) b+c 2x + c Đặt x = b ⇒ x ≥ c > 0, xét hàm số g(x) = với x ≥ c > 0 x+c c > 0 ∀c > 0 ⇒ g(x) đồng biến [c, +∞ ) ⇒ g ( x) ≥ g (c) = 3 (3) ⇒ g ′( x ) = ( x + c) 2 2 a b c 3 + + ≥ ∀a , b , c > 0 Từ (2), (3) suy ra b+c c+a a+b 2 9
- Chương I. Hàm số – Trần Phương Bình luận: Bất đẳng thức Nesbitt ra đời năm 1905 và là một bất đẳng thức rất nổi tiếng trong suốt thế kỷ 20. Trên đây là một cách chứng minh bất đẳng thức này trong 45 cách chứng minh. Bạn đọc có thể xem tham khảo đầy đủ các cách chứng minh trong cuốn sách: “Những viên kim cương trong bất đẳng thức Toán học” của tác giả do NXB Tri thức phát hành tháng 3/2009. 10
CÓ THỂ BẠN MUỐN DOWNLOAD
-
BÀI 2:TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
25 p | 999 | 199
-
Tuyển tập 99 bài toán liên quan đến cực trị và tính đơn điệu của hàm số
10 p | 457 | 50
-
Chuyên đề 1: Ứng dụng đạo hàm khảo sát tính biến thiên và vẽ đồ thị hàm số
19 p | 638 | 50
-
CHUYÊN ĐỀ 1 TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ
72 p | 275 | 42
-
Luyện thi Đại học 2013 - Tính đơn điệu của hàm số
8 p | 127 | 29
-
Tài liệu ôn thi THPT môn Toán lớp 12 - Phân dạng tính đơn điệu của hàm số
40 p | 192 | 18
-
Đáp án bài tập tự luyện Cách tiếp cận tính đơn điệu của hàm số - Phần 1
25 p | 309 | 14
-
Luyện thi Đại học Kit 1 - Môn Toán: Tính đơn điệu của hàm số (Bài tập tự luyện)
1 p | 87 | 13
-
Bài tập tự luyện Cách tiếp cận tính đơn điệu của hàm số - Phần 1
8 p | 110 | 11
-
Luyện thi Đại học Kit 1 - Môn Toán: Tính đơn điệu của hàm số (Đáp án bài tập tự luyện)
1 p | 112 | 10
-
Tài liệu ôn thi THPT Quốc gia 2022 môn Toán - Chuyên đề 1: Tính đơn điệu của hàm số (Dành cho đối tượng học sinh 7-8 điểm)
57 p | 54 | 8
-
Luyện thi Đại học Kit 1 - Môn Toán: Tính đơn điệu của hàm số (Tài liệu bài giảng)
1 p | 106 | 7
-
SKKN: Một số bài toán về tính đơn điệu của hàm số ẩn
32 p | 121 | 7
-
Tài liệu ôn thi THPT Quốc gia 2022 môn Toán - Chuyên đề 1: Tính đơn điệu của hàm số (Dành cho đối tượng học sinh 5-6 điểm)
33 p | 78 | 6
-
Tài liệu ôn thi THPT Quốc gia 2022 môn Toán - Chuyên đề 1: Tính đơn điệu của hàm số (Dành cho đối tượng học sinh 9-10 điểm)
81 p | 63 | 5
-
Bài tập trắc nghiệm tính đơn điệu của hàm số
50 p | 36 | 3
-
Bài giảng môn Toán: Tính đơn điệu của hàm số - Bùi Văn Thanh
15 p | 14 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn