intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

LUẬN VĂN THẠC SĨ : ĐÁNH GIÁ SAI SỐ HỆ THỐNG DỰ BÁO MƯA CỦA MÔ HÌNH HRM CHO KHU VỰC ĐÔNG BẮC BỘ - CHƯƠNG 1

Chia sẻ: Nguyen Nhi | Ngày: | Loại File: PDF | Số trang:40

72
lượt xem
6
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mô hình HRM đã được tiến hành chạy nghiệp vụ từ năm 2001 tại trung tâm dự báo khí tượng thủy văn trung ương và các sản phẩm của nó đã ngày càng trở nên quan trọng trong công tác dự báo nghiệp vụ hàng ngày

Chủ đề:
Lưu

Nội dung Text: LUẬN VĂN THẠC SĨ : ĐÁNH GIÁ SAI SỐ HỆ THỐNG DỰ BÁO MƯA CỦA MÔ HÌNH HRM CHO KHU VỰC ĐÔNG BẮC BỘ - CHƯƠNG 1

  1. §¹I HäC QUèC GIA Hµ NéI TR¦êNG §¹I HäC KHOA HäC Tù NHI£N -------------------------------------------------- TRÇN quang n¨ng ®¸nh gi¸ sai sè hÖ thèng dù b¸o m­a cña m« h×nh hrm cho khu vùc ®«ng b¾c bé LUËN V¡N TH¹C SÜ KHOA HäC Hµ NéI – 2009 1
  2. §¹I HäC QUèC GIA Hµ NéI TR¦êNG §¹I HäC KHOA HäC Tù NHI£N -------------------------------------------------- TRÇN quang n¨ng ®¸nh gi¸ sai sè hÖ thèng dù b¸o m­a cña m« h×nh hrm cho khu vùc ®«ng b¾c bé Chuyªn ngµnh : KhÝ t­îng häc vµ KhÝ hËu häc M· sè : 60.44.87 LUËN V¡N TH¹C SÜ KHOA HäC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. nguyÔn v¨n tuyªn Hµ NéI – 2009 2
  3. MỤC LỤC MỞ ĐẦU CHƯƠNG 1. KHÁI QUÁT VỀ MÔ HÌNH HRM VÀ VẤN ĐỀ ĐÁNH GIÁ CHẤT LƯỢNG DỰ BÁO THỜI TIẾT.......................................................................................1 1 .1. Giới thiệu tóm tắt mô hình HRM (High resolution regional model) ở Trung tâm dự báo KTTV Trung Ương...............................................................................1 1.1.1. Khái quát về mô hình HRM...........................................................................1 1.1.2. Chạy mô hình HRM với các số liệu ban đầu và số liệu biên từ ba mô hình toàn cầu khác nhau................................................................................................. 2 1 .2. Khái quát về bài toán đánh giá chất lượng dự báo thời tiết.......................... 5 1.2.1 Mục đích và ý nghĩa của đánh giá dự báo.....................................................6 1.2.2 Mô hình đánh giá chung cho các yếu tố dự báo thời tiết..............................7 1.2.3 Các yếu tố dự báo.........................................................................................11 1.2.4 Các điểm số dùng trong đánh giá................................................................ 12 1 .3 Mô hình đánh giá sản phẩm dự báo số trị.......................................................14 1.4. Các đặc trưng đánh giá....................................................................................17 1.4.1. Độ chính xác................................................................................................17 1.4.2. Kỹ năng dự báo...........................................................................................18 1.4.3 Độ tin cậy....................................................................................................18 1.4.4. Độ phân giải................................................................................................18 1.4.5. Độ biến động...............................................................................................19 1 .5. Các phương pháp đánh giá sản phẩm dự báo số...........................................19 1.5.1. Những nguyên nhân sai số dự báo bằng mô hình số...................................19 1.5.2. Một số định nghĩa........................................................................................20 1.5.3. Phương pháp đánh giá với biến liên tục.....................................................22 1.5.4. Phương pháp đánh giá với dự báo pha.......................................................28 3
  4. CHƯƠNG 2. SỐ LIỆU VÀ PHƯƠNG PHÁP ĐÁNH GIÁ DỰ BÁO BÁO MƯA MÔ HÌNH HRM................................... .................................................................34 2.1. Số liệu.................................................................................................................34 2.1.1 . Số liệu mưa quan trắc và thực tế................................................................34 2.1.2. Số liệu mưa dự báo của mô hình HRM.......................................................37 2 .2. Phương pháp đánh giá dự báo mưa của mô hình HRM...............................38 2.2.1 . Đánh giá khi xem mưa là biến liên tục.......................................................38 2.2.2. Đánh giá mưa khi phân lượng mưa ra đa cấp rời rạc................................38 2.2.3. Đánh giá mưa khi phân lượng mưa ra 2 cấp một.......................................41 2.3 Căn cứ phân loại hình thế synốp chính gây mưa khu vực Đông Bắc Bộ......43 2.3.1 . Cơ sở phân loại hình thế synốp và các tác nhân gây mưa khu vực Đông Bắc Bộ...................................................................................................................43 2.3.2. Đặc trưng và mô phỏng các loại hình thế thời tiết gây mưa ở khu vực Đông Bắc Bộ...................................................................................................................47 2.4. Thống kê về các ngày có mưa lớn diện rộng và các hình thế gây ra mưa lớn diện rộng trong ba năm 2005, 2006 và 2007 ở khu vực Đông Bắc Bộ ......................61 CHƯƠNG 3. KẾT QUẢ TÍNH TOÁN VÀ PHÂN TÍCH DỰ BÁO MƯA MÔ HÌNH HRM...............................................................................................................65 3.1. Các kết quả tính toán........................................................................................65 3.2. Phân tích chất lượng sản phẩm dự báo..........................................................65 3.2.1. Phân tích sai số hệ thống Bias....................................................................66 3.2.2. Về những chỉ tiêu thống kê khác..................................................................76 KẾT LUẬN ...................................................................................................................... TÀI LIỆU THAM KHẢO ............................................................................................. 4
  5. LỜI CẢM ƠN Trước hết, tôi xin bày tỏ lòng biết ơn sâu sắc tới PGS. TS. Nguyễn Văn Tuyên - người đã tận tình chỉ bảo và hướng dẫn tôi hoàn thành luận văn này. Tôi xin cảm ơn các Thầy cô và các cán bộ trong khoa Khí tượng - Thủy văn - Hải dương học đã cung cấp cho tôi những kiến thức chuyên môn quý giá, giúp đỡ và tạo điều kiện thuận lợi về cơ sở vật chất trong suốt thời gian tôi học tập và thực hành ở Khoa. Tôi xin cảm ơn các cán bộ phòng Dự báo Khí tượng Hạn ngắn, các cán bộ phòng Nghiên cứu ứng dụng (Trung tâm dự báo Khí tượng Thủy văn Trung Ương), đặc biệt là Thạc sĩ Vũ Anh Tuấn và Thạc sĩ Võ Văn Hòa đã tạo điều kiện, trao đổi chuyên môn cũng như có những ý kiến quý báu giúp tôi hoàn thiện luận văn này. Tôi cũng xin cảm ơn Phòng sau đại học, Trường Đại học Khoa học Tự nhiên đã tạo điều kiện cho tôi có thời gian hoàn thành luận văn. Cuối cùng, tôi xin gửi lời cảm ơn chân thành tới gia đình, người thân và bạn bè, những người đã luôn ở bên cạnh cổ vũ, động viên và tạo mọi điều kiện tốt nhất cho tôi trong suốt thời gian học tập tại trường. Trần Quang Năng 5
  6. MỞ ĐẦU Mô hình HRM (High resolution Regional model) đã được tiến hành chạy nghiệp vụ từ năm 2001 tại Trung tâm Dự báo Khí tượng Thủy văn Trung ương và các sản phẩm của nó đã ngày càng trở nên quan trọng trong công tác dự báo nghiệp vụ hàng ngày. Tuy nhiên, hiện nay việc đánh giá khả năng dự báo của mô hình HRM vẫn còn hạn chế. Các dự báo viên vẫn thường xem xét sản phẩm dự báo số của mô hình theo kinh nghiệm nên vẫn chưa có hiểu biết một cách hệ thống và đầy đủ về khả năng dự báo của mô hình, đặc biệt là trong từng hình thế thời tiết cụ thể. Do đó việc sử dụng sản phẩm của mô hình HRM còn chưa đem lại hiệu quả cao. Mưa vừa là yếu tố khí tượng vừa là hiện tượng thời tiết được liệt vào hàng các hiện tượng thời tiết khó dự báo nhất. Không những chỉ khó dự báo mà việc đánh giá dự báo mưa cũng là một việc hết sức khó khăn và phức tạp. Trước hết khó khăn nằm ngay trong bản chất trường yếu tố mưa là trường bất liên tục và không cố định cả theo thời gian lẫn không gian; nhiều đặc trưng thống kê có tính quy luật ở những yếu tố khí tượng khác, nhưng lại không có ở số liệu mưa, làm cho việc xử lý số liệu mưa cũng rất phức tạp. Xong dự báo mưa lại có vai trò đặc biệt quan trọng trong phục vụ dự báo, nhất là phục vụ phòng chống thiên tai. Vì vậy đó là vấn đề quan trọng cần thiết phải nghiên cứu. Vì vậy, dự báo mưa và đánh giá dự báo mưa là vấn đề quan trọng cần thiết phải nghiên cứu. Luận văn này tập trung vào việc đánh giá sai số hệ thống dự báo mưa của mô hình HRM theo không gian và thời gian kết hợp với một số hình thế thời tiết chính gây mưa, mưa vừa và mưa lớn cho khu vực Đông Bắc Bộ Bố cục luận văn gồm các phần: Chương 1: Khái quát về mô hình HRM và vấn đề đánh giá chất lượng dự báo thời tiết. 6
  7. Chương 2: Số liệu và phương pháp đánh giá dự báo mưa mô hình HRM Chương 3: Kết quả tính toán và phân tích dự báo mưa mô hình HRM KẾT LUẬN TÀI LIỆU THAM KHẢO 7
  8. CHƯƠNG 1 KHÁI QUÁT VỀ MÔ HÌNH HRM VÀ VẤN ĐỀ ĐÁNH GIÁ CHẤT LƯỢNG DỰ BÁO THỜI TIẾT Chương 1 sẽ xem xét tổng quan về mô hình HRM (High resolution regional model) đang được chạy nghiệp vụ ở Trung tâm dự báo KTTV Trung Ương (NCHMF) và vấn đề đánh giá chất lượng dự báo thời tiết nói chung cùng những phương pháp, điểm số nói riêng trong việc đánh giá các sản phẩm của mô hình dự báo thời tiết số. 1.1 Giới thiệu tóm tắt mô hình HRM (High resolution regional model) ở Trung tâm dự báo KTTV Trung Ương 1.1.1 Khái quát về mô hình HRM Mô hình khu vực độ phân giải cao HRM ban đầu được phát triển bởi Cơ quan Khí tượng Quốc gia Đức (DWD – Deutcher WetterDienst) và được đưa vào sử dụng nghiệp vụ ở Trung tâm dự báo Khí tượng Thủy văn Trung Ương từ tháng 5 năm 2002, dự báo cho hai miền chính trong thời hạn 72 giờ. Miền lớn xác định trong khoảng từ 50S – 350N, 80 0E – 130 0E, 161x201 điểm lưới với độ phân giải ngang là 0.250 (28 km), 20 mực thẳng đứng và bước thời gian tích phân là 120s (HRM28). Miền nhỏ hơn xác định trong khoảng 7.1250N – 27.1250N, 97.250E – 117.250E, 161x161 điểm lưới với độ phân giải ngang là 0.125 (14 km), 31 mực thẳng đứng, bước thời gian tích phân là 90s (HRM14); cả hai miền này đều sử dụng số liệu ban đầu và số liệu biên lấy từ mô hình toàn cầu GME (DWD) 3 giờ một thông qua mạng internet. Trước ngày 27 tháng 9 năm 2004, độ phân giải ngang và thẳng đứng của GME theo thứ tự là 60 km và 31 mực. Hiện tại, độ phân giải ngang của GME đã tăng lên thành 40 km và độ phân giải thẳng đứng đã là 40 mực. Mực thấp nhất của GME là 10m. Mô hình HRM được cung cấp bởi DWD với mã nguồn mở đã trở thành mô hình đầu tiên chạy dự báo nghiệp vụ tại Trung tâm Khí tượng Thủy văn Quốc gia Việt Nam. Các sản phẩm của mô hình HRM rất đa dạng và trở thành nguồn tham khảo tốt cho các dự báo viên trong nghiệp vụ dự báo hàng ngày. Ngoài ra, sản phẩm của nó còn dùng làm đầu vào, điều kiện ban đầu cho các mô hình khác như: Sóng, nước dâng trong bão, mô hình thủy văn... 8
  9. Tuy nhiên, sau một thời gian chạy nghiệp vụ, các nhà mô hình Việt Nam đã nhận ra rằng vẫn còn tồn tại rất nhiều hạn chế trong mô hình HRM, đặc biệt là trong việc thu số liệu đầu vào từ mô hình toàn cầu GME. Những hạn chế này đã được chỉ ra trong các trường ban đầu của GME, sơ đồ đồng hóa số liệu sử dụng trong GME và các sơ đồ tham số hóa vật lý bên trong HRM: Những tham số bề mặt trong các trường ban đầu của GME không phải thu được từ quan trắc mà là sản phẩm đầu ra của GME được tích phân từ năm 1994 với số liệu ban đầu thu được từ trung bình khí hậu Các trường độ ẩm: Trường độ ẩm cung cấp bởi GME trong nhiều trường hợp không chính xác, đặc biệt là trong các mùa bão. Các vị trí của của áp thấp nhiệt đới và bão nhiệt đới thường được xác định sai trong số liệu ban đầu của GME. Điều này xảy ra là do các số liệu đó thu được từ vệ tinh (Vệ tinh địa cực hay vệ tinh địa tĩnh) và không được cập nhật liên tục trong suốt quá trình đồng hóa số liệu. Sơ đồ đồng hóa số liệu trong GME: Nội suy tối ưu ba chiều (3D-OI) Sơ đồ tham số hóa vật lý trong HRM: Sơ đồ mưa quy mô lưới được tính toán theo công thức mô phỏng thu được từ quan trắc mây ngoại nhiệt đớ1. 1.1.2 Chạy mô hình HRM với các số liệu ban đầu và số liệu biên từ ba mô hình toàn cầu khác nhau. Để sử dụng các mô hình toàn cầu GME, GSM, GFS như là số liệu ban đầu và số liệu biên cho mô hình HRM đòi hỏi phải có những phân tích cụ thể, cẩn thận về các số liệu quan trắc, các sơ đồ phân tích và các kĩ thuật ban đầu hóa. Có một vài sự khác nhau giữa các đặc trưng chính của GME và GSM. Giữa các số liệu đầu vào của mô hình GSM, các trường ẩm hay các số liệu về ẩm trên đại dương được tính toán từ ảnh các vệ tinh địa tĩnh (GMS-5 và MTSAT-1R). Những thông tin này thu được từ vệ tinh không có nhiều giá trị cho tất cả những khu vực trên đại dương nơi mà các quan trắc truyền thống như SYNOP, TEMP còn thưa thớt. Liên quan đến sơ 9
  10. đồ phân tích khách quan, mô hình GSM có sơ đồ đồng hóa số liệu 4 chiều 4D-VAR trong các mực của mô hình, trong khi mô hình GME sử dụng sơ đồ nội suy tối ưu truyền thống và không phức tạp bằng 4D-VAR, nhưng có quá nhiều quan trắc bị “là trơn”. Địa hình bề mặt cũng đóng một vai trò quan trọng trong một số mô hình sự báo thời tiết số (NWP). Tuy nhiên, cả mô hình GSM và GME đều cùng sử dụng bộ số liệu GTOPO30 từ USGS (NWP-hệ thống của DWD 2002). 1.1.2.1 Số liệu cần cho HRM HRM cần 3 nhóm số liệu: Nhóm 1: Các trường cố định: fis, gz0, fr_land, soiltyp, Plcov Nhóm 2: Các trường mực đơn lẻ: ps, t_snow, t_s, t_g, t_m, t_cl, w_snow, w_i, w_gl, w_g2, w_g3, w_cl, qv_s Nhóm 3: Các trường đa mực: u, v, t, qv, qc, qi 1.1.2.2 Sử dụng kết hợp số liệu của GME và GSM làm số liệu ban đầu và số liệu biên cho HRM Tháng 9 năm 1997, theo hiệp định song phương giữa Trung tâm KTTV Quốc Gia Việt Nam và Cơ quan khí tượng Nhật Bản, các sản phẩm dự báo và phân tích của mô hình phổ toàn cầu GSM được cung cấp cho khu vực từ 20 – 600N, 80 – 1600E với độ phân giải ngang là 1.50x1.50 và 1.250x1.250 trong thời đoạn 72 tiếng. Những trường phân tích và dự báo từ mô hình GSM này đã được sử dụng trong hoạt động dự báo nghiệp vụ tại Trung tâm Dự báo KTTV Trung Ương, qua thời gian đã được các dự báo viên thừa nhận như là một trong những sản phẩm tốt, kết quả gần với thời tiết thực nhất, đặc biệt đối với những trường hợp có hoàn lưu xoáy thuận xuất hiện trên đại dương. Ban đầu, mô hình GSM có độ phân giải ngang là 0.5625 0x0.56250 (xấp xỉ 60 km) và 40 mực thẳng đứng. Tuy nhiên, JMA cung cấp cho một vài trung tâm khí tượng trong khu vực (bao gồm Việt Nam) số liệu 17 mực áp suất tiêu chuẩn ( 16 mực áp suất 10
  11. và bề mặt) với độ phân giải thô 1.250x1.250. Từ khi JMA cung cấp thêm 5 trường khí tượng: Nhiệt độ, Nhiệt độ điểm sương, thành phần gió (u,v), khí áp trung bình mực nước biển và địa thế vị ở 16 mực khí áp. Vì vậy, HRM được chạy với bộ số liệu đầu vào từ cả GME và GSM: các tham số bề mặt được lấy từ GME, trong khi các tham số đa mực khác được lấy từ GSM. 1.1.2.3 Số liệu cung cấp bởi JMA Số liệu ở mực cao không có: mây ở dạng nước (qc), mây ở dạng băng (qi), địa hình bề mặt và các tham số khác. Độ phân giải ngang: 1.25x1.250. Miền bao phủ: 60 – 1600E, 20 0S – 600N. Các trường đa mực: - (T – Td): 300, 400, 500, 600, 700, 850, 920, 1000hPa - T, U, V, H: 0, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 700, 850, 920, 1000 hPA Các trường đơn mực: (T-Td), T: 2m (Nhiệt độ và nhiệt độ điểm sương tại độ cao 2m) U, V : 10 m (thành phần gió tại độ cao 10m) MSLP : Áp suất mực biển trung bình Vì số liệu của GSM không đủ để chạy mô hình HRM nên Trung tâm dự báo Khí tượng Thủy văn Trung Ương đã cải tiến và sử dụng cả bộ số liệu của mô hình GME và GSM: Số liệu GSM: MSLP, U, V, T, (T – Td) tại bề mặt và 16 mực áp suất, địa thế vị tại mực 300 hPa 11
  12. Số liệu GME: Các tham số mặt đất (địa hình, độ thô bề mặt, tham số đất, đất bao phủ, núi…), mây dạng nước (qc), mây dạng băng (qi) tại 31 mực mô hình 1.1.2.4 Số liệu cung cấp bởi GFS (NCEP) Số liệu GFS được phân bố miễn phí tại server của NCEP tgftp.nws.noaa.gov + Miền bao phủ: 360 x 180 điểm lưới, độ phân giải ngang là 10x10. + Các tham s b m t, các tr ng c nh, các tham s a m c (26 m c): - Các tham số đa mực: T, U, V, QV, QC tại 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 750, 800, 850, 900, 925, 950, 975, 1000 hPa - Thời hạn dự báo: 00 đến 384 giờ Trên đây là tổng quan về mô hình khu vực độ phân giải cao HRM đang chạy nghiệp vụ tại Trung tâm Dự báo Khí tượng Thủy văn Trung Ương. Hiện nay mô hình này vẫn tiếp tục được cải tiến. 1.2 Khái quát về bài toán đánh giá chất lượng dự báo thời tiết Đánh giá là sự tính toán ước lượng mối quan hệ giữa tập số liệu dự báo và giá trị quan trắc. Hoạt động đánh giá chỉ có ích khi ta đưa ra được những kết luận cuối cùng đối với sản phẩm đang được đánh giá. Những giải pháp này có thể hoặc là sẽ sinh ra các thay đổi trong các sản phẩm hoặc các phương pháp dự báo hoặc là giải quyết chúng một cách thỏa đáng. Để đánh giá thì kết quả dự báo phải được trình bày một cách đầy đủ và khách quan. Trong khi đó thì quan trắc lại được thừa nhận là sự mô tả chính xác những gì có trong thực tế. Một vài phương pháp đánh giá đòi hỏi giả thiết rằng quan trắc tại một điểm cũng có thể đại diện cho hiện tượng thời tiết xảy ra trong một vùng. 1.2.1 Mục đích và ý nghĩa của đánh giá dự báo 12
  13. Mục đích của phương pháp đánh giá phải được thiết lập trước khi hệ thống đánh giá được xác lập vì mục đích đánh giá có quan hệ mật thiết đến việc thiết lập hệ thống đánh giá. Theo Barbara Brown (2007), đánh giá chất lượng dự báo thời tiết bao gồm 3 mục đích chính sau đây: a. Mục đích hành chính Ban đầu, Cơ quan Khí tượng Canada (1871) sử dụng việc đánh giá để chứng tỏ với Nghị viện những lợi ích mà công tác dự báo đem lạ1. Đồng thời, thông tin đánh giá cũng có nhiều ứng dụng mang tính hành chính khác như: Yêu cầu tài trợ các trang thiết bị như máy tính điện tử, hay quyết định khi nào và có nên thay đổi sản phẩm dự báo bằng một sản phẩm khác hay một vài cách giải quyết khác. Điều này cũng phụ thuộc vào sự phát triển của cộng đồng và sự phát triển của các trang thiết bị sử dụng trong dịch vụ thời tiết. Các câu hỏi đặt ra cho việc đánh giá với những mục đích mang tính hành chính là: “Liệu độ chính xác của bản dự báo sẽ được cải tiến?” hoặc “Các dự báo khách quan về nhiệt độ tốt hơn so với dự báo chủ quan hay không?”. Đánh giá hành chính được sử dụng để kiểm tra thường xuyên chất lượng tổng thể các bản dự báo và theo dõi những thay đổi về chất lượng của chúng qua từng giai đoạn. b. Mục đích khoa học Mục đích khoa học của đánh giá chất lượng dự báo dùng để nhận biết chi tiết những điểm mạnh và điểm yếu của một sản phẩm dự báo và từ đó có những hành động tích cực nhằm cải thiện kết quả dự báo. Mặt khác, đánh giá khoa học cũng cung cấp trực tiếp các thông tin cho hướng nghiên cứu và phát triển phương pháp dự báo c. Mục đích kinh tế Theo Brier và Allen (1951), mục đích kinh tế của đánh giá chất lượng dự báo đóng một vai trò hết sức quan trọng, nó giúp đánh giá được lợi ích của việc dự báo đúng, từ đó đưa ra được những quyết sách hợp lý trong các hoạt động có liên quan và 13
  14. để thỏa mãn những yêu cầu từ người sử dụng sản phẩm dự báo cuối cùng. Ví dụ, khi có một bản tin dự báo thời tiết chính xác sẽ giúp ích cho việc bảo vệ người dân trước các thảm hiện tượng thời tiết nguy hiểm như bão hay lũ lụt hoặc cũng có thể giúp ích rất nhiều trong các hoạt động sản xuất nông nghiệp… Vì mục đích kinh tế là vấn đề phức tạp nên trong tiểu mục sau đã bỏ qua không xem xét. 1.2.2 Mô hình đánh giá chung cho các yếu tố dự báo thời tiết 14
  15. Các tập số liệu dùng để đánh giá ĐGHC ĐGKH Phân lo ại Phân loại ngoại ngoại bộ bộ Phân loại nội Phân loại nội Phân lo ại bộ theo quan bộ theo dự nội bộ trắc báo Biến Biến Biến Biến pha Biến pha Biến pha liên tục liên tục liên tục Sai số trung Bảng liên Bảng liên Đồ thị điểm Đồ thị điểm bình tuyệt đối hợp hợp Sai số b ình phương trung Điểm bình Brier RPS Độ giảm Nguyên lý phát Bảng độ tin Điểm kỹ phương sai h iện tín hiệu cậy năng Brier Hệ số Phân tán Độ lệch 15
  16. Hình 1.1 Sơ đồ chung cho đánh giá các yếu tố thời tiết Theo tác giả Henry R. Stanski và các cộng sự (1989), việc đánh giá tổng quát (chung) cho các yếu tố dự báo thời tiết được minh họa trên hình 1.1, đồng thời cũng tóm tắt các kiểu quyết định được đưa ra trước khi một phương pháp đánh giá chuyên dụng được chọn lựa. Đây chỉ là một mô hình đánh giá chung nhất và dĩ nhiên vẫn có thể tồn tại nhiều mô hình tương tự khác. Tuy nhiên, mô hình này cho ta một bức tranh nhất quán về mối quan hệ các đặc trưng của phép đánh giá các đại lượng đo và các giải pháp khác nhau để có thể đem lại lựa chọn thích hợp. Tất cả các phương pháp đánh giá đều được bắt đầu từ việc tập hợp các tập số liệu quan trắc và dự báo (hình bình hành ở trên). Khi công việc trên đó hoàn thành thì bước tiếp theo là việc xử lý số liệu. Việc này phụ thuộc vào các cách giải quyết khác nhau (dạng hình thoi trong sơ đồ), tức là phụ thuộc vào mục đích đánh giá, đánh giá hành chính hoặc đánh giá khoa học. Một khi mục đích đánh giá đó được thiết lập, một tập mẫu có thể được phân loại để đáp ứng mục đích đã định sẵn. Phân loại nghĩa là tách các phần tử trong tập mẫu thành hai hay nhiều nhóm theo một nguyên tắc lựa chọn, sau đó, thực hiện đánh giá cho từng nhóm riêng biệt. “Phân loại ngoại bộ ” nghĩa là đánh giá theo nguyên tắc lựa chọn một cách độc lập các yếu tố cần đánh giá. Dạng phổ biến của phân loại ngoại bộ chính là dạng cho phép xác định những biến đổi trong đánh giá theo thời gian (ngày hoặc theo mùa). Ví dụ, ở Việt Nam dự báo giáng thủy vào mùa đông chính xác hơn vào mùa hè, do vào mùa hè, giáng thủy sinh ra do đối lưu rất khó dự báo. Vì vậy phải chia tập số liệu ra để đánh giá riêng cho từng mùa. Phân loại ngoại bộ có thể được tiến hành ở bất cứ thời điểm nào trong quá trình, kể cả trước khi sử dụng đánh giá theo các chỉ số thống kê và việc phân loại này hoặc là theo mục đích hành chính, hoặc là theo mục đích khoa học. Xuất phát từ các câu hỏi đặt ra đối với đánh giá khoa học ta thấy rằng, cần có một nhu cầu phân loại cao hơn đối với tập mẫu. Ví dụ, nếu ta quan tâm đến dự báo cực trị thì tập mẫu sẽ phải được phân nhóm để tách các giá trị đó từ chuỗi các sự kiện 16
  17. không phải là cực trị. Kiểu phân nhóm này được gọi là “phân loại nội bộ” bởi vì nguyên tắc phân loại được quyết định bởi mục đích đánh giá và sử dụng chính yếu tố đang được đánh giá. Có hai cách để thực hiện phân loại nội bộ, và hình 1.1 cho thấy kiểu đánh giá cho mỗi cách này hơi khác nhau. Phân loại theo quan trắc nghĩa là phân loại theo giá trị của các yếu tố khí tượng được quan trắc. Sau đó, các đại lượng đánh giá có thể được tính toán cho từng nhóm giá trị quan trắc và giá trị thống kê được tạo thành này gọi là giá trị có điều kiện đối với quan trắc. Một ví dụ cho phân bố có điều kiện của dự báo là một giá trị đặc biệt hay một ngưỡng của các giá trị quan trắc. Phân loại theo dự báo nghĩa là phân loại theo giá trị của các yếu tố khí tượng được dự báo. Và cũng tương tự như trên, các con số thống kê được tính toán theo cách phân loại này được gọi là điều kiện dự báo. Việc lựa chọn kiểu phân loại phụ thuộc vào yêu cầu đánh giá. Và nhiều khi sẽ cần phải sử dụng cả hai cách phân loại trên để đưa ra một câu trả lời hoàn chỉnh. Hơn nữa, như đã thấy trên sơ đồ, những đại lượng đánh giá khác nhau (hình ô van bên dưới) đặc trưng cho một kiểu phân nhóm khác và đưa ra nhiều thông tin khác nhau về sản phẩm. Ngược lại, trong đánh giá hành chính, người ta ít quan tâm chi tiết đến việc biểu diễn những biến theo các giá trị khác nhau trong dự báo. Quả thực, các câu hỏi đặt ra đều mang tính chung chung và chỉ cần một câu trả lời tóm tắt nào đó. Vì vậy, phân loại nội bộ có thể vẫn được thực hiện nhưng nó hiếm khi được dùng đến. Tuy nhiên, ưu điểm lớn của đánh giá hành chính là biểu diễn chất lượng sản phẩm chỉ bằng vài con số hoặc là việc so sánh hay hướng nhận dạng được thực hiện dễ dàng hơn. Ta có thể thấy được, bản chất tóm tắt tổng kết của đánh giá hành chính qua mối liên hệ với các luật cho điểm tổng kết được chỉ ra ở hình 1.1. Đôi khi việc cố gắng tổng kết tất cả các thông tin về chất lượng sản phẩm vào một điểm số để cung cấp cho ban quản lý là một việc hết sức khó khăn. Việc tóm tắt 17
  18. thông tin đánh giá vào một con số gây ra một áp lực lớn cho việc thiết kế hệ thống đánh giá để chắc chắn rằng: A. Điểm số được lựa chọn là đáng tin cậy theo yêu cầu. B. Các sự kiện cấu thành đều được xem xét công bằng như nhau trong các điểm số. Hạn chế chung của bản tổng kết đánh giá này là tất cả các sự kiện đó đều được xem xét công bằng như nhau trong quá trình trung bình hóa. Điều này được thực hiện cho thuận tiện (việc tính toán sẽ đơn giản hơn khi sử dụng đại lượng trung bình) nhưng cũng vì thế rất khó có thể tìm ra được trọng số phản ánh các sự kiện thành phần quan trọng cho mục đích nào đó mà không có bất kỳ trở ngại nào đối với các thuộc tính mong muốn khác của đánh giá. Vấn đề chưa được giải quyết là làm thế nào để đưa ra trọng số của các sự kiện thành phần trong đánh giá tổng hợp. Trước đây, người ta đặt ra yêu cầu quá cao đối với các điểm số đánh giá. Vì thế các dự báo viên đã biểu hiện sự thất vọng khi cố gắng sử dụng các điểm số này để trả lời các vấn đề khoa học. Bản chất của việc đánh giá tổng kết đó hạn chế việc sử dụng chúng trong mục đích khoa học do thiếu sự phân loại đánh giá bằng những điều kiện cho trước. Ví dụ, điểm số tổng kết không thể nói có thể mưa dự báo tốt như thế nào trong các trường hợp ngưỡng thấp mà chỉ có thể nói mưa được dự báo tốt như thế nào một cách chung chung. Không thể nói, dưới điều kiện nào mô hình phần tử hữu hạn khu vực RFE (Regional Finite Element model) tốt hơn mô hình phổ, chỉ có thể nói rằng mô hình RFE tốt hơn hoặc xấu hơn một chút so với mô hình phổ. 1.2.3 Các yếu tố dự báo Sau khi giải quyết xong những vấn đề về phân nhóm và những yêu cầu của một mô hình đánh giá đưa ra, chúng ta cần lựa chọn một phương pháp thích hợp để đáp ứng các yêu cầu đó. Dựa theo mục đích đánh giá người ta chia ra thành hai dạng dự báo là: dự báo các đại lượng liên tục và dự báo pha. Yếu tố dự báo liên tục là các yếu tố được dự báo tại một giá trị riêng biệt hoặc là trong một khoảng giá trị. Trong số các yếu tố 18
  19. thời tiết thì chỉ nhiệt độ và gió là hay được dự báo theo cách này. Ví dụ, “Nhiệt độ thấp nhất đêm nay là gần -10oC”, hoặc “Gió tây có tốc độ 15 km/h, giật 25 km/h”. Yếu tố dự báo pha là các yếu tố dự báo có thể xảy ra hoặc không xảy ra. Ví dụ như khi ta xét sự xuất hiện của giáng thủy (có hai trường hợp xảy ra là mưa hoặc không mưa), hoặc dạng của giáng thủy (thường có ba dạng là băng, tuyết và nước (mưa)). Một vài yếu tố có thể được dự báo pha hoặc là dự báo liên tục, việc lựa chọn chủ yếu phụ thuộc vào yêu cầu của người sử dụng trong quá trình dự báo. Nếu dự báo yêu cầu chi tiết hơn thì dự báo viên sẽ phải dự báo lượng giáng thủy theo đơn vị mm (loại trừ trường hợp giáng thủy lớn quá mức dự tính), giáng thủy có xuất hiện hay không và dự báo đầy đủ lượng giáng thủy có thể xảy ra. Hệ thống đánh giá phản hồi lại cho yêu cầu sử dụng theo đóng cách này. Một dự báo mà cho kết quả biến thiên liên tục thì phải được đánh giá theo pha bởi vì tất cả những thông tin đó đều cần thiết cho người sử dụng.Ví dụ về tầng mây, người ta có thể dự báo được độ cao tối thiểu là 100 feet, nhưng đa phần tầng mây được đánh giá theo các lớp mà vai trò của chúng là vô cùng quan trọng đối với hàng không. Dự báo xác suất được xem như dự báo theo pha tổng quát. Trong đó, mỗi pha được gán bằng một xác suất xảy ra và tổng tất cả xác suất phải bằng một. Dự báo pha là một dự báo xác suất thu hẹp, ở đây xác suất chỉ có hai trường hợp xảy ra là 0% ,100% và hiển nhiên là một trong hai trường hợp ấy chắc chắn sẽ xảy ra. 1.2.4 Các điểm số dùng trong đánh giá Các điểm số dùng trong đánh giá được minh họa theo từng cặp ở phía dưới hình 1.1 cho ta thấy được mối quan hệ giữa chúng. Ví dụ, bảng liên hợp và đồ thị điểm là hoàn toàn tương tự nhau, chúng cung cấp các dạng thông tin như nhau, bảng liên hợp xuất phát từ yếu tố dự báo pha cùng đồ thị điểm xuất phát từ biến dự báo liên tục. Điểm tổng kết luôn được phân loại theo cách này: Điểm Brier và điểm RP đều đo chính xác các đặc tính của khả năng xảy ra hay biến pha, chúng tương tự sai số bình phương trung bình của dự báo theo biến liên tục. Chú ý rằng dự báo pha không tương tự như sai số trung bình tuyệt đố1. Có hai loại đại lượng đo được phân loại tương ứng theo dự 19
  20. báo và quan trắc là “Bảng độ tin cậy” và “Nguyên lý phát hiện tín hiệu”. Trong khi đó bảng liên hợp và đồ thị điểm lại tổng quát hơn, nó cho phép phân loại theo một trong hai cách hoặc theo cả hai cách. Nguyên lý phát hiện tín hiệu là một ý tưởng mới mẻ và hiện nay chưa được sử dụng rộng rãi. Các điểm số liệt kê trên hình 1.1 và được trình bày trong chương 2 gồm 3 loại, đó là: Các điểm số tuyến tính, các điểm số toàn phương (bậc hai) và điểm số kỹ năng. Điểm số toàn phương đưa ra trọng lượng của sai số theo bình phương của chúng trong khi đó điểm số tuyến tính cho sai số có giá trị bậc nhất. Vì vậy điểm số toàn phương thường đưa ra trọng số sai số lớn hơn là điểm số tuyến tính và điểm số này rất phù hợp trong các trường hợp sai số lớn thực sự nghiêm trọng hơn sai số nhỏ. Điểm số kỹ năng được xây dựng để đánh giá mối quan hệ giữa dự báo và một giá trị chuẩn nào đó. Giá trị chuẩn được chọn lựa để mô tả một dự báo không kỹ năng. Ba tiêu chuẩn được sử dụng để so sánh là: sự may rủi (ngẫu nhiên), quán tính và khí hậu. Tính ngẫu nhiên mô tả sự phỏng đoán thuần túy và không yêu cầu hiểu biết tri thức, quán tính là một dự báo xác định và yêu cầu các hiểu biết về điều kiện thời tiết, còn tính khí hậu là một dự báo trạng thái thời tiết diễn ra trong khoảng thời gian dài và cần phải có sự hiểu biết về tiến trình lịch sử của thời tiết. Điểm số kỹ năng được biểu diễn trong công thức sau: SC  ST (1.0) SS  PS  ST Trong đó SC là điểm có được từ dự báo, ST là điểm đạt được từ dự báo chuẩn và PS là điểm từ dự báo hoàn hảo. Điểm số kỹ năng có thể được hình thành từ việc sử dụng bất kỳ một trong các điểm số. Điểm số kỹ năng phổ biến nhất dựa trên nền tảng của điểm Brier (điểm kỹ năng Brier), điểm RP (điểm kỹ năng RP), các giá trị của bảng ngẫu nhiên (điểm Heidke) và sai số trung bình tuyệt đối. Tiêu chuẩn thường được sử dụng nhất là tính khí hậu, còn điểm Heidke lại thường xuyên được kết hợp với tính 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2