![](images/graphics/blank.gif)
Sáng kiến kinh nghiệm: Tìm tòi lời giải các bài toán về phương pháp tọa độ trên mặt phẳng
lượt xem 7
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
Sáng kiến kinh nghiệm: Tìm tòi lời giải các bài toán về phương pháp tọa độ trên mặt phẳng được nghiên cứu với các nội dung chính: Các bài toán liên quan đến tam giác; Các bài toán liên quan đến tứ giác; Các bài toán tổng hợp về đường thẳng, đường tròn và ê-lip. Mời các bạn cùng tham khảo tài liệu.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Sáng kiến kinh nghiệm: Tìm tòi lời giải các bài toán về phương pháp tọa độ trên mặt phẳng
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng SƠ LƯỢC LÝ LỊCH KHOA HỌC I. THÔNG TIN CHUNG VỀ CÁ NHÂN 1. Họ và tên: TRƯƠNG NGỌC DŨNG 2. Ngày tháng năm sinh: 17 – 10 – 1959 3. Nam, nữ: NAM 4. Địa chỉ: 257/ 5, KP 9, Tân Biên, Biên Hòa, Đồng Nai 5. Điện thoại: 0918309278; 6. Email: ngocdung.tspv@gmail.com 7. Chức vụ: TỔ TRƯỞNG CHUYÊN MÔN 8. Đơn vị công tác: TRƯỜNG THPT NGUYỄN TRÃI II. TRÌNH ĐỘ ĐÀO TẠO - Cử nhân Toán, Đại học sư phạm - Năm nhận bằng: 1982 III. KINH NGHIỆM KHOA HỌC - Lĩnh vực chuyên môn có kinh nghiệm: Giảng dạy Toán bậc THPT - Số năm công tác: 33 năm - Các sáng kiến kinh nghiệm đã có: “Giải toán Hình học 11” – Nhà xuất bản Giáo dục năm 2008; “Giải toán Giải tích 12” – Nhà xuất bản Giáo dục năm 2009; “Giải toán Hình học 12” – Nhà xuất bản Giáo dục năm 2009; Kỹ thuật viết câu hỏi trắc nghiệm trong việc đổi mới phương pháp KTĐG – Tập san Giáo dục Trung học Đồng Nai năm 2010; Đổi mới phương pháp KTĐG trong giảng dạy Toán bậc THPT năm 2011. Một số kinh nghiệm thiết kế ma trận và biên soạn đề kiểm tra tự luận môn Toán bậc trung học phổ thông, năm học 2013 – 2014. -1- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng I. LÝ DO CHỌN ĐỀ TÀI Đa số học sinh phổ thông khi thực hành giải toán, các em thường gặp không ít khó khăn trong việc chọn cách tiếp cận với nội dung của bài toán vì nhiều lý do khác nhau (kiến thức cơ bản có liên quan, khả năng vận dụng kiến thức phù hợp với nội dung bài toán, phép suy luận, …). Vì vậy không kích hoạt được sự hứng thú và lòng đam mê trong quá trình học toán, ảnh hưởng đến kết quả học tập khả năng tư duy sáng tạo của bản thân. Nhằm giúp học sinh tự tin hơn trong việc học toán nói chung và thực hành giải toán nói riêng, tôi chọn đề tài “Tìm tòi lời giải các bài toán về phương pháp tọa độ trên mặt phẳng” gồm có ba phần chính: - Phần thứ nhất: Các bài toán liên quan đến tam giác; - Phần thứ hai: Các bài toán liên quan đến tứ giác; - Phần thứ ba: Các bài toán tổng hợp về đường thẳng, đường tròn và ê-lip. Nội dung đề tài này là Phần thứ nhất của đề tài, bao gồm: 6 ví dụ và 14 bài toán thực hành có gợi ý về cách tìm tòi nhằm tạo điều kiện để học sinh có thể định hướng trong việc tìm lời giải bài toán. II. CƠ SỞ LÝ LUẬN - Kiến thức cơ bản về hình học phẳng; - Kiến thức cơ bản về đường thẳng, đường tròn và các vấn đề liên quan trên hệ tục tọa độ Oxy trong chương trình hình học Lớp 10. -2- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng III. NỘI DUNG ĐỀ TÀI PHẦN THỨ NHẤT: CÁC BÀI TOÁN LIÊN QUAN ĐẾN TAM GIÁC A. CÁC VÍ DỤ Ví dụ 1.1. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC cân tại A và BC 2 , đường cao kẻ từ đỉnh A là d : x y 2 0 , đường trung tuyến kẻ từ đỉnh B là : x 2 0 . Tìm tọa độ các đỉnh của tam giác, biết rằng đỉnh B có tung độ dương. Tìm tòi Ta thấy A(a; 2 a ) và B(2; b ) . Sử dụng BC d và trung điểm của AC thuộc đường thẳng A ta tìm được tọa độ của C theo a và b . Từ BC 2 và AB AC suy ra tọa độ các đỉnh A , B , C của tam giác. Lời giải M A d A(a; 2 a ) ; B B(2; b) , b 0 . Gọi C (x 0 ; y 0 ) , vì BC d nên BC x 0 2; y 0 b cùng phương với nd (1; 1) . Suy ra y 0 x 0 b 2 . B C x a y0 2 a Vì trung điểm của cạnh AC là M 0 ; thuộc đường thẳng , nên ta có 2 2 x 0 4 a . Do đó C (4 a ; 2 a b) . Vậy BC 2 (2 a )2 1 a 1 hoặc a 3 . Với a 1 , ta có: A(1; 1) và C (3; 1 b ) . Khi đó AB AC b 1 (loại). Với a 3 , ta có: A(3; 1) và C (1; b 1) . Khi đó AB AC b 3 (nhận). Vậy các đỉnh của tam giác là: A(3; 1) , B(2; 3) , C (1; 2) . Ví dụ 1.2. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có đỉnh C có hoành độ âm và thuộc trục Ox , đỉnh B thuộc đường thẳng d : x 2y 2 0 , đường phân giác trong kẻ từ đỉnh A của tam giác là : 3x y 5 0 . Biết rằng khoảng cách từ C đến đường thẳng bằng 2 10 và BC 82 . Tìm tọa độ các đỉnh A và B của tam giác. Tìm tòi Ta có C (t; 0) và d(C , ) 2 10 , suy ra tọa độ của C . A B d B(2 2b; b) . Sử dụng BC 82 và đường thẳng là phân giác trong của góc A , tìm được tọa độ của điểm B . Gọi B là điểm đối xứng của B qua đường thẳng , ta có B thuộc đường thẳng AC , suy ra tọa độ của điểm A . B B C Lời giải C Ox C (t ; 0) , t 0 . -3- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng 3t 5 t 5 (nhaän) Vậy d(C , ) 2 10 2 10 3t 5 20 Vậy C (5; 0) . 10 t 25 (loaïi). 3 B d B(2 2b; b) . Do đó, ta có BC 82 33 (2b 7)2 (b)2 82 5b 2 28b 33 0 b 1 hoặc b . 5 56 33 Suy ra: B(4; 1) hoặc B ; . 5 5 Vì là phân giác trong của góc A , nên ta chỉ nhận được B(4; 1) . Gọi B (x 0 ; y 0 ) là điểm đối xứng của B qua và n (3; 1) . Ta có x 4 3k x 3k 4 BB k .n 0 0 (k 0) . y 0 1 k y 0 k 1 k 0 8 4 3 d(B , ) d(B , ) 10k 8 8 8 Suy ra k , vậy B ; . k . 5 5 5 5 21 3 Khi đó: B (AC ) và CB ; , nên n (1; 7) là một vec-tơ pháp tuyến của đường 5 5 thẳng (AC ) . Do đó (AC ) : x 7y 5 0 . 3x y 5 0 Tọa độ điểm A là nghiệm của hệ nên ta có A(2; 1) . x 7y 5 0 Ví dụ 1.3. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC . Đường thẳng chứa cạnh AB có phương trình là x 3y 1 0 , đường phân giác trong của góc B là : 2x y 2 0 và BC 2AB . Viết phương trình của đường thẳng (AC ) của tam giác. Tìm tòi B (AB ) , suy ra tọa độ điểm B . Tính góc giữa hai đường thẳng (AB ) và . Sử dụng A là phân giác trong của góc B , tìm được phương trình của đường thẳng (BC ) . Sử dụng: A (AB ) , C (BC ) , BC 2AB và là phân giác trong của góc B ta tìm được phương trình của đường thẳng (AC ) . B C Lời giải Ta có B (AB ) B(1; 0) . Các đường thẳng (AB ) và lần lượt có vec-tơ pháp tuyến là n AB (1; 3) và n (2; 1) . 2 Ta có cos nAB , n 2 AB , 450 nên BC , 450 . Vậy BC AB , suy ra n AB (1; 3) là một vec-tơ chỉ phương của đường thẳng (BC ) . Vậy (BC ) : 3x y 3 0 . A (AB ) A(3a 1; a ) và C (BC ) C (b; 3b 3) . -4- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng Ta thấy BC 2AB (b 1)2 4a 2 b 1 2a hoặc b 1 2a . Với b 1 2a AC (a; 7a ) , nên (AC ) : 7x y 21 0 . 16 7 9 42 Khi đó A ; và C ; nằm về cùng một phía đối với , suy ra là phân giác 5 5 5 5 ngoài của góc B . Với b 1 2a AC (5a; 5a ) , nên (AC ) : x y 3 0 . Khi đó A(2; 1) và C (3; 6) nằm về hai phía đối với , suy ra là phân giác trong của góc B . Do đó đường thẳng cần tìm là (AC ) : x y 3 0 . Ví dụ 1.4. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC nội tiếp trong đường tròn (C ) : x 2 y 2 x 2y 30 0 ; đường phân giác trong của góc A cắt cạnh BC tại 3 điểm D 2; và đỉnh A thuộc đường thẳng d : 4x y 2 0 . Viết phương trình của 2 đường thẳng BC , biết rằng đỉnh A có hoành độ dương. Tìm tòi Ta có A d (C ) . A Gọi I là tâm của đường tròn (C ) , E là giao điểm thứ hai của (C ) và đường phân giác trong AD . Khi đó ta có , nên BC IE . I BAE CAE BE CE Lời giải A d A(t; 4t 2) , t 0 . B D C t 2 A (C ) 17t 23t 22 0 2 E 11 t . 7 15 Vì t 0 , nên ta nhận được A(2; 6) . Khi đó AD 0; nên (AD ) : x 2 0 . 2 E (AD ) E (2; m ) , m 6 . m 6 (loaïi) E (C ) m 2 2m 24 0 Vậy E (2; 4) . m 4 (nhaä n ). 1 Đường tròn (C ) có tâm là I ; 1 và BAE CAE nên BE CE , suy ra BC IE . 2 5 Vậy IE ; 5 là một vec-tơ pháp tuyến của đường thẳng (BC ) . 2 Do đó đường thẳng cần tìm là (BC ) : x 2y 5 0 . Ví dụ 1.5. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có đỉnh A thuộc đường tròn (C ) : (x 1)2 (y 2)2 25 ; hai đỉnh B , C cùng thuộc đường thẳng d : 3x 4y 55 0 và trực tâm của tam giác trùng với tâm của đường tròn (C ) . Biết rằng đường tròn (C ) cắt cạnh AB tại điểm thứ hai M sao cho MB 2 MA và B có hoành độ dương. Tìm tọa độ các đỉnh của tam giác ABC . -5- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng Tìm tòi Gọi I là tâm của đường tròn (C ) . Ta có: AI d và A (C ) , suy ra tọa độ điểm A . B d và MB 2 MA , kết hợp với M (C ) , A suy ra tọa độ điểm B . Sử dụng AC BI , suy ra tọa độ điểm C . Lời giải M Ta thấy (C ) có tâm là I (1; 2) ; d có một I vec-tơ pháp tuyến nd (3; 4) . Vì I là trực tâm của ABC và B , C d nên x 1 3k x 3k 1 IA k .nd A A B C yA 2 4k yA 4k 2. k 1 A(4; 2) A (C ) nên ta có: 25k 2 25 k 1 A(2; 6). 3b 55 Ta thấy B d nên B b; . 4 2x A b x M Vì M thuộc đoạn AB và MB 2 MA , nên MB 2 MA 3 x A 3b 55 . 8y M 12 b 8 b 13 Với A(4; 2) , ta có M ; (C ) nên 3 4 2 2 b 5 b 5 2 b 7 (nhaän) 25 (b 5) 144 b 17 (loaïi). 3 4 Khi đó IB (6; 21) là một vec-tơ pháp tuyến của đường thẳng (AC ) , suy ra (AC ) : 2x 7y 6 0 . 361 92 C d AC nên ta có C ; . 13 13 b 4 3b 103 Với A(2; 6) , ta có M ; (C ) 3 12 2 2 b 7 3b 79 nên 25 (vô nghiệm). 3 12 361 92 Do đó các đỉnh của tam giác là: A(4; 2) , B(7; 19) , C ; . 13 13 Ví dụ 1.6. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC cân tại A có trực tâm là H (3; 2) . Gọi D , E lần lượt là chân đường cao kẻ từ B và C của tam giác với HD 2 . Biết rằng đỉnh A có hoành độ dương và thuộc đường thẳng d : x 3y 3 0 , -6- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng 9 10 khoảng cách từ đỉnh A đến đường thẳng (DE ) bằng . Viết phương trình của đường 5 thẳng BC . Tìm tòi Vì AB AC và H là trực tâm của tam giác ABC A nên ta có HD HE . Ta có A(3a 3; a ) và HD AD , HE AE suy ra phương trình của đường thẳng DE theo a . 9 10 Sử dụng d(A, DE ) và a 1 ta tìm được a . 5 Khi đó xác định được tọa độ của B (hoặc C ). Từ đó viết được phương trình của đường thẳng BC . E D Lời giải H Gọi D(x D ; yD ) và E (x E ; y E ) . B C Vì AB AC và H là trực tâm của tam giác ABC , nên ta có: HD HE 2 nên D , E cùng thuộc đường tròn tâm H bán kính HD 2 . Suy ra: x D 2 yD 2 6x D 4yD 9 0 (1a); x E 2 yE 2 6x E 4y E 9 0 (1b). A d A(3a 3; a ) với a 1 và AD.HD 0 , AE .HE 0 . Suy ra: x D 2 yD 2 3ax D (a 2)yD 7a 9 0 (2a); x E 2 yE 2 3ax E (a 2)y E 7a 9 0 (2b). Trừ theo vế (1a) và (2a), (1b) và (2b) suy ra phương trình của đường thẳng DE có dạng (3a 6)x (a 2)y 7a 18 0 . 9 10 (3a 6)(3a 3) (a 2)a 7a 18 9 10 Do đó d(A, (DE )) 5 (3a 6)2 (a 2)2 5 5 10a 2 32a 36 9 10. 10a 2 32a 40 (*). Đặt t 10a 2 32a 40 , t 0 . Phương trình (*) trở thành t 0 t 2 10 2 5 t 2 4 9 10 t 5t 9 10 t 20 0 10 2 5t 9 10 t 20 0 t . 5 a 0 (nhaän) 2 + Với t 2 10 , ta có 5a 16a 0 a 16 (loaïi). 5 10 + Với t , ta có 25a 2 80a 99 0 (vô nghiệm). 5 Vậy A(3; 0) và DE : 3x y 9 0 , suy ra y D 3x D 9 . Thế vào (1a), ta nhận được 9 5x D 2 24x D 27 0 x D hoặc x D 3 . 5 -7- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng 9 18 Suy ra D ; và E (3; 0) . 5 5 Gọi B(x 0 ; y 0 ) , ta có AB (x 0 3; y 0 ) vuông góc với HE (0; 2) nên suy ra B(x 0 ; 0) . 6 7 Ta có HD ; nên (HD ) : 7x 6y 9 0 . 5 5 9 9 B (DH ) x 0 hay B ; 0 . 7 7 27 Vì BC / /ED nên (BC ) : 3x y 0. 7 Do đó phương trình của đường thẳng BC là 21x 7y 27 0 . B. BÀI TẬP THỰC HÀNH Bài toán 1.1. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có đường thẳng chứa các cạnh AB và AC tương ứng là d1 : 2x y 4 0 và d2 : 3x 4y 4 0 , đường thẳng chứa cạnh BC đi qua điểm M (1; 2) . Tìm tọa độ các đỉnh B và C của tam giác, biết rằng 3 MB 2 MC . Gợi ý tìm tòi Ta có A d1 d2 , B d1 B(b; 4 2b) , C d2 C (4c; 1 3c) . Vì 3 MB 2 MC , nên ta có 3MB 2MC hoặc 3MB 2MC suy ra tọa độ của B và C . Bài toán 1.2. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có đỉnh C (2; 3) , đường thẳng chứa cạnh AB có phương trình x 2y 6 0 và trọng tâm của tam giác thuộc đường thẳng d : x y 1 0 . Tìm tọa độ các đỉnh A và B . Gợi ý tìm tòi Trọng tâm của ABC là G d G(t; 1 t ) . A 1 Gọi M là trung điểm của AB , ta có GM CM . Khi đó 3 1 M d(G , (AB )) d(C , (AB )) suy ra tọa độ của điểm G . 3 G Viết được phương trình đường thẳng (CG ) , suy ra tọa độ B C của M (AB ) (CG ) . Ta có: A(6 2a; a ) , B(2x M x A ; 2yM yA ) . x x B xC 3 xG Sử dụng: A ta tìm được tọa độ các đỉnh A và B . yA yB yC 3 xG Bài toán 1.3. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có trọng tâm là G(1; 1) ; đỉnh B có tung độ dương và thuộc đường thẳng d : x 2y 1 0 , đường thẳng chứa đường cao kẻ từ đỉnh A là : 3x 8y 20 0 ; trung điểm của cạnh AC là M và GM 2 2 . Tính diện tích của tam giác ABC . -8- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng Gợi ý tìm tòi B d B(1 2b; b) , b 0 và BG 2GM tìm A được tọa độ của B , M . Sử dụng BC suy ra phương trình đường thẳng (BC ) . A A(8a 4; 3a 1) ; M Sử dụng C (2x M x A ; 2yM yA ) (BC ) suy ra tọa độ của G các đỉnh A và C . B C 1 Diện tích tam giác ABC là S BC .d(A, (BC )) . 2 Bài toán 1.4. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC vuông cân tại đỉnh A(1; 3) , đỉnh B thuộc trục Ox và đỉnh C thuộc đường thẳng d : x y 3 0 . Viết phương trình của đường thẳng chứa cạnh BC . Gợi ý tìm tòi B Ox B(b; 0) ; C d C (c; c 3) . Khi đó: AB (b 1; 3) và AC (c 1; c 6) . c 6 Sử dụng: + AB AC , ta có b 1 3 (1). c 1 + AB AC , ta có (b 1)2 9 (c 1)2 (c 6)2 (2). Thế (1) vào (2) ta nhận được (c 1)2 9 và suy ra phương trình của đường thẳng (BC ) . Bài toán 1.5. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC vuông cân tại A , đường thẳng chứa cạnh BC có phương trình là x 3y 8 0 , điểm M (3; 0) thuộc cạnh AB và đường thẳng chứa cạnh AC đi qua điểm N (1; 3) . Tìm tọa độ các đỉnh của tam giác ABC . Gợi ý tìm tòi Gọi n AB (a; b ) và n BC (1; 3) tương ứng là A vec-tơ pháp tuyến của các đường thẳng (AB ) và (BC ) . nAB .nBC a 2b M 2 Sử dụng , tìm được n AB . nBC 2 a b . 2 C B Suy ra phương trình các đường thẳng (AB ) và (AC ) . N Tọa độ các đỉnh A , B , C thỏa mãn yêu cầu bài toán khi hai vec-tơ MA và MB ngược hướng. Bài toán 1.6. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có tâm của đường tròn ngoại tiếp là I (1; 2) ; các đường thẳng chứa đường cao và đường trung tuyến đi qua đỉnh A lần lượt là d1 : x 2y 11 0 và d2 : 13x 6y 37 0 . Tìm tọa độ các đỉnh B , C của tam giác. Gợi ý tìm tòi Ta có A d1 d2 và n1 là một vec-tơ pháp tuyến của đường thẳng d1 . -9- ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng Gọi M là trung điểm của BC , suy ra n1 là một vec- A tơ pháp tuyến của đường thẳng (IM ) và M (IM ) d2 . Đường thẳng (BC ) đi qua M và nhận n1 làm một vec-tơ chỉ phương, suy ra phương trình đường thẳng (BC ) . d1 d2 I Ta có B (BC ) B(b; 2 2b ) . B C Sử dụng IB IA suy ra tọa độ các đỉnh B , C . M Bài toán 1.7. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có trọng tâm là G(1; 1) , đường thẳng chứa cạnh AB là d : 10x 3y 3 0 , đường trung trực của cạnh BC là : 3x y 9 0 . Tìm tọa độ các đỉnh của tam giác ABC . Gợi ý tìm tòi Gọi M là trung điểm của BC , ta có M nên A M (t ; 3t 9) và GA 2GM A(3 2t ; 21 6t ) . Sử dụng A d , tìm được tọa độ của A và M . Vì BC , nên suy ra phương trình của đường G thẳng (BC ) . B M C Khi đó: B d (BC ) và C (2x M x B ; 2y M y B ) . Bài toán 1.8. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có đường thẳng chứa đường cao kẻ từ đỉnh A là d : 3x 4y 8 0 , đường thẳng chứa đường phân giác trong kẻ từ đỉnh B là : x y 2 0 . Đường thẳng (AB ) đi qua điểm M (2; 3) và MC 2 . Tìm tọa độ các đỉnh của tam giác ABC . Gợi ý tìm tòi Gọi N là điểm đối xứng của M qua , tìm được A tọa độ của N . Sử dụng BC d và N (BC ) , tìm được phương trình của (BC ) B (BC ) . M d Đường thẳng (AB ) đi qua B và M A d (AB ) . C (BC ) C (3t 1; 4t 6) . Sử dụng MC 2 và A , C nằm về hai phía đối với B C đường thẳng , tìm được tọa độ của đỉnh C . N Bài toán 1.9. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có đỉnh C thuộc đường thẳng d : x 2y 3 0 , đường thẳng chứa đường phân giác trong kẻ từ đỉnh A là : x y 2 0 . Biết rằng diện tích của tam giác là S 9 và M (1; 0) là trung điểm của cạnh AC , viết phương trình của đường thẳng (BC ) . Gợi ý tìm tòi C C d C (2t 3; t ) . Khi đó A(2x M xC ; 2y M yC ) suy ra tọa độ của A và C . Viết được phương trình đường thẳng (AC ) . M Gọi N là điểm đối xứng của M qua , tìm được tọa độ của N . Vì N (AB ) nên tìm được phương trình A B đường thẳng (AB ) . Ta có B (AB ) B(b; 2b 5) . N - 10 - ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng 1 Sử dụng S AC .d (B , (AC )) và B , C nằm về hai phía đối với đường thẳng , tìm được tọa 2 độ của đỉnh B . Suy ra phương trình (BC ) . Bài toán 1.10. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC vuông tại A , trung điểm của cạnh BC là M (2; 3) , đường thẳng chứa cạnh AC đi qua điểm E (4; 5) và đường thẳng chứa đường phân giác trong của góc B là : x 2y 1 0 . Tìm tọa độ các đỉnh của tam giác ABC . Gợi ý tìm tòi A B B(1 2b; b) , do đó C (2b 3; 6 b) . Gọi N là điểm đối xứng của M qua N (AB ) . N ABC vuông tại A nên NB.EC 0 , suy ra tọa độ E của B và C . Khi đó ta có A (BN ) (CE ) . B C M Bài toán 1.11. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có trọng tâm là G , đỉnh C (2; 4) , đường thẳng chứa đường cao kẻ từ đỉnh A là : x y 6 0 , đỉnh B thuộc đường thẳng d : 2x y 1 0 . Tìm tọa độ các đỉnh A và B của tam giác, biết rằng diện tích của tam giác ABG là S ABG 1 . Gợi ý tìm tòi A BC nên (BC ) : x y 2 0 B(3; 5) . A A(a; a 6) và S ABC 3 S ABG nên ta có: a 1 BC .d(A, (BC )) 6 2a 8 6 G a 7. Suy ra tọa độ của đỉnh A . B C Bài toán 1.12. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có các đỉnh A(4; 3) , B(2; 1) . Diện tích của tam giác là S 4 và bán kính đường tròn ngoại tiếp là R 2 . Tìm tọa độ đỉnh C của tam giác, biết rằng C có tung độ dương. Gợi ý tìm tòi Đường trung trực của cạnh AB là d : x y 5 0 . Gọi I là tâm của đường tròn ngoại tiếp ABC , ta có I d I (a; a 5) . a 4 I (4; 1) Vì AI R , nên a 2 I (2; 3). (x 0 4)2 (y 0 1)2 4 (1) Gọi C (x 0 ; y 0 ) ta có: 2 2 (x 0 2) (y 0 3) 4 (2). Vì y 0 0 , nên (2) vô nghiệm. 1 Ta có (AB ) : x y 1 0 và diện tích ABC là S AB.d (C , (AB )) x 0 y 0 1 . 2 Do đó ta có: x 0 y 0 1 4 (3). Từ (3) và (1) ta tìm được tọa độ của đỉnh C . - 11 - ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng Bài toán 1.13. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có trung điểm của cạnh AC là M (3; 5) , đường thẳng chứa cạnh BC là d : x y 1 0 , đường thẳng chứa đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là E (4; 1) . Tìm tọa độ các đỉnh của tam giác ABC . A Gợi ý tìm tòi C d C (a; a 1) , khi đó A(6 a; 11 a ) . Vì AE d nên AE (a 10; a 10) cùng phương với M nd (1; 1) , suy ra tọa độ của các đỉnh A , C . Đường tròn (C ) ngoại tiếp ABC là đường tròn đi qua ba điểm A, C , E nên tìm được phương trình của (C ) . H B C Tọa độ đỉnh B là giao điểm thứ hai của đường thẳng d và đường tròn (C ) . E Bài toán 1.14. Trong mặt phẳng với hệ trục tọa độ Oxy , cho tam giác ABC có BAC 1350 , 1 5 trung điểm của cạnh BC là M ; , trực tâm H có hoành độ dương và 2 2 290 MH , đường thẳng chứa đường cao BH có phương trình là 3x y 8 0 . Tìm 2 tọa độ các đỉnh B , C của tam giác ABC . Gợi ý tìm tòi H (BH ) H (t ; 3t 8) , t 0 . H 290 MH 5t 2 16t 21 0 , suy ra H (1; 11) . 2 B (BH ) B(b; 3b 8) và C (1 b; 3b 3) . Gọi B , C lần lượt là chân các đường cao của tam giác kẻ từ B và C . Khi đó tứ giác AB HC nội tiếp nên C B suy ra BHC 450 . A Gọi n BH (3; 1) , nCH (a ; b ) lần lượt là vec-tơ pháp tuyến của các các đường thẳng (BH ) và (CH ) . Ta có: M B C 3a b 2 a 2b 2a 2 3ab 2b 2 0 10(a 2 b 2 ) 2 2a b. Suy ra: nCH (2; 1) hoặc nCH (1; 2) . Do đó xảy ra các trường hợp sau 14 14 2 19 27 + (CH ) : 2x y 13 0 , vì C (CH ) nên ta có b B ; , C ; . 5 5 5 5 5 28 28 44 33 69 + (CH ) : x 2y 21 0 , vì C (CH ) nên ta có b B ; , C ; . 5 5 5 5 5 - 12 - ngocdung.tspv@gmail.com
- TÌM TÒI LỜI GIẢI CÁC BÀI TOÁN Phương pháp tọa độ trên mặt phẳng IV. HIỆU QUẢ CỦA ĐỀ TÀI Nội dung của đề tài là một phần cơ bản trong chương trình Luyện thi đại học hàng năm dành cho học sinh tại Trung tâm luyện thi đại học của Trường THPT Nguyễn Trãi và đã tạo điều kiện giúp các em đạt kết quả cao trong các kỳ thi vào các trường đại học trong những năm qua. V. ĐỀ XUẤT, KHUYẾN NGHỊ Nội dung của đề tài ở phần này cũng có thể là tài liệu tham khảo cho giáo viên trong quá trình lựa chọn các bài tập phục vụ cho các tiết luyện tập nâng cao cho học sinh lớp 10, hay việc ôn tập kiến thức trong kỳ thi Trung học phổ thông quốc gia cho học sinh lớp 12. VI. TÀI LIỆU THAM KHẢO Một số bài toán thực hành trong nội dung đề tài được biên soạn dựa trên việc khai thác nội dung một số bài toán ở một số Đề thi thử đại học tại trang mạng: www.VNMATH.com và www.moon.vn. - 13 - ngocdung.tspv@gmail.com
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Sáng kiến kinh nghiệm: Hình thành tư duy khái quát hóa một số dạng bài tập hóa học cho học sinh ứng dụng giải nhanh bài tập trắc nghiệm hóa học
30 p |
235 |
53
-
Sáng kiến kinh nghiệm THCS: Phương pháp làm bài nghị luận văn học lớp 9
15 p |
29 |
8
-
Sáng kiến kinh nghiệm Mầm non: Một số biện pháp nâng cao chất lượng cho trẻ 3 tuổi thực hành và trải nghiệm trong hoạt động khám phá khoa học, khám phá xã hội ở trường mầm non Thanh Nê - Kiến Xương - Thái Bình
12 p |
90 |
8
-
Sáng kiến kinh nghiệm Tiểu học: Rèn kỹ năng giải toán có lời văn cho học sinh lớp 4, dạng toán: “ Tìm hai số khi biết tổng và tỉ số của hai số đó”
24 p |
45 |
7
-
Sáng kiến kinh nghiệm Mầm non: Xây dựng những cuốn sách biết nói cho góc thư viện
8 p |
73 |
6
-
Sáng kiến kinh nghiệm: Kinh nghiệm khi thiết kế bài giảng cho giáo án điện tử
36 p |
17 |
6
-
Sáng kiến kinh nghiệm Mầm non: Một số biện pháp tổ chức hoạt động ngoài trời cho trẻ mẫu giáo 5- 6 tuổi Đông Thành, trường Mầm non Quảng An
26 p |
56 |
6
-
Sáng kiến kinh nghiệm Mầm non: Một số kinh nghiệm hướng dẫn trẻ 5 tuổi sử dụng lá cây trong hoạt động tạo hình tại trường Mầm non EaTung
18 p |
84 |
6
-
Sáng kiến kinh nghiệm THPT: Tìm hiểu một số tính chất của đất trồng nhằm nâng cao hiệu quả sử dụng đất canh tác trong nông nghiệp
35 p |
43 |
6
-
Sáng kiến kinh nghiệm Mầm non: Một số biện pháp giúp trẻ 24 – 36 tháng tuổi phát triển ngôn ngữ thông qua hoạt động thơ, truyện
22 p |
34 |
5
-
Sáng kiến kinh nghiệm THPT: Phân loại và cách giải bài toán tìm giới hạn hàm số trong chương trình Toán lớp 11 THPT
27 p |
55 |
5
-
Sáng kiến kinh nghiệm THCS: Tìm tòi khai thác - dạy hệ thức Viét
13 p |
12 |
4
-
Sáng kiến kinh nghiệm THCS: Hướng dẫn học sinh lớp 7 biết cách vận dụng tính chất của dãy tỉ số bằng nhau để giải các dạng toán tìm các số x, y z
29 p |
44 |
4
-
Sáng kiến kinh nghiệm Mầm non: Biện pháp tạo hứng thú cho trẻ khám phá khoa học
4 p |
18 |
4
-
Sáng kiến kinh nghiệm Mầm non: Biện pháp nhằm nâng cao chất lượng Giáo dục âm nhạc cho trẻ 5 tuổi
10 p |
45 |
4
-
Sáng kiến kinh nghiệm THPT: Thiết kế hoạt động trãi nghiệm-sáng tạo chủ đề pH cho học sinh lớp 11
18 p |
35 |
3
-
Sáng kiến kinh nghiệm THCS: Phương pháp tìm lời giải cho bài toán hình học lớp 9
17 p |
34 |
2
![](images/icons/closefanbox.gif)
![](images/icons/closefanbox.gif)
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
![](https://tailieu.vn/static/b2013az/templates/version1/default/js/fancybox2/source/ajax_loader.gif)