Bài tập GTLN và GTNN
-
Ứng dụng đạo hàm để tìm GTLN và GTNN của hàm số nhiều biến được biên soạn nhằm giúp cá bạn biết cách sử dụng đạo hàm để tìm giá trị lớn nhất và giá trị nhỏ nhất của một hàm số. Bên cạnh đó, bằng những bài tập minh họa và hướng dẫn giải những bài tập này một cách cụ thể sẽ giúp các bạn củng cố kiến thức một cách tốt hơn.
25p phanhuuthe0217 18-03-2015 1131 74 Download
-
Khái niệm về đường tròn và phương trình đường tròn không nhiều, nhưng hệ thống bài tập thì đa dạng và phong phú vô cùng. Những ứng dụng quan trọng của nó là giải bất phương trình, tìm GTLN,GTNN của biểu thức … Bài SKKN về đường thẳng và đường tròn, mời các bạn cùng tham khảo.
72p somivang123 25-03-2014 146 27 Download
-
Trong sách giáo khoa, sách bài tập đại số và hình học ban nâng cao và ban cơ bản đều không có hoặc rất ít bài BĐT yêu cầu dấu “=” xảy ra khi nào? Do đó, thông thường khi làm bài BĐT thì HS không có thói quen thử lại dấu “=” có xảy ra hay không? Đây chính là sai lầm HS thường gặp phải. Sáng kiến này là một tài liệu nhỏ giúp học sinh đỡ khó khăn hơn khi gặp một số bài bất đẳng thức có dạng trên. Mời quý thầy cô và các bạn tham khảo sáng kiến “Dự đoán dấu bằng trong bất đẳng thức Cô-si để tìm GTLN, GTNN và chứng minh bất đẳng thức”.
22p huonglotos 16-04-2014 411 78 Download
-
Khi giải toán tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức, mục đích của chúng ta là tìm một cách giải logic để tìm ra sự biến thiên của hàm số từ đó kết dự đoán GTLN-GTNN đạt được, cho nên máy tính chỉ được sử dụng như một công cụ hỗ trợ các tính toán phức tạp và dự đoán chứ không phải máy tính sẽ thực hiện giải các bài toán đưa ra. Tuy nhiên nếu biết khai thác triệt để các tính năng của máy tính thì ta không chỉ tìm được lời giải cho bài toán mà còn tìm được nhiều cách giải khác nhau, đồng thời có thể mở rộng và làm mới bài toán.
25p nanhankhuoctai4 01-06-2020 29 1 Download
-
Tài liệu "Bài toán bất đẳng thức - GTLN - GTNN của biểu thức" được biên soạn bởi giáo viên Nguyễn Hữu Hiếu hướng dẫn giải một số dạng toán bất đẳng thức và GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất) của biểu thức. Giúp các bạn học sinh có thêm tài liệu ôn tập, luyện tập giải đề nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập một cách thuận lợi.
38p hoaanhdao205 26-11-2022 18 6 Download
-
Tài liệu Toán lớp 10: Chủ đề 6 - Một số kỹ thuật sử dụng bất đẳng thức Bunhiacopxki được biên soạn nhằm hướng dẫn cho các em học sinh áp dụng bất đẳng thức Bunhiacopxki (tên gọi chính xác là bất đẳng thức Cauchy – Bunhiacopxki – Schwarz) chứng minh bất đẳng thức, tìm GTLN – GTNN (giá trị lớn nhất – giá trị nhỏ nhất). Hy vọng sẽ giúp ích cho quý thầy cô và các em trong quá trình giảng dạy và học tập của mình.
84p hoaanhdao205 26-11-2022 28 4 Download
-
Mục tiêu nghiên cứu của sáng kiến kinh nghiệm là hệ quả của bất đẳng thức Côsi cũng không kém phần quan trọng, áp dụng rất nhiều vào việc tìm GTLN, GTNN của một biểu thức. Nhưng hệ quả của bất đẳng thức Cô-si không được đề cập trong sách toán THCS. Đối với giáo viên nhất là giáo viên dạy nâng cao hoặc bồi dưỡng không thể bỏ qua được việc nghiên cứu và áp dụng bất đẳng thức Côsi và hệ quả của nó cho các bài tập toán ở lớp 9.
10p bobietbo 13-10-2021 62 7 Download
-
Bài giảng "Giải tích lớp 12: Ôn tập khảo sát hàm số (Tiếp theo)" nhằm giúp các em học sinh ôn tập lại kiến thức chương 1 trong chương trình Giải tích lớp 12 gồm: Tính đơn điệu của hàm số; Cực trị của hàm số; GTLN – GTNN của hàm số;... Mời quý thầy cô và các em cùng tham khảo.
5p chieuchieu01 17-04-2023 36 4 Download
-
Bài giảng "Hình học lớp 11: Hàm số lượng giác và phương trình lượng giác (Tiết 1)" được biên soạn với các nội dung chính sau đây: Các dạng toán liên quan đến đồ thị của hàm số lượng giác; Tìm tập xác định, tìm tập giá trị, tìm GTLN và GTNN của hàm số; Giải phương trình lượng giác cơ bản. Mời quý thầy cô và các em học sinh cùng tham khảo bài giảng!
11p chieuchieu01 15-04-2023 7 4 Download
-
Nội dung của sáng kiến nêu lên bất đẳng thức Côsi và hệ quả rất quan trọng trong việc chứng minh bất đẳng thức và tìm GTLN, GTNN của biểu thức nên chúng ta cần khai thác và tìm hiểu sâu hơn về bất đẳng thức này. Thông qua việc hướng dẫn học sinh tìm tòi, sáng tạo các bài toán mới từ những bài toán đã học, đã gặp giúp học sinh tự tin hơn trong giải toán, nhờ đó mà học sinh phát huy được tư duy và nâng cao năng lực sáng tạo, bước đầu hình thành cho học sinh niềm say mê nghiên cứu khoa học.
10p heavysweetness 04-08-2021 45 3 Download
-
Luyện thi Đại học Kit 1 - Môn Toán: Một số bài toán mở đầu về GTLN, GTNN (Bài tập tự luyện) của thầy Lê Bá Trần Phương giúp các bạn nắm vững những kiến thức về các bài toán GTLN, GTNN. Mời các bạn tham khảo!
1p cocacola_12 11-07-2014 200 16 Download
-
Luyện thi Đại học Kit 1 - Môn Toán: Một số bài toán mở đầu về GTLN, GTNN (Hướng dẫn giải bài tập tự luyện) của thầy Lê Bá Trần Phương giúp các bạn nắm vững những kiến thức về các bài toán GTLN, GTNN. Mời các bạn tham khảo!
2p cocacola_12 11-07-2014 132 9 Download
-
Trong chương trình toán THCS không có bài dạy lý thuyết về tìm giá trị lớn nhất ( GTLN)và giá trị nhỏ nhất ( GTNN), nhưng trong hệ thống bài tập lại có đề cập đến. Loại bài tập này có nhiều trong các sách bồi dưỡng, nâng cao, hay trog các đề thi học sinh giỏi, thi vào THPT.v.v … Với mục đích nhằm nâng cao chất lượng dạy và học toán, thiết nghĩ cần phải trang bị cho học sinh kiến thức về tìm giá trị lớn nhất và giá trị nhỏ nhất của một biểu thức đại số. Mời quý thầy cô tham khảo sáng kiến “Hướng dẫn học sinh tìm giá trị lớn nhất và giá trị nhỏ nhất của một biểu thức đại số ở lớp 9”.
13p huonglotos 28-04-2014 2884 416 Download
-
ất đẳng thức là một mảng kiến thức khó của toán học phổ thông, nó thường xuyên xuất hiện trong các đề thi HSG cũng như thi tuyển sinh CĐ - ĐH. Đã có rất nhiều tác giả, nhiều tài liệu đề cập về bất đẳng thức; hôm nay, trong khuôn khổ của một buổi sinh hoạt chuyên môn cụm 6, chúng tôi xin được phép giới thiệu lại một số bất đẳng thức và bài toán GTLN & GTNN của một số biểu thức đại số đã được ra thi hoặc tương tự với các dạng trong đề thi...
2p hoadanomuon97 16-07-2013 215 18 Download
-
Có nhiều phương pháp để giải bài toán tìm GTLN và GTNN của một hàm số, một biểu thức. Tài liệu này gồm ba dạng toán, mỗi dạng sẽ đưa ra các ví dụ, cách giải chung của các ví dụ, bài tập tự giải và kết quả của từng bài. Giúp các em ôn luyện chuẩn bị cho các kì thi sắp tới được tốt hơn.
7p toobey 07-05-2013 589 110 Download
-
Giả sử cần tìm cực trị một biểu thức Q(x). Để đơn giản ta chỉ cần xét biểu thức Q(x) luôn xác định trên tập số thực. Ta đưa thêm tham biến t để xét biểu thức f x Q x t . Nếu f x 0 hoặc f x 0 với mọi x thuộc tập xác định của Q(x) và tồn tại giá trị t0 để f x 0 thì t0 chính là GTLN hoặc GTNN của biểu thức Q(x)
5p paradise8 22-12-2011 187 25 Download
-
Kiến thức: củng cố các quy tắc xét sự biến thiên vẽ đồ thị của hàm số, các quy tắc tìm cực trị và quy tắc tìm giá trị lớn nhất, nhỏ nhất của hàm số. o Kĩ năng: HS thành thạo các kĩ năng xét sự biến thiên và vẽ đồ thị, quy tắc tính cực trị, tìm GTLN, GTNN của một hàm số. o Tư duy, thái độ: HS chủ động tiếp cận kiến thức, chủ động giải các bài tập, biết cách đánh giá kĩ năng của bản thân. ...
4p paradise1 07-12-2011 179 12 Download
-
Kiến thức: củng cố các bước tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng đạo hàm; các bước lập bảng biến thiên của hàm số. Kĩ năng: rèn kĩ năng tìm GTLN, GTNN của hàm số trên một đoạn, trên tập bất kì Tư duy, thái độ: tích cực, tự giác trong quá trình lĩnh hội kiến thức; biết quy lạ về quen; biết đánh giá bài làm của người khác.
8p paradise1 07-12-2011 714 19 Download
-
Mục tiêu: + Về kiến thức: Đánh giá việc nắm vững các khái niệm đồng biến, nghịch biến, GTLN, GTNN và khảo sát hàm số của học sinh. + Về kĩ năng: Đánh giá việc vận dụng các khái niệm đồng biến, nghịch biến, GTLN, NN, tiệm cận… vào các loại bài tập cụ thể. + Về tư duy thái độ đánh giá tính chính
10p abcdef_35 21-09-2011 56 6 Download
-
Kiến thức: Ôn tập toàn bộ kiến thức trong chương I. Kĩ năng: Khảo sát sự biến thiên và vẽ đồ thị hàm số. Giải các bài toán về tính đơn điệu, cực trị, GTLN, GTNN, tiệm cận. Giải các bài toán liên quan đến khảo sát hàm số: sự tương giao, biện luận số nghiệm của phương trình bằng đồ thị, viết phương trình tiếp tuyến với đồ thị. Thái độ: Rèn luyện tính cẩn thận, chính xác. ...
7p chenxanh 19-09-2011 114 10 Download