intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Kinh tế học vi mô: Chương III - TS. Nguyễn Quỳnh Hoa

Chia sẻ: Na Na | Ngày: | Loại File: PPT | Số trang:39

110
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng Kinh tế học vi mô: Chương 3 - Lý thuyết lựa chọn trong môi trường bất định trình bày các nội dung về môi trường ra quyết định, đo lường rủi ro với phân phối xác suất, các thái độ đối với rủi ro, giảm mức rủi ro, nhu cầu đối với các tài sản có rủi ro.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Kinh tế học vi mô: Chương III - TS. Nguyễn Quỳnh Hoa

  1. CHƯƠNG III LÝ THUYẾT LỰA CHỌN TRONG MÔI TRƯỜNG BẤT ĐỊNH Tài liệu đọc: Robert Pindyck – Chương 5 1
  2. I. MÔI TRƯỜNG RA QUYẾT ĐỊNH II. ĐO LƯỜNG RỦI RO VỚI PHÂN PHỐI XÁC SUẤT III. CÁC THÁI ĐỘ ĐỐI VỚI RỦI RO IV. GIẢM MỨC RỦI RO V. NHU CẦU ĐỐI VỚI CÁC TÀI SẢN CÓ RỦI RO 2
  3. I. MÔI TRƯỜNG RA QUYẾT ĐỊNH Thế giới chúng ta sống là một nơi nhiều rủi ro, - Khi chúng ta gửi thêm tiền vào tài khoản ở ngân hàng chúng ta không biết được số tiền đó sẽ mua được bao nhiêu vì chúng ta không biết chắc giá cả hàng hóa sẽ tăng như thế nào trong thời gian đó. - Khi bắt đầu đi làm chúng ta không biết chắc được các khoản thu nhập ta kiếm được sẽ tăng, giảm hay thậm chí chúng ta có thể bị mất việc. - Hoặc nếu tạm hoãn việc mua nhà chúng ta có thể gặp rủi ro nếu có sự tăng giá thực sự. Điều này ảnh hưởng đến hành động của chúng ta như thế nào? Chúng ta cần đưa những điều kiện không chắc chắn này vào tính toán như thế nào khi thực hiện các quyết định tiêu dùng hay đầu tư quan3 trọng?
  4. II. ĐO LƯỜNG RỦI RO VỚI PHÂN PHỐI XÁC SUẤT Ví dụ 1: Nếu tung đồng xu mà kết quả là sấp – bạn thắng 100$, ngửa – bạn thua 0,5$. Ví dụ 2: Nếu tung đồng xu mà kết quả là sấp – bạn thắng 200$, ngửa – bạn mất 100$. Ví dụ 3: Nếu tung đồng xu mà kết quả là sấp – bạn thắng 20.000$, ngửa – bạn mất 10.000$. Người thua có quyền thanh toán khoản nợ theo từng tháng bằng những khoản tiền không lớn trong vòng 30 4 năm.
  5. 1. Xác suất ám chỉ đến sự có thể đúng so với một hậu quả có thể xảy ra. Trong 3 ví dụ trên xác suất đồng xu sấp hay ngửa đều là 0,5. Ví dụ 4: Một công ty đang khai thác dầu ở ngoài khơi. Nếu thành công – giá chứng khoán sẽ tăng từ 30$ lên 40$ mỗi cổ phần, nếu không thành công nó sẽ giảm xuống 20$. Như vậy có 2 hậu quả có thể xảy ra trong tương lai: giá cổ phần là 40 hoặc 20$. Kinh nghiệm cho thấy trong số 100 dự án khai thác dầu có 25 dự án thành công còn 75 thất bại. Vậy xác suất thành công là ¼. Xác suất có thể là chủ quan có thể khách quan. Nó được dùng để tính 2 chỉ số quan trọng: giá trị kỳ vọng 5 (giá trị dự tính) và tính biến thiên.
  6. 2. Giá trị kỳ vọng – giá trị dự tính (hoặc dự đoán) đi liền với tình hình không chắc chắn là một số bình quân gia quyền của tất cả các hậu quả có thể xảy ra, với các xác suất của mỗi hậu quả được dùng như các gia trn ng. ọ E ( X ) = ∑ X i pi i =1 Nếu có hai hậu quả có thể xảy ra với 2 giá trị X1 và X2, và xác suất của mỗi hậu quả được ký hiệu bởi p1 và p2 thì giá trị kỳ vọng E(X) là: E ( X ) = p1 X 1 + p2 X 2 Giá trị kỳ vọng trong các ví dụ trên là: Ví dụ 1: E(X) = (1/2).100$ + (1/2). (- 0,5$) = 49,75$ Ví dụ 2: E(X) = (1/2).200$ + (1/2). (- 100$) = 50$ Ví dụ 3: E(X) = (1/2).20000$ + (1/2). (- 10000$) = 5000$ 6 Ví dụ 4: E(X) = (1/4).40$ + (3/4). (20$) = 25$
  7. 3. Tính biến thiên (bất định) Ví dụ 5: giả sử có 2 công việc bán hàng để lựa chọn: - Công việc 1: thu nhập có được phụ thuộc vào việc bán hàng nếu bán được hàng – thu nhập là 2000$; nếu bán được ít hàng – 1000$. - Công việc 2: làm công ăn lương: 1510$ cho phần lớn thời gian làm việc và 510$ thanh toán đền bù nếu công ty bị phá sản. Hậu quả 1 Hậu quả 2 Xác Thu nhập Xác Thu nhập suất ($) suấ ($) t Công việc 1: hoa 0,5 2000 0,5 1000 hồng Công việc 2: lương 0,99 1510 0,01 510 7
  8. Thu nhập kỳ vọng: Công việc 1: E(X) = 0,5.2000 + 0,5.1000 = 1500 Công việc 2: E(X) = 0,99.1510 + 0,01.510 = 1500 Phương sai: là trung bình của các bình phương các độ sai lệch của các giá trị có liên kết với mỗi hậu quả có được từ giá trị kỳ vọng (dự đoán) của chúng. Phương sai xác định mức độ phân tán các giá trị có liên kết xung quanh giá trị kỳ vọng của chúng. 2 { } = ∑[ X n D ( X ) = E [ X − E ( X )] 2 i − E ( X )] pi i =1 hoặc 2 [ σ = p1 ( X 1 − E ( X )) ] + p [( X 2 2 2 − E ( X )) 2 ] 8
  9. Công việc 1: 2 2 D(X) = 0,5.(2000 – 1500) + 0,5.(1000 – 1500) = 250000 Công việc 2: 2 2 D(X) = 0,99.(1510 – 1500) + 0,01.(510 – 1500) = 9901 Độ sai lệch chuẩn là căn bậc hai của phương sai: σ = D( X ) Cả hai chỉ tiêu trên – phương sai và độ sai lệch chuẩn - đều được sử dụng để xác định mức rủi ro. Trong ví dụ trên công việc 2 có phương sai và độ sai lệch chuẩn thấp hơn so với công việc 1 và vì vậy có độ rủi ro thấp hơn. 9
  10. ● Ra quyết định trong điều kiện rủi ro - Trò chơi 1: Phương sai: 2 2 σ D(X) = 0,5.(100 – 49,75) + 0,5.(99,5 – 49,75) = 2500 Độ sai lệch chuẩn: = 50 - Trò chơi 2: 2 Phương sai: 2 Độ sai lệch chuẩn: σ D(X) = 0,5.(200 – 50) + 0,5.(- 100 – 50) = 22500 = 150 - Trò chơi 3: 2 2 Phương sai: D(X)= 0,5.(20000–5000) + 0,5.(-10000–5000) = = 225000000 σ 10 Độ sai lệch chuẩn: = 15000
  11. Ví dụ 5-a. Các dữ liệu của ví dụ 5 được thay đổi lại như sau: Hậu quả 1 Hậu quả 2 Xác Thu nhập Xác Thu nhập suấ ($) suất ($) t Công việc 1: 0,5 2100 0,5 1100 hoa hồng Công việc 2: 0,99 1510 0,01 510 lương cố định 11
  12. Công việc 1: Giá trị kỳ vọng: E(X) = 0,5.2100 + 0,5.1100 = 1600$ Phương sai: 2 2 Độ sai lệch chuẩn: σ D(X) = 0,5.(2100–1600) + 0,5.(1100 – 1600) = 250000 = 500 Công việc 2: Giá trị kỳ vọng: E(X) = 0,99.1510 + 0,01.510 = 1500$ Phương sai: 2 2 D(X) = 0,99.(1510 – 1500) + 0,01.(510 – 1500) = 9900 Độ sai lệch chuẩn: σ = 99,5 12
  13. 13
  14. III. CÁC THÁI ĐỘ ĐỐI VỚI RỦI RO • Điểm căn bản trong lý thuyết kinh tế về sự lựa chọn trong điều kiện không chắc chắn (von Neumann -Morgenstern) chính là ở chỗ: người chơi không chọn phương án có giá trị kỳ vọng cao nhất, mà chọn phương án có lợi ích kỳ vọng cao nhất. • Lợi ích kỳ vọng (hữu dụng kỳ vọng) của trò chơi là độ thỏa dụng mong đợi của mỗi phương án có thể. • Lý thuyết tối đa hóa lợi ích kỳ vọng dựa trên sự tiếp cận chủ yếu đến độ thỏa dụng có thể đo lường được. Trong trường hợp tổng quát sự tiếp cận này giả định hàm hữu dụng U là sự đo lường bằng định lượng độ hữu dụng có được do mỗi kết cục khác nhau của trò 14
  15. Ví dụ 6: Bạn có 40$. Tham gia vào trò chơi tung đồng xu, nếu thắng bạn có 30$, nếu thua – bạn mất 30$. Hữu dụng ban đầu: U0(40) Giá trị kỳ vọng của trò chơi này: E(X) = 0,5.30 + 0,5.(-30) = 0 Giá trị kỳ vọng của đồng vốn: E(M) = 0,5.10 + 0,5.70 = 40$ (dù chơi hay không chơi giá trị kỳ vọng của đồng vốn cũng sẽ như nhau) Hữu dụng kỳ vọng: U1=0,5.U(40 – 30)+0,5.U(40 + 30)=0,5U(10)+ 0,5U(70) Nếu từ chối chơi hữu dụng sẽ là U(40) Theo lý thuyết về hữu dụng kỳ vọng (Von Neumann) bạn nên tham gia trò chơi nếu U1 > U(40) 15
  16. a. Hàm hữu dụng dạng lõm U(M) - Đối với bất kỳ cặp giá trị nào của M1 và M2 hữu dụng kỳ vọng tương ứng U=U(M) sẽ nằm trên dây cung nối A hai điểm A và B với U(M1) A(M1, U(M1)) và B(M2,U(M2)). U(M2) B - Hàm hữu dụng dạng lõm phản ánh hữu dụng biên giảm dần của tổng M2 M1 M vốn – độ dốc của nó giảm dần khi M tăng. - Những cá nhân có hàm hữu dụng dạng lõm (với tất cả các giá trị của tổng 16 vốn) là những người ghét
  17. Ví dụ 6: - Dạng lõm của đường U hữu dụng cho thấy cá U=U(M) B nhân này ghét rủi ro. 38 32 C’ - Nếu không tham gia trò chơi vốn anh ta có là 40$ 28 C - độ hữu dụng tương ứng là 32 đvhd. 18 A - Nếu tham gia chơi anh ta nằm giữa 2 khả năng A và B với thu nhập kỳ vọng vẫn là 40$ nhưng 10 40 54 70 M độ hữu dụng kỳ vọng lại thấp hơn so với trường hợp không chơi. Vì vậy anh ta sẽ không tham gia trò chơi này. 17
  18. • Bài tập 1. Hàm hữu dụng của Jeny theo số tiền cô ta có là U = M. Nếu số tiền cô ta có ban đầu là M0 = 10000$ thì trò chơi nào trong số ba ví dụ đầu có hữu dụng kỳ vọng cao nhất? Cô ta nên tham gia trò chơi nào? • Bài tập 2. Hàm hữu dụng của Jonh là U = M, số tiền ban đầu của anh ta là 36$. Anh ta có tham gia trò chơi không nếu thắng anh ta được 13$, xác suất 2/3 ; còn nếu thua anh ta mất 11$, xác suất 1/3. 18
  19. b. Hàm hữu dụng dạng lồi U ● Những cá nhân thích rủi U=U(M) ro có hàm hữu dụng với U(M0+B) C hữu dụng biên tăng dần cùng tốc độ tăng của vốn. E(U) - Hữu dụng kỳ vọng của trò chơi vô hại E(U) luôn U(M0) luôn lớn hơn hữu dụng ban A đầu U(M0) trong trường U(M0-B) hợp cá nhân này không M0-B M0 M0+B M tham gia vào trò chơi. - Hàm hữu dụng dạng lồi có độ dốc tăng dần cùng 19 tốc độ tăng của vốn.
  20. • Bài tập 3. Smith có số tiền ban đầu là 100$ nếu tham gia trò chơi và thắng anh ta được 20$, nếu thua sẽ mất – 20$, xác suất thắng thua đều bằng ½. Smith có nên tham gia trò chơi này không nếu hàm 2 hữu dụng của anh ta là U = M 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2