Bài giảng Đại số tuyến tính: Bài 7 - PGS. TS Mỵ Vinh Quang
lượt xem 4
download
Trong bài này trình bày về hệ phương trình tuyến tính với các nội dung như: Các khái niệm cơ bản, các phương pháp giải hệ phương trình tuyến tính. Mời các bạn cùng tham khảo.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Đại số tuyến tính: Bài 7 - PGS. TS Mỵ Vinh Quang
- ĐẠI SỐ TUYẾN TÍNH Tài liệu ôn thi cao học năm 2005 Phiên bản chưa chỉnh sửa PGS TS. Mỵ Vinh Quang Ngày 19 tháng 12 năm 2004 HỆ PHƯƠNG TRÌNH TUYẾN TÍNH 1 Các khái niệm cơ bản 1.1 Định nghĩa Hệ phương trình dạng: a11 x1 + a12 x2 + · · · + a1n xn = b1 a x + a x + ··· + a x = b 21 1 22 2 2n n 2 (1) ... ... am1 x1 + am2 x2 + · · · + amn xn = bm trong đó x1 , x2 , . . . , xn là các ẩn, aij , bj ∈ R là các hằng số, gọi là hệ phương trình tuyến tính (m phương trình, n ẩn). Ma trận a11 a12 . . . a1n a21 a22 . . . a2n A= ... ... ... ... am1 am2 . . . amn gọi là ma trận các hệ số của hệ (1). Ma trận a11 a12 . . . a1n b1 a21 a22 . . . a2n b2 A= ... ... ... ... ... am1 am2 . . . amn bm gọi là ma trận các hệ số mở rộng của hệ (1). Một hệ phương trình hoàn toàn xác định khi ta biết ma trận các hệ số mở rộng của nó. Cột b1 b2 .. . bm 1
- gọi là cột tự do của hệ (1). Chú ý rằng, hệ phương trình (1) có thể cho dưới dạng ma trận như sau x1 b1 x 2 b2 A .. = .. . . xn bm trong đó A là ma trận các hệ số của hệ (1). Nhận xét: Nếu ta thực hiện các phép biến đổi sơ cấp trên các dòng của một hệ phương trình tuyến tính ta được hệ mới tương đương với hệ đã cho. 1.2 Một vài hệ phương trình đặc biệt a. Hệ Cramer Hệ phương trình tuyến tính (1) gọi là hệ Cramer nếu m = n (tức là số phương trình bằng số ẩn) và ma trận các hệ số A là không suy biến (det A 6= 0). b. Hệ phương trình tuyến tính thuần nhất Hệ phương trình tuyến tính (1) gọi là hệ thuần nhất nếu cột tự do của hệ bằng 0, tức là b1 = b2 = · · · = bm = 0. 2 Các phương pháp giải hệ phương trình tuyến tính 2.1 Phương pháp Cramer Nội dung của phương pháp này cũng chính là định lý sau đây: Định lý 1 (Cramer) Cho hệ Cramer a11 x1 + a12 x2 + · · · + a1n xn = b1 a x + a x + ··· + a x = b 21 1 22 2 2n n 2 (2) ... ... an1 x1 + an2 x2 + · · · + ann xn = bn trong đó a11 a12 ... a1n a21 a22 ... a2n A= ... ... ... ... an1 an2 ... ann là ma trận các hệ số. Hệ Cramer luôn có nghiệm duy nhất được cho bởi công thức det Ai xi = det A 2
- trong đó Ai chính là ma trận thu được từ ma trận A bằng cách thay cột i của A bằng cột tự do b1 b2 .. . bn Ví dụ 1: Giải hệ phương trình: ax1 + bx2 = c cx2 + ax3 = b cx1 + bx3 = a trong đó a, b, c là ba số khác 0. Giải: Ta có:
- a b 0
- det A =
- 0 c a
- = 2abc 6= 0
- c 0 b
- nên hệ trên là hệ Cramer. Hơn nữa
- c b 0
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Đại số tuyến tính - Đoàn Vương Nguyên
117 p | 862 | 262
-
Bài giảng Đại số tuyến tính - Bùi Xuân Diệu
99 p | 1072 | 185
-
Bài giảng Đại số tuyến tính - TS. Đặng Văn Vinh
79 p | 641 | 145
-
Bài giảng Đại số tuyến tính và giải tích ứng dụng trong kinh tế - Hoàng Ngọc Tùng (ĐH Thăng Long)
116 p | 732 | 62
-
Bài giảng Đại số tuyến tính: Chương 3 - ThS. Nguyễn Phương
33 p | 281 | 43
-
Bài giảng Đại số tuyến tính: Chương 2 - ThS. Nguyễn Phương
23 p | 222 | 41
-
Bài giảng Đại số tuyến tính - ĐH Thăng Long
105 p | 274 | 33
-
Bài giảng Đại số tuyến tính: Chương 3 - Lê Văn Luyện
97 p | 355 | 26
-
Bài giảng Đại số tuyến tính: Chương 4 - Lê Văn Luyện
30 p | 149 | 15
-
Bài giảng Đại số tuyến tính: Chương 6 - TS. Đặng Văn Vinh
45 p | 159 | 15
-
Bài giảng Đại số tuyến tính: Chương 3 - TS. Đặng Văn Vinh
30 p | 104 | 13
-
Bài giảng Đại số tuyến tính - Đại học Thăng Long
105 p | 119 | 8
-
Bài giảng Đại số tuyến tính: Chương 1 - Lê Văn Luyện
104 p | 97 | 6
-
Bài giảng Đại số tuyến tính - Chương 3: Không gian vector
73 p | 135 | 6
-
Bài giảng Đại số tuyến tính - Chương 4: Ánh xạ tuyến tính
20 p | 78 | 4
-
Bài giảng Đại số tuyến tính: Phần 2 - Huỳnh Hữu Dinh
82 p | 41 | 4
-
Bài giảng Đại số tuyến tính: Chương 4 - TS. Nguyễn Hải Sơn
58 p | 42 | 3
-
Bài giảng Đại số tuyến tính: Chương 3 - PGS.TS. Nguyễn Văn Định
28 p | 54 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn