intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Giải tích 2 - Chương 4: Tích phân mặt

Chia sẻ: Minh Vũ | Ngày: | Loại File: PDF | Số trang:60

86
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài giảng "Giải tích 2 - Chương 4: Tích phân mặt" cung cấp cho người học các kiến thức: Tích phân mặt loại 1, tích phân mặt loại 2. Đây là một tài liệu hữu ích dành cho các bạn sinh viên ngành Toán học và những ai quan tâm dùng làm tài liệu học tập và nghiên cứu.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Giải tích 2 - Chương 4: Tích phân mặt

  1. CHƯƠNG IV: TÍCH PHÂN MẶT §1. TÍCH PHÂN MẶT LOẠI 1 §1. TÍCH PHÂN MẶT LOẠI 2
  2. §1. Tích phân mặt loại 1 Định nghĩa : Cho hàm f(x,y,z) trên mặt S. Chia S thành n phần tùy ý không dẫm lên nhau. Gọi tên và diện tích của mỗi mặt đó là ΔSk, k=1, 2, .. , n . Trên mỗi mảnh đó ta lấy 1 điểm Mk tùy ý và lập tổng n Sn f (Mk ) Sk k 1 Cho max(dΔSk) → 0 (dΔSk là đường kính của mảnh Sk), nếu tổng trên dần đến 1 giới hạn hửu hạn thì ta gọi đó là tp mặt loại 1 của hàm f(x,y,z) trên mặt S, kí hiệu là n f ( x, y , z )ds lim f (Mk ) Sk max( d Sk ) 0 k 1 S
  3. §1. Tích phân mặt loại 1 Tính chất : Diện tích mặt S được tính bởi S ds S ( f g )ds fds gds S S S Nếu mặt S được chia thành 2 mặt không dẫm lên nhau là S1 và S2 thì fds fds fds S S1 S2
  4. §1. Tích phân mặt loại 1 Cách tính: Tìm hình chiếu của S xuống 1 trong mặt phẳng Oxy (Dxy), Oyz (Dyz) hoặc Ozx (Dzx) Từ pt mặt S là F(x,y,z)=0 ta rút ra z theo x, y (z=z(x,y)); x theo y, z (x=x(y,z)) hoặc y theo x, z (y=y(x,z)) Sau đó, tính ds: ds 1 zx 2 zy 2dxdy ds 1 xy 2 xz 2dydz ds 1 yz2 y x 2dzdx
  5. §1. Tích phân mặt loại 1 Cách tính: Tìm h/c của mặt S xuống mp Oxy, tính z=z(x,y) từ pt mặt I f x, y , z x, y 1 zx 2 zy 2dxdy Dxy Tìm h/c của mặt S xuống mp Oyz, tính x=(y,z) từ pt mặt 2 2 I f x y, z , y, z 1 xy xz dydz Dyz Tìm h/c của mặt S xuống mp Ozx, tính y=y(z,x) từ pt mặt I f x, y z, x , z 1 y x2 y z 2dzdx Dzx
  6. §1. Tích phân mặt loại 1 Ví dụ 1: Tính tích phân I1 trên mặt S là phần mặt nón z2=x2+y2 với 0≤z≤1 của hàm f(x,y,z)=x+y+z Hình chiếu của S xuống mp z=0 là Dxy : 0≤x2+y2≤1 x zx x2 y2 Pt mặt S (z dương) z x2 y2 → y zy 2 2 x y Suy ra: ds 2dxdy Vậy: I1 (x y z )ds (x y x2 y 2 ) 2dxdy S Dxy
  7. §1. Tích phân mặt loại 1 Đổi tp sang tọa độ cực: 2 1 I1 d cos sin r rdr 0 0 2 I1 3
  8. §1. Tích phân mặt loại 1 Ví dụ 2: Tính tích phân I2 của hàm f(x,y,z)=x+2y+3z trên mặt S là mặt xung quanh tứ diện x=0, y=0, z=0, x+2y+3z=6 C Mặt S gồm 4 mặt nên tp I2 cũng được chia làm 4 tp Vì mặt x=0 nên x’y=x’z=0 → ds=dydz, chiếu xuống mp x=0 ta được Dyz: ΔOBC B O I21 fds (2y 3z )dydz A ( x 0) OBC
  9. §1. Tích phân mặt loại 1 C Tương tự, tp trên 2 mặt tọa độ còn lại I22 fds (x 3z )dxdz ( y 0) OAC B O I23 fds (x 2y )dxdy ( z 0) OAB A Cuối cùng, trên mặt x+2y+3z=6 (mp(ABC)). Ta chiếu xuống mp z=0 thì Dxy là ΔOAB : 2 1 4 1 14 z 2 y x ds 1 dxdy dxdy 3 3 9 9 3
  10. §1. Tích phân mặt loại 1 14 Do đó: I24 fds 6. dxdy ( x 2 y 3 z 6) OAB 3 I2 I21 I22 I23 I24
  11. §1. Tích phân mặt loại 1 Ví dụ 3: Tính tp I3 của hàm f(x,y,z)=x2+y2+2z trên mặt S là phần hình trụ x2+y2=1 nằm trong hình cầu x2+y2+z2=2 Chú ý: Ta không thể chiếu S xuống mp z=0 được vì cả mặt trụ x2+y2=1 có hình chiếu xuống mp z=0 chỉ là 1 đường tròn x2+y2=1 Chiếu S xuống mp x=0 hay y=0 đều như nhau. Ta sẽ tìm hình chiếu của S xuống mp x=0 bằng cách khử x từ 2 pt 2 mặt và được Dyz: y2≤1, z2 ≤ 1 Khi đó, ta viết x theo y, z từ pt mặt S: x 1 y2
  12. §1. Tích phân mặt loại 1 Do pt cả 2 mặt đều chẵn đối với x nên mặt S nhận x=0 là mặt đối xứng. Hơn nữa, hàm dưới dấu tp cũng là hàm chẵn với x nên ta sẽ tính tp trên phần mặt S với x>0 rồi nhân đôi. y xy x 1 y2 1 y2 xz 0 1 ds dydz 1 y2 Vậy: 1 1 1 2z I3 2 dy dz 1 1 1 y2
  13. §1. Tích phân mặt loại 1 Ví dụ 4: Tính diện tích S4 của phần mặt paraboloid y=1-x2-z2 nằm phía trên mp y=0 Với y≥0, ta được hình chiếu xuống mp y=0 của paraboloid là Dxz : x2+z2≤1 Pt mặt S: 2 2 yx 2x y 1 x y yz 2z Vậy: S4 ds 1 4x 2 4z 2dxdz S4 Dxz 2 1 2 S4 d r 1 4r dr 125 1 0 0 6
  14. §2. Tích phân mặt loại 2 – Pháp vecto của mặt Vecto Gradient: Cho mặt cong S có pt là F(x,y,z)=0. Ta gọi vecto gradient của hàm F tại điểm M là vecto F (M ) Fx (M ), Fy (M ), Fz (M ) Mặt cong S được gọi là mặt trơn nếu các đạo hàm riêng F’x, F’y, F’z liên tục và không đồng thời bằng 0 trên S tức là vecto gradient của F liên tục và khác 0 Khi mặt S được cho bởi pt z=z(x,y) thì ta đặt F(x,y,z) = z-z(x,y) = 0 ( x, y ) D Lúc đó, mặt S trơn nếu các đạo hàm riêng z’x, z’y liên tục trên D
  15. §2. Tích phân mặt loại 2 – Pháp vecto của mặt Mặt định hướng : Mặt S được gọi là mặt định hướng hay là mặt 2 phía nếu tại điểm M bất kỳ của S xác định được vecto pháp đơn vị n(M ) sao cho hàm vecto n(M ) liên tục trên S Khi ta chọn 1 hàm vecto xác định, ta nói ta đã định hướng xong mặt S, vecto đã chọn là vecto pháp dương. Phía tương ứng của mặt S là phía mà khi ta đứng trên phía ấy, vecto pháp ứng từ chân lên đầu Mặt S trơn cho bởi pt F(x,y,z) là mặt định hướng được với pháp vecto đơn vị là F n | F|
  16. §2. Tích phân mặt loại 2 – Pháp vecto của mặt Pháp vecto đơn vị trên còn có thể viết bằng cách khác: n (cos ,cos ,cos ) Trong đó α, β, γ lần lượt là góc tạo bởi nửa dương 3 trục Ox, Oy, Oz với pháp vecto Để xác định pháp vecto đơn vị của mặt S với pt là F(x,y,z)=0, ta sẽ làm theo 3 bước sau: 1. Tính F (Fx , Fy , Fz ) 2. Xác định 1 trong 3 góc α, β, γ xem góc là nhọn hay là tù để suy ra 1 trong 3 tọa độ của pháp vecto là dương hay âm và so sánh với dấu tọạ độ tương ứng của F (Fx , Fy , Fz ) 3. Xác định dấu của pháp vecto đơn vị
  17. §2. Tích phân mặt loại 2 – Pháp vecto của mặt Ví dụ 1: Tính pháp vecto của mặt S với S là phía trên mặt phẳng x+2y+4z=8 Pt mặt S: F(x,y,z) = x+2y+4z-8(=0) 2 → F (1,2,4) n Hướng của mặt S là phía trên tức là vecto pháp cùng hướng với nửa dương trục Oz, nên: 4 g (Oz, n ) → cosγ>0 2 8 Vậy dấu cần lấy là “+’ để tọa 1 n (1,2,4) độ thứ 3 là dương. 21
  18. §2. Tích phân mặt loại 2 – Pháp vecto của mặt Ví dụ 2: Cho S là phía trên của nửa mặt cầu x2+y2+z2=R2, z≥0. Tính pháp vecto của S Pt mặt S là F(x,y,z)=x2+y2+z2-R2 (=0) F (2x,2y ,2z ) Cho S là phía trên tức là pháp vecto cùng hướng với nửa dương trục Oz, suy ra góc γ≤π/2 nên cosγ>0 Vì mặt S chỉ tính với z dương nên ta chọn dấu “+” để tọa độ ( x, y , z ) n thứ 3 của pháp vecto dương R
  19. §2. Tích phân mặt loại 2 – Pháp vecto của mặt ( x, y , z ) n R Khi đó, 2 góc α, β là nhọn hay tù sẽ phụ thuộc vào x, y là dương, hay âm Với x≥0: thành phần thứ nhất dương tức là cosα≥0 → α≤π/2 và x≤0: cosα≤0 → α≥π/2 Với y≥0: cosβ≥0 → β≤π/2 và y≤0: cosβ≤0 → β≥π/2
  20. §2. Tích phân mặt loại 2 – Pháp vecto của mặt Ví dụ 3: Tính pháp vecto của mặt S là phía ngoài mặt trụ x2+y2=1 Pt mặt S: F(x,y,z)=x2+y2-1(=0) F ( x, y ,0) Rõ ràng, S là mặt trụ song song với trục Oz nên pháp vecto vuông góc với trục Oz tức là γ=π/2 → cosγ=0 Pháp vecto hướng ra phía ngoài, ta sẽ so với nửa dương n ( x, y ,0) trục Oy, thì β≤π/2 → cosβ≥0 Ta chọn dấu sao cho khi y>0 thì thành phần thứ 2 của vecto cũng dương tức là chọn dấu “+”
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2