intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng về Kinh tế lượng: Chương 2

Chia sẻ: Cảnh Đặng Xuân | Ngày: | Loại File: PDF | Số trang:15

131
lượt xem
8
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chương 2 Mô hình hồi quy bội, trong chương học này trình bày các nội dung về: Sự cần thiết của mô hình hồi quy bội; Mô hình hồi quy bội và phương pháp ước lượng OLS; Một số dạng của mô hình hồi quy; Tính vững của các ước lượng OLS.

Chủ đề:
Lưu

Nội dung Text: Bài giảng về Kinh tế lượng: Chương 2

  1. 9/5/2013 CHƢƠNG 2 MÔ HÌNH HỒI QUY BỘI 1 NỘI DUNG CHƢƠNG 2 I. Sự cần thiết của mô hình hồi quy bội II. Mô hình hồi quy bội và phương pháp ước lượng OLS III. Một số dạng của mô hình hồi quy IV. Tính vững của các ước lượng OLS 2 1
  2. 9/5/2013 I. SỰ CẦN THIẾT CỦA MÔ HÌNH HỒI QUY BỘI (*) 1. Mô hình hai biến – vấn đề về kỳ vọng sai số khác 0  Nếu sai số ngẫu nhiên trong mô hình mà có tương quan với biến độc lập (cov(X,u) ≠ 0) thì giả thiết 2 sẽ bị vi phạm.  Biến độc lập nội sinh: là biến độc lập có tương quan với sai số ngẫu nhiên trong mô hình. => Khi mô hình có biến độc lập nội sinh => giả thiết 2 bị vi phạm => các ước lượng OLS sẽ bị chệch.  Trong mô hình hồi quy đơn, giả thiết 2 thường bị vi phạm. 3 I. SỰ CẦN THIẾT CỦA MÔ HÌNH HỒI QUY BỘI (*) 2. Một số ƣu việt khác của mô hình hồi quy bội Mô hình hồi quy bội thường có chất lượng dự báo tốt hơn.  Mô hình hồi quy bội cung cấp các dự báo hữu ích hơn.  Mô hình hồi quy bội cho phép sử dụng dạng hàm phong phú hơn.  Mô hình hồi quy bội cho phép thực hiện các phân tích phong phú hơn. 4 2
  3. 9/5/2013 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS 1. Mô hình và các giả thiết  Mô hình hồi quy tuyến tính k biến: Y  1  2 X 2  ..  k X k  u (2.1)  Y là biến phụ thuộc  Các Xj (j = 2,3,.., k) là các biến độc lập  u là sai số ngẫu nhiên, đại diện cho các yếu tố ngoài các biến Xj (j = 2 ÷ k), có tác động đến Y nhưng không đưa vào mô hình. 5 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS  Các giả thiết của mô hình:  Giả thiết 1: Mô hình được ước lượng trên cơ sở mẫu ngẫu nhiên kích thước n: {(Xi,Yi), i = 1,2,..,n}  Giả thiết 2:Kỳ vọng của sai số ngẫu nhiên tại mỗi giá trị (X2i,.., Xki) bằng 0: E (u | X 2 i ,.., X ki )  0  Giả thiết 3: Phương sai của sai số ngẫu nhiên tại các giá trị X2i,.., Xki đều bằng nhau 6 var(u |X 2i ,.., X ki )   2 3
  4. 9/5/2013 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS  Giả thiết 4: Giữa các biến độc lập Xj (j = 2 ÷ k) không có mối quan hệ đa cộng tuyến hoàn hảo, (nghĩa là không tồn tại các hằng số 2 ,.., k không đồng thời bằng 0 sao cho λ2X2 + … + λkXk = 0) 7 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS Ý nghĩa của các hệ số hồi quy:  Với giả thiết 2, => Hàm hồi quy tổng thể của mô hình (2.1) như sau: E (Y |X 2 ,.., X k )  1  2 X 2  ..  k X k (2.2)  Hệ số chặn β1: chính là giá trị trung bình của biến phụ thuộc khi tất cả các biến độc lập trong mô hình đồng thời bằng 0 8 4
  5. 9/5/2013 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS  Các hệ số góc βj (j = 2 ÷ k): Có E (Y | X 2 ,.., X k ) , (j = 2 ÷ k)  j X j => hệ số góc βj (j = 2 ÷ k) thể hiện tác động riêng phần của biến Xj lên giá trị trung bình của biến phụ thuộc, khi các yếu tố Xs (s ≠ j) là không đổi.  Cụ thể: Khi Xj tăng (giảm) 1 đơn vị, các yếu tố khác không đổi, thì giá trị trung bình của biến phụ thuộc tăng (giảm) βj đơn vị.  Dấu của hệ số góc βj thể hiện chiều của mối quan hệ 9  Các hệ số góc còn được gọi là hệ số hồi quy riêng. II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS 2. Phƣơng pháp ƣớc lƣợng bình phƣơng nhỏ nhất (OLS)  Phƣơng pháp OLS cho mô hình hồi quy bội • Xét mô hình k biến: Yi  1   2 X 2i  ...   k X ki  ui (2.1) • Giả sử có một mẫu quan sát với các giá trị thực tế là (Yi ; X2i ; … ; Xki) (i = 1, 2, ..., n) => Hàm hồi quy mẫu của (2.1): ˆ ˆ ˆ ˆ Yi  1  2 X 2i  ..   k X ki (2.3) 10 Và: ˆ ei  Yi  Yi 5
  6. 9/5/2013 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS ˆ => Phương pháp OLS: xác định các giá trị  j ( j  1, k ) sao cho tổng bình phương các phần dư là bé nhất. ˆ => Bài toán cực trị: Tìm  j ( j  1, k ) sao cho:  e   (Y  ˆ  ˆ X  ..  ˆ X ) 2 i i 1 2 2 k k 2  Min  { (Y     X  ..   ,.., i 1 2 2 k X k )2 } 1 k 11 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS Kết quả ước lượng khi k = 3: ˆ ( yi x2i )( x3i )  ( yi x3i )( x2i x3i ) 2 2  ( x2i )( x3i )  ( x2i x3i ) 2 2 2 ˆ ( yi x3i )( x2i )  ( yi x2i )( x2i x3i ) 2 3  ( x2i )( x3i )  ( x2i x3i ) 2 2 2 ˆ ˆ ˆ 1  Y   2 X 2   3 X 3 yi  Yi  Y ; x2i  X 2i  X 2 ; x3i  X 3i  X 3 12 6
  7. 9/5/2013 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS  Hệ số xác định đã hiệu chỉnh:  Việc đưa thêm một biến số bất kỳ vào mô hình nói chung sẽ làm gia tăng R2 , không kể nó có giúp giải thích thêm cho biến phụ thuộc hay không.  => R2 chưa phải là một thước đo tốt khi muốn so sánh các mô hình với số biến khác nhau.  => Hệ số xác định hiệu chỉnh, ký hiệu R 2 (n  1) và được định nghĩa như sau: R 2  1  (1  R 2 ) nk  Giá trị R 2 thường được sử dụng thay R2 thông thường khi so 15 sánh các mô hình hồi quy có số lượng biến số khác nhau. II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS 4. Tính tốt nhất của ƣớc lƣợng OLS – Định lý Gauss- Markov  Định lý Gauss – Markov: Khi các giả thiết 1 → 4 thỏa mãn thì các ước lượng thu được từ phương pháp OLS là các ước lượng tuyến tính, không chệch và có phương sai nhỏ nhất trong lớp các ước lượng tuyến tính không chệch (ước lượng BLUE – best linear unbiased estimator) 16 8
  8. 9/5/2013 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS 5. Mô hình hồi quy hai biến và mô hình hồi quy bội (*)  Xét mô hình: Y = β1 + β2X2 + u (2.5) và Y = α1 + α2X2 + α3Z + v (2.6)  Định lý 2.2: Hệ số ước lượng của biến X2 trong mô hình (2.5) và (2.6) là như nhau nếu: 1) Hệ số ước lượng của Z trong (2.6) là bằng 0 Hoặc: 21 2) Hệ số tương quan mẫu giữa X2 và Z bằng 0 II. MÔ HÌNH HỒI QUY BỘI VÀ PHƢƠNG PHÁP ƢỚC LƢỢNG OLS Ý nghĩa ứng dụng định lý 2.2:  Nếu biến Z là không quan sát được nhưng có lý do để cho rằng nó không tương quan với biến X trong mô hình thì việc thiếu biến Z không gây ảnh hưởng đáng kể đến kết quả ước lượng.  Nếu các biến Z1, Z2, …, Zm cùng không tương quan với biến X thì việc đưa thêm các biến này vào là không làm thay đổi hệ số ước lượng của biến X. 22 11
  9. 9/5/2013 III. MỘT SỐ DẠNG CỦA MÔ HÌNH HỒI QUY 2. Mô hình dạng bán loga  Dạng 1: ln(Y )  1  2 X 2  u (2.8)  Hệ số β2: Khi X2 tăng (giảm) 1 đơn vị thì Y trung bình tăng (giảm) β2 %  Ví dụ: quan hệ giữa thu nhập (TN - triệu đồng) và số năm kinh nghiệm (KN - năm): ln(TN) = 1.6 + 5.8*KN + e 25 III. MỘT SỐ DẠNG CỦA MÔ HÌNH HỒI QUY  Dạng 2: Y  1  2 ln( X 2 )  u (2.9)  Hệ số β2 : Khi X2 tăng (giảm) 1% thì Y trung bình tăng (giảm) β2 đơn vị.  Ví dụ: quan hệ giữa số giờ mà người lao động muốn làm (H) và mức trả cho một giờ lao động (TL) H = 7 + 0.6ln(TL) + e 26 13
  10. 9/5/2013 IV. TÍNH VỮNG CỦA ƢỚC LƢỢNG OLS  Định lý 2.3: Khi các giả thiết 1 → 4 thỏa mãn thì các ước lượng OLS không chỉ là các ước lượng BLUE, mà còn là ước lượng vững, nghĩa là: Với mọi   0 tùy ý thì: ˆ lim P(|  ( n )   j |  )  0 (2.12) j n  ˆ Trong đó  ( n ) là ước lượng của  j với kích thước ˆ j mẫu n 29 15
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2