intTypePromotion=3
Array
(
    [0] => Array
        (
            [banner_id] => 140
            [banner_name] => KM1 - nhân đôi thời gian
            [banner_picture] => 964_1568020473.jpg
            [banner_picture2] => 839_1568020473.jpg
            [banner_picture3] => 620_1568020473.jpg
            [banner_picture4] => 994_1568779877.jpg
            [banner_picture5] => 
            [banner_type] => 8
            [banner_link] => https://tailieu.vn/nang-cap-tai-khoan-vip.html
            [banner_status] => 1
            [banner_priority] => 0
            [banner_lastmodify] => 2019-09-18 11:11:47
            [banner_startdate] => 2019-09-11 00:00:00
            [banner_enddate] => 2019-09-11 23:59:59
            [banner_isauto_active] => 0
            [banner_timeautoactive] => 
            [user_username] => sonpham
        )

)

SKKN: Một số biện pháp nâng cao chất lượng dạy học giải toán điển hình cho học sinh lớp 4

Chia sẻ: Hoàng Thị Thanh Hòa | Ngày: | Loại File: PDF | Số trang:71

0
709
lượt xem
255
download

SKKN: Một số biện pháp nâng cao chất lượng dạy học giải toán điển hình cho học sinh lớp 4

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục đích nghiên cứu đề tài: Một số biện pháp nâng cao chất lượng dạy học giải toán điển hình cho học sinh lớp 4 giúp các thầy cô có thể phân loại các dạng toán điển hình, tìm hiểu thực trạng dạy học giải toán điển hình, từ đó đề xuất một số ý kiến nâng cao chất lượng dạy học toán điển hình. Để biết rõ hơn mời tài thảo bài viết.

Chủ đề:
Lưu

Nội dung Text: SKKN: Một số biện pháp nâng cao chất lượng dạy học giải toán điển hình cho học sinh lớp 4

  1.  Sáng kiến kinh nghiệm Một số biện pháp nâng cao chất lượng dạy học giải toán điển hình cho học sinh lớp 4 1
  2. MỤC LỤC Trang PHẦN A: MỞ ĐẦU 2 I. Lí do chọn đề tài 2 II. Mục đích nghiên cứu 3 III. Nhiệm vụ nghiên cứu 3 IV. Phạm vi và đối tượng nghiên cứu 3 V. Phương pháp nghiên cứu 3 PHẦN B: NỘI DUNG 4 Chương I 4 TỔNG QUAN VỀ DẠY HỌC GIẢI TOÁN Ở LỚP 4 NÓI CHUNG VÀ DẠY HỌC GIẢI TOÁN ĐIỂN HÌNH NÓI RIÊNG I. Cơ sở lí luận 4 II. Điều tra thực trạng về vấn đề dạy và học giải toán điển hình lớp 8 4 ở trường tiểu học Như Quỳnh B Chương II 15 CHUẨN BỊ CHO VIỆC DẠY HỌC GIẢI TOÁN ĐIỂN HÌNH CHO HỌC SINH LỚP 4 I. Những điều cần biết về toán điển hình 15 II. Đường lối chung để dạy học sinh giải một bài toán điển hình 19 Chương III 20 MỘT SỐ BIỆN PHÁP RÈN KĨ NĂNG GIẢI TOÁN ĐIỂN HÌNH CHO HỌC SINH LỚP 4 I. Trang bị kiến thức về ý nghĩa của các phép tính, rèn kỹ năng tính 20 toán II. Rèn kĩ năng nhận dạng các dạng toán 21 III. Rèn kĩ năng trình bày bài giải 23 IV. Rèn kĩ năng giải bài toán mới 30 V. Rèn kĩ năng đặt đề toán 38 VI. Dạy nâng cao dành cho học sinh khá giỏi 40 Chương IV 48 THỰC NGHIỆM SƯ PHẠM I. Mục đích thực nghiệm 48 II. Nội dung thực nghiệm 48 III. Kết quả thực nghiệm 58 PHẦN C: KẾT LUẬN 61 Tài liệu tham khảo 63 2
  3. PHẦN A: MỞ ĐẦU I. LÝ DO CHỌN ĐỀ TÀI Trong công cuộc xây dựng và bảo vệ tổ quốc hiện nay, giáo dục và đào tạo luôn được Đảng và Nhà nước ta coi là quốc sách hàng đầu. Đất nước ta có theo kịp được sự phát triển của khoa học kĩ thuật cũng như sự phát triển mạnh mẽ của nền kinh tế tri thức hiện nay hay không đòi hỏi ngành giáo dục phải đào tạo ra những con người đáp ứng được nhu cầu của xã hội. Ngày nay, dù làm việc ở bất kì lĩnh vực nào: dù làm công tác nghiên cứu khoa học, là cán bộ quản lí, người kinh doanh hay là người lao động…thì đều cần có tri thức. Trước sự đòi hỏi của thực tiễn cũng như trong các yếu tố của sự phát triển nhanh, bền vững của đất nước thì nguồn lực con người là yếu tố cơ bản nhất. Đầu tư vào con người cũng chính là đầu tư theo chiều sâu. Chính vì vậy, nhiệm vụ đào tạo con người càng trở nên cần thiết hơn bao giờ hết. Điều đó cũng cho thấy tầm quan trọng của bậc Tiểu học- bậc học đặt nền móng cho quá trình hình thành và phát triển nhân cách học sinh. Vì vậy mục tiêu của giáo dục Tiểu học đặc biệt nhấn mạnh đến việc hình thành và phát triển cho học sinh những tri thức, kĩ năng cần thiết cho cuộc sống. Đây là những tri thức, kĩ năng vừa đáp ứng nhu cầu học tập của người lao động trong thời đại khoa học công nghệ vừa đáp ứng nhu cầu thiết thực cho cuộc sống. Vì vậy, môn Toán cùng các môn học khác đã góp phần thực hiện mục tiêu giáo dục Tiểu học. Dạy học Toán ở bậc Tiểu học nhằm giúp học sinh: - Có những kiến thức cơ bản ban đầu về số học: các số tự nhiên, phân số, số thập phân; các đại lượng thông dụng; một số yếu tố hình học và thống kê đơn giản. - Hình thành các kĩ năng tính, đo lường, giải bài toán có nhiều ứng dụng thiết thực trong đời sống. - Góp phần bước đầu phát triển năng lực tư duy, khả năng suy luận hợp lí và diễn đạt đúng (nói và viết), cách phát hiện và giải quyết các vấn đề đơn giản, gần gũi trong cuộc sống; kích thích trí tưởng tượng; gây hứng thú học tập toán; góp phần hình thành bước đầu phương pháp tự học và làm việc có kế hoạch, khoa học, chủ động, linh hoạt, sáng tạo. Chương trình môn Toán ở Tiểu học gồm 5 mạch kiến thức: số học, đo lường, hình học thống kê, giải toán. Trong đó, số học là nội dung trọng tâm, các nội dung khácđược tích hợp với nội dung số học. Mạch kiến thức giải toán được sắp xếp xen kẽ với các mạch kiến thức cơ bản khác của môn Toán. Giải toán ở bậc Tiểu học, học sinh vừa thực hiện nhiệm vụ củng cố các bài toán gắn liền với tình huống thực tiễn. Học sinh giải được các bài toán có lời văn là một yêu cầu cơ bản của dạy học toán. Giải toán có lời văn ở Tiểu học được chia thành: bài toán đơn và bài toán hợp. Trong bài toán hợp có các bài toán điển hình (bài toán có phương pháp giải thống nhất) mà nhiều bài toán điển hình được đưa vào giảng dạy ở lớp 4. Tuy đã có sự chuẩn bị ở các lớp dưới theo nguyên tắc đồng tâm song khi làm bài, học 3
  4. sinh thường mắc sai lầm do không nắm được bản chất của dạng bài, không biết phân loại các dạng bài và không có thủ thuật tương ứng khi giải từng dạng bài. Vậy làm thế nào để nâng cao chất lượng dạy học giải toán điển hình ở lớp 4? Xuất phát từ những lí do trên, tôi đã nghiên cưú đề tài: “Một số biện pháp nâng cao chất lượng dạy học giải toán điển hình cho học sinh lớp 4” ” với mục đích là để nâng cao trình độ chuyên môn, nghiệp vụ sư phạm. Mặt khác, góp một phần nhỏ bé của mình vào việc dạy học giải toán nói riêng và dạy học môn Toán nói chung. II- MỤC ĐÍCH NGHIÊN CỨU - Phân loại các dạng toán điển hình. - Tìm hiểu thực trạng dạy học giải toán điển hình.Từ đó đề xuất một số ý kiến nâng cao chất lượng dạy học toán điển hình. III- NHIỆM VỤ NGHIÊN CỨU - Tìm hiểu nội dung chương trình môn Toán lớp 4. - Tìm hiểu mạch kiến thức giải toán có lời văn ở lớp 4. - Điều tra thực trạng dạy và học giải toán điển hình ở lớp 4. - Đề ra biện pháp để nâng cao chất lượng dạy học giải toán điển hình nói riêng và dạy học môn Toán nói chung. IV- PHẠM VI VÀ ĐỐI TƯỢNG NGHIÊN CỨU - Toán điển hình lớp 4. - Đối tượng nghiên cứu: học sinh lớp 4 trường Tiểu học Như Quỳnh B – Văn Lâm – Hưng Yên. V- PHƯƠNG PHÁP NGHIÊN CỨU - Phương pháp nghiên cứu lí luận: đọc các tài liệu, giáo trình có liên quan đến vấn đề giải toán điển hình. - Phương pháp điều tra: dự giờ, khảo sát, tiếp xúc, trao đổi với đồng nghiệp, với học sinh. - Phương pháp thực nghiệm: tổ chức dạy học giải toán điển hình ở lớp 4. 4
  5. PHẦN B: NỘI DUNG CHƯƠNG I TỔNG QUAN VỀ DẠY HỌC GIẢI TOÁN Ở LỚP 4 NÓI CHUNG VÀ DẠY HỌC GIẢI TOÁN ĐIỂN HÌNH NÓI RIÊNG I- CƠ SỞ LÍ LUẬN 1. Cơ sở toán học Giải toán mang tính chất tổng hợp, nó liên quan đến cả 4 chủ đề: số học, hình học, đo đại lượng, thống kê. Khi giải một bài toán, học sinh phải chuyển từ bài toán có lời văn với các thuật ngữ toán học sang phép tính có danh số kèm theo. Giải toán là chiếc cầu nối giữa toán học trừu tượng với thực tế đời sống, xây dựng mối liên tưởng cần thiết giữa nội dung thực tế và bản chất toán học. Khi học giải toán, yêu cầu tối thiểu mà học sinh lớp 4 phải đạt được: Đó là các kiến thức, kĩ năng cơ bản của quá trình học toán ở lớp 1, 2, 3. Học sinh giải các bài toán bằng một phép tính liên quan đến ý nghĩa của các phép tính cộng, trừ, nhân, chia; giải các bài toán chủ yếu có không quá ba bước tính. Trong chương trình lớp 4, nội dung giải toán chiếm một số lượng lớn. Trong đó việc giải các bài toán điển hình là một trong những khó khăn lớn trong quá trình dạy của giáo viên và quá trình học của học sinh. Học sinh phải hiểu được các thuật ngữ toán học để đưa ra cách giải cho phù hợp với từng dạng bài. Ví dụ: Tổng hai số chẵn liên tiếp là 74. Tìm hai số đó. Với bài toán này, học sinh phải hiểu được các thuật ngữ “hai số chẵn liên tiếp”, “tổng” (“ hai số chẵn liên tiếp” cho biết hiệu hai số là 2 vì hai số chẵn liên tiếp hơn (kém) nhau 2 đơn vị; “tổng”- hai số cộng lại bằng 74). Xác định được yêu cầu của bài toán: tìm hai số đó. Từ đó xác định được dạng bài “Tìm hai số khi biết tổng và tie số của hai số đó”. Học sinh áp dụng những kiến thức đã được học mang tính quy tắc để giải bài toán. Tuy nhiên, giải toán điển hình cũng nằm trong nội dung giải toán. Muốn có cách giải đúng, cách giải hay, học sinh phải thực hiện theo 4 bước của quy trình giải toán có lời văn: - Tìm hiểu nội dung bài toán. - Tìm cách giải bài toán. - Thực hiện cách giải bài toán. - Kiểm tra cách giải bài toán. 2. Cơ sở tâm lí học Khi học sinh được học Toán, các thao tác tư duy được phát triển, góp phần xây dựng một số phẩm chất của người lao động như tính cẩn thận, chính xác, kiên trì, óc sáng tạo. So với học sinh lớp 1, 2, 3, tri giác của học sinh lớp 4 ở mức độ cao hơn. Song do đặc điểm tâm lí lứa tuổi, học sinh dễ lẫn các đối tượng na ná giống 5
  6. nhau, tri giác còn gắn với hành động thực tiễn. Mặt khác, kinh nghiệm sống của các emcòn ít ỏi, khả năng phân phối chú ý còn hạn chế. Những cái mới, học sinh dễ tiếp thu, những học sinh có tố chất tiếp thu nhanh song các em lại hay quên. Có một số ít học sinh biết cách làm bài để ra đáp số cuối cùng nhưng khó diễn đạt ý cần nói hay cần viết. Vì vậy khi dạy học sinh cần tính đến các yếu tố tâm lí để đạt kết quả cao. 3. Cơ sở của phương pháp dạy học Toán Với đặc điểm tâm lí của học sinh lớp 4 như vậy, để nâng cao chất lượng và hiệu quả của giờ dạy- học Toán, người giáo viên phải sử dụng các phương pháp dạy học sao cho học sinh dễ hiểu, dễ nhớ, phát huy được tính chủ động, sáng tạo của học sinh, tạo cho học sinh một nền nếp, phong cách học tập tốt. Đặc biệt, để giải một bài toán cò lời văn nói chung, bài toán điển hình ở lớp 4 nói riêng, cần sử dụng phương pháp phân tích thường xuyên. Phân tích có 2 dạng: - Phân tích để sàng lọc. - Phân tích thông qua tổng hợp. Hình thức thứ nhất được sử dụng khi tìm hiểu nội dung bài toán. Hình thức thứ hai khó hơn và là hoạt động chủ yếu khi giải toán. Trong phạm vi giải toán ở Tiểu học, khi dùng phương pháp phân tích, ta xuất phát từ câu hỏi chính của bài toán mà tách ra những phần điều kiện của bài toán, cần thiết cho việc trả lời câu hỏi chính. Khi dùng phương pháp tổng hợp, ta gộp dần những phần riêng biệt của điều kiện bài toán, để cuối cùng đi tới việc trả lời câu hỏi chính. Ví dụ: Tổng của hai số chẵn là 56, biết giữa chúng có 6 số lẻ. Tìm hai số chẵn đó. - Phương pháp phân tích (xuất phát từ câu hỏi của bài toán đến dữ kiện). + Bài toán yêu cầu gì? (Tìm hai số chẵn đã cho) + Muốn tìm hai số đó cần biết gì? (Muốn tìm hai số đó cần biết tổng và hiệu của chúng). + Tổng của hai số đã cho biết chưa? (chưa biết). Làm thế nào để tìm được hiệu của hai số? (giữa hai số có 6 số lẻ nên hiệu của hai số là 6 x 2 = 12) + Bài toán thuộc dạng toán nào? + Hãy sử dụng cách giải dạng toán này để giải bài toán trên. - Phương pháp tổng hợp (xuất phát từ các dữ kiện đến câu hỏi của bài toán). + Khoảng cách giữa hai số chẵn liên tiếp là bao nhiêu? + Giữa hai số chẵn có 6 số lẻ thì hiệu của chúng là bao nhiêu? + Bài toán thuộc dạng toán nào? + Hãy sử dụng cách giải dạng toán này để giải bài toán trên Ngoài ra, khi dạy học giải toán điển hình ở lớp 4, giáo viên phải cho học sinh nắm vững từng loại toán điển hình và các bước giải của từng loại toán đó. 4. Nội dung các dạng toán điển hình ở lớp 4 6
  7. Toán điển hình là những dạng toán thường được giải theo một quy trình như một thuật toán. Trong chương trình sách giáo khoa Toán 4 có các loại toán điển hình sau đây: a. Loại toán điển hình nằm xen kẽ với 4 phép tính với các số tự nhiên (được học ở học kì I- lớp 4) - Tìm số trung bình cộng. - Tìm hai số khi biết tổng và hiệu của hai số đó. b. Loại toán điển hình nằm trong phần Phân số - Tỉ số - Các bài toán về tỉ số (được học ở học kì II- lớp 4). - Tìm hai số khi biết tổng và tỉ số của hai số đó. - Tìm hai số khi biết hiệu và tỉ số của hai số đó. * Trong đó dạng toán “ Tìm số trung bình cộng” được dạy trong hai tiết : + Tiết 1: Tìm số trung bình cộng (dạy học sinh có hiểu biết ban đầu về số trung bình cộng của nhiều số; học sinh biết cách tìm số trung bình cộng của nhiều số). + Tiết 2: Luyện tập (học sinh được củng cố hiểu biết ban đầu về số trung bình cộng và cách tìm số trung bình cộng; học sinh được giải các bài toán về tìm số trung bình cộng). * Dạng toán “Tìm hai số khi biết tổng và hiệu của hai số đó” cũng được dạy trong hai tiết: + Tiết 1: Tìm hai số khi biết tổng và hiệu của hai số đó (học sinh biết cách tìm hai số khi biết tổng và hiệu của hai số đó; giải bài toán liên quan đến tìm hai số khi biết tổng và hiệu của hai số đó). + Tiết 2 : Luyện tập (học sinh được củng cố về giải bài toán tìm hai số khi biết tổng và hiệu của hai số đó). * Dạng toán “Tìm hai số khi biết tổng và tỉ số của hai số đó” được dạy trong 4 tiết : + Tiết 1: Tìm hai số khi biết tổng và tỉ số của hai số đó (học sinh biết cách giải bài toán “ Tìm hai số khi biết tổng và tỉ số của hai số đó”). + Tiết 2: Luyện tập + Tiết 3: Luyện tập + Tiết 4: Luyện tập chung Cả 3 tiết (2, 3, 4), học sinh được rèn luyện kĩ năng giải bài toán “Tìm hai số khi biết tổng và tỉ số của hai số đó”. * Dạng toán “Tìm hai số khi biết hiệu và tỉ số của hai số đó”cũng được dạy trong 4 tiết: + Tiết 1: Tìm hai số khi biết hiệu và tỉ số của hai số đó. + Tiết 2: Luyện tập + Tiết 3: Luyện tập + Tiết 4: Luyện tập chung. Trong đó tiết 1, học sinh biết cách giải bài toán “ Tìm hai số khi biết hiệu và tỉ số của hai số đó”, các tiết còn lại học sinh được rèn kĩ năng giải bài toán “ Tìm hai số khi biết hiệu và tỉ số của hai số đó”. 7
  8. Ngoài ra, phần ôn tập cuối năm, sách giáo khoa có các tiết ôn tập về: Tìm số trung bình cộng (1 tiết), Tìm hai số khi biết tổng và hiệu của hai số đó(1tiết), Tìm hai số khi biết tổng hoặc hiệu và tỉ số của hai số đó(1 tiết). 5. Chuẩn kiến thức, kĩ năng cần đạt được khi học sinh học giải toán điển hình lớp 4 Chuẩn kiến thức và kĩ năng là các yêu cầu cơ bản, tối thiểu về kiến thức, kĩ năng của môn học mà học sinh cần phải và có thể đạt được sau từng giai đoạn học tập. Chuẩn kiến thức và kĩ năng của môn Toán ở lớp 4 là cơ sở để biên soạn sách giáo khoa; dạy học, đánh giá kết quả giáo dục trong môn Toán ở lớp 4. Khi dạy học giải toán nói chung và dạy học giải toán điển hình lớp 4 nói riêng cần căn cứ vào chuẩn kiến thức và kĩ năng của môn Toán lớp 4. Chuẩn kiến thức và kĩ năng của môn toán lớp 4 là sự thể hiện cụ thể của mục tiêu dạy học toán 4. Về giải bài toán điển hình, học sinh biết giải và trình bày bài giải các bài toán có đến ba bước tính: - Tìm số trung bình cộng của nhiều số. - Tìm hai số khi biết tổng và hiệu của hai số đó. - Tìm hai số khi biết tổng và tỉ số của hai số đó. - Tìm hai số khi biết hiệu và tỉ số của hai số đó. Ví dụ: Khi gặp bài toán: “Tìm hai số, biết tổng của chúng bằng 198 và tỉ số 3 của hai số đó là ”, học sinh biết giải và trình bày bài giải như sau : 8 Ta có sơ đồ: Theo sơ đồ, tổng số phần bằng nhau là: 3 + 8 = 11( phần) Số bé là: 198 : 11 x 3 = 54 Số lớn là: 198 – 54 = 144 Đáp số: Số bé : 54 Số lớn : 144 6. Vai trò, tác dụng của giải toán trong chương trình Toán 4 Trong chương trình Toán 4, tầm quan trọng của giải toán được thể hiện ở những điểm sau: - Các khái niệm, quy tắc toán học trong sách giáo khoa nói chung phần lớn đều được dạy thông qua việc giải toán. Giải toán giúp học sinh củng cố kiến thức, rèn kĩ năng tính toán. Đồng thời qua việc giải toán của học sinh giúp giáo 8
  9. viên dễ dàng phát hiện những ưu điểm và thiếu sót của học sinh về kiến thức, kĩ năng để giúp các em phát huy ưu điểm hoặc khắc phục những thiếu sót. Ví dụ: Để hình thành quy tắc nhân hai phân số, sách giáo khoa Toán 4 đã 4 đưa ra bài toán sau: “ Tính diện tích hình chữ nhật có chiều dài m và chiều 5 2 rộng m.” 3 Qua việc giải bài toán trên, một mặt giúp học sinh biết cách thực hiện phép nhân hai phân số, mặt khác củng cố cách tính diện tích hình chữ nhật. - Mỗi bài toán là một tình huống trong thực tiễn nên khi học sinh giải bài toán chính là đã giúp các em hình thành, rèn luyện những kĩ năng cần thiết trong đời sống hàng ngày, vận dụng những kĩ năng đó vào cuộc sống; vận dụng những kiến thức về toán vào các tình huống thực tiễn đa dạng phong phú, những vấn đề thường gặp trong đời sống. Ví dụ: Dân số của một xã trong 3 năm liền tăng thêm lần lượt là : 96 người, 82 người, 71 người. Hỏi trung bình mỗi năm số dân của xã đó tăng thêm bao nhiêu người? - Nhờ giải toán, học sinh có điều kiện rèn luyện và phát triển năng lực tư duy, rèn luyện phương pháp suy luận và những phẩm chất cần thiết của người lao động mới. Vì khi giải toán, học sinh phải tư duy để phân biệt cái đã cho với cái cần tìm, thiết lập mối quan hệ giữa các dữ kiện, giữa cái đã cho với cái cần tìm, đưa ra những phán đoán, trên cơ sở đó chọn được phép tính thích hợp và trả lời đúng câu hỏi của bài toán tức là giải quyết được vấn đề đã nêu ra. Hoạt động tích cực đó đã góp phần giáo dục học sinh có tính vượt khó, cẩn thận, kiên trì, làm việc có kế hoạch,… - Dạy học sinh giải toán giúp học sinh tự phát hiện, giải quyết vấn đề, tự nhận xét, so sánh, phân tích, tổng hợp rút ra quy tắc ở dạng khái quát nhất định. II- ĐIỀU TRA THỰC TRẠNG VỀ VẤN ĐỀ DẠY VÀ HỌC GIẢI BÀI TOÁN ĐIỂN HÌNH LỚP 4 Ở TRƯỜNG TIỂU HỌC NHƯ QUỲNH B 1. Giáo viên 1.1. Ưu điểm Những năm gần đây, cùng với việc thực hiện chương trình, sách giáo khoa mới, giáo viên đã tích cực đổi mới phương pháp dạy học theo hướng lấy học sinh làm trung tâm, trong đó giáo viên là người hướng dẫn, dẫn dắt học sinh huy động những kiến thức, kĩ năng cũ để chiếm lĩnh kiến thức mới, vận dụng kiến thức vào luyện tập thực hành. Cụ thể là - Giáo viên đã chủ động xây dựng kế hoạch bài học, đầu tư nhiều thời gian để nghiên cứu bài, xem xét bài sẽ dạy trong mối quan hệ với bài trước và bài sau. Mỗi bài cần vận dụng kiến thức kĩ năng gì của bài trước. Ví dụ: Trước khi dạy bài “ Tìm số trung bình cộng”, giáo viên đã chú ý đến kĩ năng cộng nhiều số, kĩ năng chia số tự nhiên (trong phạm vi đã học). Hay khi dạy bài “ Tìm hai số khi biết tổng và tỉ số của hai số đó”, kiến thức gần nhất cần chuẩn bị cho bài này là tỉ số của hai số. 9
  10. - Giáo viên đã sử dụng phối hợp nhiều phương pháp dạy học khác nhau như phương pháp nêu vấn đề, trình bày trực quan, giảng giải, đàm thoại,…để dẫn dắt học sinh chiếm lĩnh kiến thức mới. Với những bài cung cấp lí thuyết, để học sinh chủ động tiếp thu bài, giáo viên yêu cầu học sinh thoát li bài giải mẫu trong sách giáo khoa. Bài giải mẫu đó để học sinh xem bài trước khi đến lớp, để học sinh xem lại sau khi nghe giáo viên giảng. - Giáo viên dành nhiều thời gian để học sinh luyện tập thực hành. - Giáo viên đã tạo được cho học sinh thói quen tự kiểm tra đánh giá và đổi vở cho nhau để kiểm tra. - Sau mỗi bài học, giáo viên đã sáng tạo nhiều hình thức củng cố bài có hiệu quả. 1.2. Tồn tại, khó khăn Bên cạnh những ưu điểm trên, khi dạy học sinh giải toán điển hình, một số giáo viên còn có những hạn chế sau: - Khai thác bài toán theo khuôn mẫu: + Bài toán cho biết gì? + Bài toán hỏi gì? + Muốn tìm …ta làm thế nào? Cách làm như vậy sẽ không tìm hiểu sâu được những dữ kiện mà đầu bài đã cho và không toát lên được quan hệ giữa cái đã cho với cái cần tìm. Thông thường chỉ những học sinh đã biết cách làm hoặc những học sinh khá giỏi mới trả lời được câu hỏi thứ 3 ở trên. - Khi hướng dẫn học sinh giải toán thường sử dụng phương pháp phân tích nhiều hơn phương pháp tổng hợp nên học sinh trung bình, yếu khó tiếp thu, đặc biệt là đối với các lớp có nhiều đối tượng học sinh trung bình, yếu. Ví dụ: Một thửa ruộng hình chữ nhật có chu vi là 178m, chiều dài hơn 1 chiều rộng 39m. Trung bình cứ 1m2 thu hoạch được kg thóc. Hỏi trên cả thửa 2 ruộng đó người ta thu hoạch được bao nhiêu tạ thóc? Giáo viên hướng dẫn như sau: + Muốn biết cả thửa ruộng đó thu hoạch được bao nhiêu tạ thóc cần biết gì? + Muốn tính diện tích thửa ruộng cần biết gì? + Muốn tính chiều dài, chiều rộng cần biết gì? - Không chú trọng sơ đồ khi giải toán điển hình. 2 Ví dụ: Minh và Khôi có 25 quyển vở. Số vở của Minh bằng số vở của 3 Khôi. Hỏi mỗi bạn có bao nhêu quyển vở? 10
  11. Bài giải Tổng số phần bằng nhau là: 2 + 3 = 5(phần) Số vở của Minh là: 25 : 5 x 2 = 10(quyển) Số vở của Khôi là: 25 – 10 = 15(quyển) Đáp số: Minh: 10 quyển vở Khôi: 15 quyển vở - Sử dụng sách giáo khoa như nhau đối với mọi đối tượng học sinh. Học sinh khá giỏi phải chờ đợi học sinh yếu kém. - Không nhấn mạnh các bước giải của toán điển hình. Không so sánh các bước giải của các dạng toán điển hình có cách giải tương tự như nhau: Tìm hai số khi biết tổng (hoặc hiệu) và tỉ số của hai số đó. Sau khi học sinh giải xong, chữa bài, nhận xét đúng là dừng lại, giáo viên không hỏi tại sao học sinh làm như vậy để khắc sâu kiến thức cho các em. - Đối với lớp có nhiều học sinh khá giỏi, trình độ tương đối đồng đều, giáo viên hướng dẫn học sinh quá kĩ, học sinh làm hết bài trong sách giáo khoa nhưng giáo viên không có cách nào để sử dụng thời gian còn lại của tiết học. Ví dụ: Tìm số trung bình cộng của các số sau: 96; 121; 143. Giáo viên hướng dẫn học sinh: + Bài toán cho mấy số? + Muốn tìm số trung bình cộng của nhiều số ta làm như thế nào? Câu hỏi thứ hai nên để củng cố kiến thức sau khi học sinh đã làm xong và chữa xong bài tập. - Giáo viên không hướng dẫn học sinh kiểm tra lại kết quả và tìm cách giải khác. - Đối với những bài toán đặt đề toán: chỉ cho học sinh đặt đề toán theo một cách mà không đặt nhiều cách khác nhau. Ví dụ: Nêu bài toán rồi giải bài toán theo sơ đồ sau: 11
  12. Giáo viên chỉ cho học sinh đặt như sau: Một vườn cây có số cây cam bằng 1 số cây dứa. Số cây dứa nhiều hơn số cây cam là 170 cây. Hỏi vườn đó có bao 6 nhiêu cây cam, bao nhiêu cây dứa? Với những cách làm như trên, thấy rằng giáo viên đã thực hiện đổi mới phương pháp trong dạy học toán nhưng sự đổi mới phương pháp đó chưa triệt để. 2. Học sinh Là một giáo viên trực tiếp giảng dạy lớp 4 và qua điều tra, tôi nhận thấy đa số học sinh nắm được kiến thức cơ bản về giải toán điển hình. Trình độ của học sinh được nâng cao hơn. Tuy nhiên với cách dạy của giáo viên như trên thì học sinh còn có những sai sót, gặp một số khó khăn như sau: - Học sinh không nhận được đúng dạng toán. Ví dụ 1: Một thửa ruộng hình chữ nhật có chu vi bằng 530m, chiều rộng kém chiều dài 47m. Tính diện tích của thửa ruộng. Bài giải 1 Nửa chu vi hình chữ nhật là: 530 : 2 = 265 ( m) Ta có sơ đồ: Theo sơ đồ, tổng số phần bằng nhau là: 1 + 4 = 5 ( phần) Chiều rộng thửa ruộng là: 265 : 5 = 53 (m) Chiều dài thửa ruộng là: 265 – 53 = 212 (m) Diện tích thửa ruộng là: 212 x 53 = 11236 (m2) Đáp số: 11236 m2 Giáo viên không nhấn mạnh các bước giải, đặc biệt là bước làm gộp tìm giá trị một phần với tìm một trong hai số. - Học sinh nhận được dạng toán nhưng không làm được các bước tiếp theo: Ví dụ 2: Hai kho thóc chứa 1350 tấn thóc. Tìm số thóc của mỗi kho, biết 4 rằng số thóc của kho thứ hai bằng số thóc ở kho thứ nhất. 5 Học sinh làm như sau: 12
  13. Theo sơ đồ, tổng số phần bằng nhau là: 4 =5 = 9 ( phần) Số thóc ở kho thứ hai là: 1350 : 9 = 150 (tấn) Số thóc ở kho thứ nhất là: 1350 – 150 = 1200 (tấn) Đáp số: Kho 1: 1200tấn Kho 2: 150 tấn - Cũng với ví dụ trên, có một số học sinh đã hiểu sai kho 2 viết thành kho 1 và ngược lại hoặc viết kho 2 thành số thứ 1, kho 1 thành số thứ 2. - Với bài làm trên, học sinh đã viết thiếu tên đơn vị, lẽ ra phải ghi “ ? tấn” nhưng học sinh chỉ ghi “?”. - Học sinh viết thiếu đối tượng: Ví dụ 3: Mẹ hơn con 27 tuổi, hiện nay tuổi mẹ gấp 4 lần tuổi con. Tính tuổi mỗi người hiện nay. Có học sinh đã vẽ sơ đồ như sau: lẽ ra phải ghi như sau: - Khi làm bài, học sinh còn trả lời sai, câu trả lời chưa đầy đủ. Ở ví dụ 1, một số học sinh trả lời như sau: Nửa chu vi là: 530 : 2 = 265 (m) Hoặc với ví dụ 4: Tổ Một góp được 36 quyển vở. Tổ Hai góp được nhiều hơn tổ Một 2 quyển vở nhưng ít hơn tổ Ba 2 quyển vở. Hỏi trung bình mỗi tổ góp được bao nhiêu quyển vở? Bài giải Tổ Hai góp được số quyển vở là: 13
  14. 36 + 2 = 38( quyển) Tổ Ba góp được số quyển vở là: 38 + 2 = 40(quyển) Trung bình ba tổ góp được số quyển vở là: (36 +38 + 40) : 3 = 38(quyển) Đáp số: 38 quyển vở Nhìn vào bài giải trên, ta thấy câu trả lời ứng với phép tính thứ ba chưa đúng. Câu trả lời đúng phải là: “Trung bình mỗi tổ góp được số quyển vở là”. Ví dụ 5: Trong một đợt trồng cây, hai đội công nhân trồng được 1320 cây. Đội thứ nhất trồng nhiều hơn đội thứ hai 120 cây. Hỏi mỗi đội trồng được bao nhiêu cây? Bài giải Hai lần đội thứ hai là: 1320 – 120 = 1200(cây) Đội thứ hai trồng được là: 1200 : 2 = 600(cây) Đội thứ nhất trồng được là: 1320 – 600 = 720(cây) Đáp số: Đội 1: 720 cây Đội 2: 600 cây Học sinh trả lời sai câu trả lời thứ nhất. Ví dụ 6: Một công ti chuyển máy bơm bằng ô tô. Lần đầu có 3 ô tô, mỗi ô tô chở được 16 máy. Lần sau có 5 ô tô, mỗi ô tô chở được 24 máy. Hỏi trung bình mỗi ô tô chở được bao nhiêu máy bơm? Bài giải 1 Lần đầu chuyển được số máy là: 16 x 3 = 48(máy) Lần sau chuyển được số máy là: 24 x 5 = 120(máy) Trung bình mỗi ô tô chở được số máy là: (48 + 120) : 2 = 84(máy) Đáp số: 84 máy Học sinh nhầm lẫn khi tính trung bình cộng: thấy hai số hạng là 48 và 120 nên lấy tổng hai số chia cho 2. Bài giải 2 Trung bình mỗi ô tô chở được số máy là: (16 + 24) : 2 = 20(máy) Đáp số: 20 máy Ngoài ra học sinh còn tính toán sai, sai tên đơn vị: Khi giải ví dụ 4, học sinh tính số vở của tổ Hai là: 36 – 2 = 34(quyển) Học sinh còn tính sai diện tích hình chữ nhật( ví dụ 1) Khi tìm tuổi con ở ví dụ 2, có học sinh viết như sau: 14
  15. Tuổi con là: 27 :3 x 1 = 9(phần) Khi khảo sát 36 học sinh của một lớp 4, tôi thu được kết quả như sau: Những sai sót phổ biến Số lượng % Không nhận được dạng toán 9 25 Hiểu sai đối tượng 8 22 Thiếu đối tượng 10 28 Thiếu đơn vị 5 14 Trả lời chưa đầy đủ 13 36 Trả lời sai 6 17 Sai kết quả phép tính 8 22 3. Nguyên nhân sai sót 3.1. Đối với giáo viên - Trong quá trình tập huấn thay sách, một số ít giáo viên tiếp thu chưa đầy đủ. - Hằng năm, các trường vẫn tổ chức chuyên đề vào tháng 8 nhưng do sự điều động, phân công giáo viên của cấp trên mà có những giáo viên học chuyên đề thay sách ở lớp này nhưng vào năm học lại dạy lớp khác. - Do giáo viên có ít thời gian nghiên cứu bài, ít có điều kiện tham khảo tài liệu để nâng cao trình độ chuyên môn, nghiệp vụ sư phạm. - Giáo viên sử dụng các phương pháp dạy học như nhau đối với tất cả các đối tượng học sinh. - Giáo viên chưa thật sự coi trọng sơ đồ trong dạy học giải toán điển hình. - Giáo viên không nhấn mạnh các bước giải của toán điển hình và không so sánh sự giống, khác nhau của các dạng toán có cách giải tương tự. 3.2. Đối với học sinh - Kĩ năng tính toán chưa thành thạo, học sinh hiểu nhầm ý nghĩa của phép tính. Ví dụ: Tính nhầm số đo diện tích thửa ruộng hình chữ nhật ở ví dụ 1. - Không nhận dạng được các dạng toán điển hình. Còn nhầm lẫn các dạng toán điển hình do học sinh không nắm chắc kiến thức cơ bản, cách giải từng dạng toán. Khi mới học xong mỗi dạng toán, học sinh làm được nhưng khi học các dạng toán, học sinh nhầm lẫn các dạng toán với nhau. Cho nên khi tìm ba số tự nhiên liên tiếp có tổng là 84, có học sinh đã vẽ sơ đồ và làm bài giải như sau: Theo sơ đồ, tổng số phần bằng nhau là: 1+ 2 + 3 = 6 (phần) Trung bình số phần bằng nhau là: 6 : 3 = 2 (phần) 15
  16. Vậy 28 tương ứng với số phần mà sơ đồ đã chỉ số thứ hai có hai phần thì 28 là số thứ hai. Ta có ba số là: 27; 28; 29. Mặc dù kết quả đúng nhưng cách làm trên hoàn toàn sai. - Học sinh nhận được các dạng toán điển hình nhưng không biết cách giải là do học sinh không phân biệt được cách giải của từng dạng toán. - Học sinh không đọc kĩ đề bài nên hiểu sai đối tượng (kho 2 hiểu thành kho 1, số thứ nhất hiểu thành số thứ hai). - Một số ít giáo viên chưa chú trọng sơ đồ nên trong khi vẽ sơ đồ, học sinh ghi thiếu đối tượng, thiếu đơn vị. 16
  17. CHƯƠNG II CHUẨN BỊ CHO VIỆC DẠY HỌC GIẢI TOÁN ĐIỂN HÌNH CHO HỌC SINH LỚP 4 Giáo viên học tập chuyên môn I. NHỮNG ĐIỀU CẦN BIẾT VỀ TOÁN ĐIỂN HÌNH. 1. Bài toán về : Trung bình cộng. 1.1. Quy tắc: Muốn tìm số trung bình cộng của nhiều số, ta tính tổng của các số đó, rồi chia tổng đó cho số các số hạng. 1.2. Công thức tìm số trung bình cộng của nhiều số: Số trung bình cộng = Tổng các số : n 1.3. Cho một dãy số cách đều: * Nếu số các số hạng đó là một số lẻ thì số trung bình cộng của dãy số đã cho chính là số ở vị trí chính giữa của dãy số này. Ví dụ: Tìm số trung bình cộng của dãy số cách đều nhau 4 đơn vị: 3; 7; 11; 15; 19. Ta thấy dãy số có 5 số hạng nên số hạng thứ ba sẽ là trung bình cộng của dãy số. Vậy số trung bình cộng của dãy số trên là 11. * Nếu số các số hạng đó là một số chẵn thì số trung bình cộng của dãy số đã cho đúng bằng nửa tổng của hai số đầu và cuối của dãy số này; hoặc đúng bằng nửa tổng của hai số cách đều hai đầu của dãy số đã cho. Ví dụ: Trung bình cộng của 50 số lẻ liên tiếp đầu tiên là: 17
  18. (1 + 99) : 2 = 50 1.4. Một trong các số đã cho lại bằng trung bình cộng của các số còn lại thì số đó đúng bằng số trung bình cộng của tất cả các số đã cho. Ví dụ: Số trung bình cộng của 5 số bằng 96. Hãy tìm số thứ năm, biết rằng số này đúng bằng số trung bình cộng của 4 số kia. Bài giải Vì số trung bình cộng của 5 số là 96 nên tổng của 5 số đó là: 96 x 5 = 480 Vì số thứ năm bằng trung bình cộng của 4 số kia nên tổng của 4 số đó bằng 4 lần số thứ 5. Do đó, 5 lần số thứ năm cũng bằng tổng của năm số đó, tức là bằng 480. Vậy số thứ năm bằng: 480 : 5 = 96 1.5. Cho ba số a, b, c và số chưa biết là x. Nếu cho biết x lớn hơn số trung bình cộng của bốn số a, b, c, x là n đơn vị thì số trung bình cộng của 4 số đó được tìm như sau; Số trung bình cộng của bốn số a, b, c, x là: (a + b + c + n) : 3 abc x abcn Hoặc có thể ghi: = 4 3 Ví dụ: Cho ba số là: 12; 13; 15. Số thứ tư hơn trung bình cộng của cả bốn số đó là 2 đơn vị. a. Tìm số trung bình cộng của bốn số đó. b. Tìm số thứ tư. Bài giải a. Số trung bình cộng của bốn số đó là: (12 + 13 + 15 + 2) = 14 b. Số thứ tư là: 14 + 2 = 16 2. Bài toán về tìm hai số khi biết tổng và hiệu của hai số đó. 2.1 Tổng và hiệu hai số phải tìm có thể là số tự nhiên, phân số, số thập phân, các dạng của số đo đại lượng. Tổng và hiệu có thể được nêu dưới dạng một dãy số. 2.2. Quy tắc tính số lớn và số bé: Cách 1: Số bé = (Tổng – Hiệu) : 2 Số lớn = Số bé + Hiệu (Hoặc Số lớn = Tổng – Số bé) 18
  19. Cách 2: Số lớn = (Tổng + Hiệu) :2 (Hoặc Số bé = Số lớn – Hiệu) 2.3. Các phương pháp thường dùng - Phương pháp dùng sơ đồ đoạn thẳng. - Phương pháp khử, phương pháp thay thế. - Phương pháp lựa chọn. 3. Bài toán : Tìm hai số khi biết tổng và tỉ số của hai số đó. 3.1. Tổng và tỉ số của hai số phải tìm có thể là số tự nhiên, phân số, số thập phân, các dạng của số đo đại lượng. 3.2. Tỉ số của hai số có thê được nêu dưới những dạng sau: - Số này gấp mấy lần số kia. - Số này bằng mấy phần số kia. - Thương của hai số phải tìm, hoặc thương của hai số có liên quan đến các số phải tìm. - Phân số được coi là thương của số bị chia và số chia. - Tỉ số của hai số. - Tỉ số phần trăm của hai số. 3.3. Các bước chủ yếu trong việc giải bài toán này: * Bước 1: Xác định tổng của hai số phải tìm (hoặc tổng của hai số liên quan đến các số phải tìm). * Bước 2: Xác định tỉ số của hai số phải tìm (hoặc tỉ số của hai số liên quan đến các số phải tìm). Biểu thị từng số đó thành số các phần bằng nhau tương ứng. * Bước 3: Thực hiện phép chia tổng của hai số phải tìm cho tổng các phần biểu thị của tỉ số để tìm giá trị một phần đó. * Bước 4: Tìm mỗi số theo số phần được biểu thị. 3.4 Các phương pháp thường dùng: - Phương pháp dùng sơ đồ đoạn thẳng. - Phương pháp dùng tỉ số. - Phương pháp khử hoặc phương pháp thế. - Phương pháp dùng đơn vị quy ước. 3.5 Chú ý: * Tổng của hai số hạng không đổi khi số hạng này thêm bao nhiêu đơn vị và số hạng kia bớt đi bấy nhiêu đơn vị (thêm bớt cùng một số đơn vị). Nếu a + b = c thì (a + n) + (b – n) = c (với b  n) Hoặc (a – n) + (b + n) = c (với a  n) 19
  20. (Tổng của hai số mới vẫn bằng tổng của hai số phải tìm nhưng tỉ số của hai số mới thì khác với tỉ số của hai số phải tìm. Khi đó ta giải bằng cách: Tìm hai số mới khi biết tổng và tỉ số của hai số mới đó; sau đó tìm hai số phải tìm). * Nếu mỗi số hạng tăng thêm một số đơn vị khác nhau thì tổng cũ sẽ tăng thêm tổng hai số đơn vị đó. Nếu a + b = c thì (a + m) + (b + n) = c + (m + n) * Nếu mỗi số hạng giảm bớt một số đơn vị khác nhau thì tổng cũ sẽ giảm bớt tổng hai số đơn vị đó. Nếu a + b = c thì (a – m) + (b – n) = c – (m + n) (với a  m; b  n) * Nếu số hạng này thêm một số đơn vị và số hạng kia giảm bớt một số đơn vị thì tổng cũ có thể tăng hoặc giảm. Nếu a + b = c mà m > n thì (a + m) + (b – n) = c + (m – n) (b  n) Nếu a + b = c mà m < n thì (a + m) + (b – n) = c - (n – m) (b  n) * Tất cả những trường hợp trên đều đưa về bài toán: “ Tìm hai số khi biết tổng và tỉ số của hai số đó”, sau đó tìm hai số phải tìm. 4. Bài toán về : Tìm hai số khi biết hiệu và tỉ số của hai số đó. 4.1. Hiệu và tỉ số của hai số, các phương pháp thường dùng tương tự như giải bài toán . Tìm hai số khi bết tổng và tỉ số của hai số đó. 4. 2. Các bước chủ yếu trong việc giải bài toán này: * Bước 1: Xác định hiệu của hai số phải tìm (hoặc hiệu của hai số liên quan đến các số phải tìm). * Bước 2: Xác định tỉ số của hai số phải tìm (hoặc tỉ số của hai số có liên quan đến số phải tìm). Biểu thị từng số đó thành số các phần bằng nhau tương ứng. * Bước 3: Thực hiện phép chia hiệu của hai số phải tìm cho các phần biểu thị của tỉ số để tìm giá trị của một phần đó. * Bước 4: Tìm mỗi số theo số phần được biểu thị. 4.3. Chú ý: * Hiệu của số bị trừ và số trừ không đổi khi số bị trừ và số trừ cùng thêm (hoặc cùng bớt) một số đơn vị như nhau. Nếu a – b = c thì ( a + n) – ( b + n) = c Hoặc ( a – n) – (b – n) = c (với a  n; b  n) (Hiệu của hai số mới vẫn bằng hiệu của hai số cần tìm nhưng tỉ số của hai số mới khác với tỉ số của hai số phải tìm. Khi đó ta giải bài toán: Tìm hai số mới khi biết hiệu và tỉ số của hai số mới đó; sau đó tìm hai số phải tìm). * Nếu số bị trừ tăng thêm một số đơn vị và số trừ giảm bớt một số đơn vị thì hiệu cũ sẽ tăng thêm tổng hai số đơn vị đó. Nếu a – b = c thì (a + m) – (b – n) = c + (m + n) (với b  n) 20

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản