Bài tập Đại số tuyến tính (có đáp án)
lượt xem 866
download
"Bài tập Đại số tuyến tính" bao gồm bài tập các chương: hệ phương trình tuyến tính, ma trận, định thức, không gian véc tơ, ánh xạ tuyến tính, véc tơ riêng, chéo hóa và dạng toàn phương, đường bậc hai phẳng và mặt bậc hai. Cuối tài liệu có đáp án cho các bài tập.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài tập Đại số tuyến tính (có đáp án)
- Chương 1 HỆ PHƯƠNG TRÌNH TUYẾN TÍNH Bài tập 1.1 Đưa cácma trận sauvề dang bậc thang: 1 −3 2 2 5 6 −4 1 −6 A = 3 −4 1 B= 1 2 5 C = 1 2 −5 2 −5 3 1 3 2 6 3 −4 1 2 −3 0 2 −2 2 1 D = 2 4 −2 2 E = −3 6 0 −1 3 6 −4 3 1 −7 10 2 Bài tập 1.2 Đưa các ma trậnsau về dang bậc thang rút gọn: 2 2 −1 6 4 2 3 −2 5 1 1 −2 3 1 2 A= 4 4 1 10 13 B = 3 −1 2 0 4 C= 1 1 4 −1 3 6 6 0 20 19 4 −5 6 −5 7 2 5 9 −2 8 1 3 −1 2 0 1 3 −2 0 11 −5 3 1 2 −1 2 1 0 4 −1 3 D= E= 2 4 1 −2 3 F = 2 −5 3 1 0 0 1 1 3 6 2 −6 5 4 1 1 5 0 5 −3 4 Bài tập 1.3 Xác định hạng của ma trận sau: 3 5 7 1 1 3 1 1 −3 A= 1 2 3 B= 2 1 4 C = −1 0 2 1 3 5 1 2 5 −3 5 0 1 2 3 4 4 3 2 2 1 2 3 6 D= 2 4 6 8 E= 0 2 1 1 F = 2 3 1 6 3 6 9 12 0 0 3 3 3 1 2 6 1 −1 5 −1 1 3 −2 −1 21 1 −2 3 2 5 −2 1 G= 3 −1 H= 8 1 1 1 6 13 1 3 −9 7 −2 −6 8 10 Bài tập 1.4 Xác định sự tồn tại nghiệm của mỗi hệ sau: 1
- 2 Chương 1. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH x1 + 2x2 − 3x3 = −5 a. 2x1 + 4x2 − 6x3 + x4 = −8 6x + 13x2 − 17x3 + 4x4 = −21 1 x1 + x2 + x3 + x4 + x5 = 7 3x1 + 2x2 + x3 + x4 − 3x5 = −2 b. x2 + 2x3 + 2x4 + 6x5 = 23 5x1 + 4x2 + 3x3 + 3x4 − x5 = 12 x1 − 6x2 =5 x2 − 4x3 + x4 = 0 c. −x1 + 6x2 + x3 + 5x4 = 3 − x2 + 5x3 + 4x4 = 0 2x2 − 2x3 + 2x5 = 2 x1 + 2x2 − 3x3 + x4 + 4x5 = 1 d. 2x1 + 5x2 − 7x3 + 3x4 + 10x5 = 5 2x1 + 4x2 − 5x3 + 3x4 + 8x5 = 3 Bài tập 1.5 Biện luận các hệ phương trình cho bởi ma trận đầy đủ sau đây theo tham số a, b, c, d. 1 −1 4 −2 5 2 4 −3 6 0 1 2 3 4 a. 0 b 7 2 b. 0 0 d 5 7 0 0 a a 0 0 0 cd c Bài tập 1.6 Viết ra nghiệm của hệ có ma trận đầy đủ tương đương hàng với mỗi ma trận sau: 1 −2 0 0 7 −3 1 0 −5 0 −8 3 0 1 0 0 −3 1 0 1 4 −1 0 6 a. A = b. B = 0 0 0 1 5 −4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −2 0 0 0 1 0 0 8 −3 0 1 6 −3 −2 7 0 1 0 4 −6 c. C = d. D = 0 0 0 1 0 −5 0 0 1 −7 5 0 0 0 0 1 0 0 0 0 0 0 Bài tập 1.7 Giải các hệ phương trình sau bằng phương pháp Gauss: 2x1 + 7x2 + 3x3 + x4 = 6 x1 + x2 − 2x3 + 3x4 = 4 a. 3x1 + 5x2 + 2x3 + 2x4 = 4 e. 2x1 + 3x2 + 3x3 − x4 = 3 9x1 + 4x2 + x3 + 7x4 = 14 5x1 + 7x2 + 4x3 + x4 = 5 2x1 + 5x2 + x3 + 3x4 = 2 x1 + 2x2 + 3x3 + 4x4 = 5 4x1 + 6x2 + 3x3 + 5x4 = 4 2x1 + x2 + 2x3 + 3x4 = 1 b. f. 4x1 + 14x2 + x3 + 7x4 = 4 3x1 + 2x2 + x3 + 2x4 = 1 2x1 − 3x2 + 3x3 + 3x4 = 7 4x1 ‘ + 3x2 + 2x3 + x4 = −5
- 3 x1 + 2x2 + 3x3 = 14 2x1 + x2 − x3 + x4 = 0 3x1 + 2x2 + x3 = 10 3x1 − 2x2 + 2x3 − 3x4 = 2 c. g. x1 + x2 + x3 = 6 5x1 + x2 − x3 + 2x4 = −2 2x + 3x2 − x3 = 5 1 2x1 − x2 + x3 − 3x4 = 4 x1 + x2 = 3 −x1 + x2 + x3 + x4 = 4 2x1 + x2 + x3 = 2 2x1 + x2 + 2x3 + 3x4 = 1 x1 + 3x2 + x3 = 5 d. h. 5x1 + 3x2 + 3x3 + 5x4 = 2 x1 + x2 + 5x3 = −7 4x1 + 3x2 + 2x3 + x4 = −5 2x1 + 3x2 − 3x3 = 14 Bài tập 1.8 Biện luận theo a, b, c, d số nghiệm của hệ phương trình x + 2y + 2z =a ax1 + x2 + x3 + x4 = 1 2x − y + z =b a. x1 + ax2 + x3 + x4 = a b. 3x + y − z =c x1 + x2 + ax3 + x4 = b x − 3y + 5z =d Bài tập 1.9 Xác định m để hệ phương trình sau có nghiệm: x1 − 2x2 + x3 + x4 = 1 2x1 + x2 − x3 + 2x4 = 0 x1 − x2 + 2x3 − 3x4 = −2 4x1 − 2x2 + 2x3 =m Bài tập 1.10 Giải các hệ thuần nhất sau: 3x1 − 2x2 − 5x3 + x4 = 0 x1 + 2x2 − 3x3 = 0 2x1 − 3x2 + x3 + 5x4 = 0 a. 2x1 + 5x2 − 2x3 = 0 b. x1 + 2x2 − 4x4 = 0 3x1 − x2 − 4x3 = 0 x1 − x2 − 4x3 + 9x4 = 0 x1 + 2x2 − x3 = 0 x1 − 2x2 + 3x3 − 2x4 = 0 2x1 + 5x2 + 2x3 = 0 c. d. 3x1 − 7x2 − 2x3 + 4x4 = 0 x1 + 4x2 + 7x3 = 0 4x1 + 3x2 + 5x3 + 2x4 = 0 x1 + 3x2 + 3x3 = 0
- 4 Chương 1. HỆ PHƯƠNG TRÌNH TUYẾN TÍNH
- Chương 2 MA TRẬN Bài tập 2.1 Thực hiện các phép tính: 1 2 3 1 −1 2 a. A + B với A = và B = 4 5 6 0 3 −5 1 −2 3 b. 3A và −5A với A = 4 5 −6 1 −2 3 3 0 2 c. 2A − 3B với A = và B = 4 5 −6 −7 1 8 d. 5A − 2B; 2A + 3B; A(BC); (AB)C; AT ; B T ; AT B T ; A2 ; AC biết 1 2 5 0 1 −3 4 A= ; B= ; C= 3 −4 −6 7 2 6 −5 1 2 0 e. AA và A A biết A = T T 3 −1 4 x y x 6 4 x+y Bài tập 2.2 Tìm x, y, z, w biết: 3 = + z w −1 2w z+w 3 1 2 Bài tập 2.3 Cho A = tìm ma trận B ∈ M2×3 sao cho AB = 0 3 6 Bài tập 2.4 Cho các ma trận 1 −3 0 1 1 −2 2 0 −2 A= 4 5 1 ,B = 3 0 4 , C = 4 7 −5 3 8 0 −1 3 2 1 0 −1 Gọi D = [dij ] = 2AB +C 2 không tính toàn bộ ma trận D mà hãy tính cụ thể mỗi phần tử: a. d11 b. d21 c. d32 5
- 6 Chương 2. MA TRẬN 1 4 4 3 2 1 1 5 −1 3 4 Bài tập 2.5 Cho A = ;B = ;C = 1 3 ; D = −1 0 1 2 −1 3 3 5 2 4 −3 2 1 0 3 a. Hãy tính các tích sau đây hoặc giải thích tại sao chúng không tồn tại: AB; BA; AC; DC; CD; C T D b. Kiểm tra rằng A(BC) = (AB)C và (AB)T = B T AT . c. Không thực hiện phép tính, hãy tìm D T C Bài tập 2.6 3 3 −5 3 −6 15 Cho A = 0 −1 −1 và x = −1 , y = 0 , z = 3 −2 −4 −4 −4 4 9 a. Tính các tích Ax, Ay, Az b. Dùng kết quả câu a) để tính tích A x y z Bài tập 2.7 Tìm ma trận nghịch đảo của mỗi ma trận sau: 1 3 −2 1 −1 2 1 −2 0 A = 2 8 −3 ; B = 2 −3 ; C = 2 −3 1 5 1 7 1 2 1 0 1 1 5 1 1 1 1 1 1 0 2 2 1 0 0 0 1 1 1 0 −1 1 1 3 2 0 0 0 0 1 1 ; E = 1 ; F = D= 1 −2 3 1 1 3 4 0 0 0 1 1 −2 4 4 2 −1 2 3 a b Bài tập 2.8 Tìm ma trận nghịch đảo của A = c d 3 5 1 1 Ứng dụng: A = ; B= . 2 3 2 3 −1 −5 −7 Bài tập 2.9 Cho A = 2 5 6 là ma trận khả nghịch. 1 3 4 Không tìm toàn bộ ma trận A chỉ tìm −1 a. c3 (A−1 ) b. đồng thời hai cột, c1 (A−1 ) và c2 (A−1 ) x1 2 c. h2 (A ), từ đó suy ra giá trị x2 của hệ A x2 = 1 −1 x3 1
- 7 Bài tập 2.10 Tìm điều kiện của tham số để các ma trận sau khả nghịch, sau đó tìm ma trận nghịch đảo tương ứng của nó: 1 −3 2 1 0 p a. 3 −7 m + 5 ; b.A = 1 1 0 −m 2m 1 2 1 1 2 −1 1 Bài tập 2.11 Cho ma trận B = 0 1 1 . Hãy tìm B −1 , từ đó giải hệ phương 1 −1 −1 2 2 4 trình Bx = d với i)d = 3 , ii)d = 3 3 , iii)d = −2 −1 −1 3 Bài tập 2.12 Giải các hệ phương trình sau bằng phương pháp ma trận nghịch đảo: x1 + x2 + x3 + x4 = 1 x1 + x2 − 3x3 = −2 x1 + x2 − x3 − x4 = 1 a. x1 + 2x2 − 3x3 = 6 b. x1 − x2 = −1 2x1 + 4x2 − 5x3 = −6 x3 − x4 = −1 x1 + x2 + x3 + x4 = −1 x1 + x2 − x3 − x4 = 1 c. x 1 − x2 + x3 − x4 = −1 x1 − x2 − x3 + x4 = 1 Bài tập 2.13 Giải các phương trình ma trận sau đây: 1 2 3 5 3 −2 −1 2 a. .X = b. X. = 3 4 5 9 5 −4 −5 6 1 2 −3 1 −3 0 3 −1 5 6 14 16 c. .X. = d. 3 2 −4 .X = 10 2 7 5 −2 7 8 9 10 2 −1 0 10 7 8 13 −8 −12 1 2 3 e. X. 12 −7 −12 = 4 5 6 6 −4 −5 7 8 9
- 8 Chương 2. MA TRẬN
- Chương 3 ĐỊNH THỨC Bài tập 3.1 Không khai triển, hãy sử dụng tính chất để tính định thức của mỗi ma trận sau: 1 3 0 5 7 0 1 5 1 0 3 1 1 2 1 −5 2 −1 1 −1 2 3 ; ; C = 2 4 0 1 A= B = 0 0 4 1 0 0 1 0 1 0 0 0 −1 8 3 0 1 6 3 −2 4 −2 1 2 1 −5 0 0 0 0 3 1 3 4 −5 7 3 3 1 2 0 D= 2 −1 4 0 0 5 3 0 0 0 −2 0 0 0 0 Bài tập 3.2 Tính các định thức sau bằng cách khai triển theo hàng hay theo cột được chọn một cách hợp lí nhất:
- 6 3 2 4 0
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Các bài tập về Đại số tuyến tính
6 p | 2490 | 613
-
Bài tập ôn tập Đại số tuyến tính - Học kì I năm học 2016 - 2017
10 p | 584 | 56
-
Đề kiểm tra giữa kỳ K37 môn: Đại số tuyến tính - Đại Học Kinh tế TP. HCM
3 p | 341 | 37
-
Bài tập đại số tuyến tính - dành cho hệ VB2 và VLVH - ThS. Trần Thị Tuấn Anh
4 p | 264 | 36
-
Bài tập môn Đại số tuyến tính
26 p | 201 | 20
-
Bài giảng: Đại số tuyến tính - Phạm Thanh Tùng
175 p | 53 | 16
-
Giải bài tập Đại số tuyến tính
35 p | 78 | 9
-
Bài giảng Đại số tuyến tính: Phần 1 - TS. Bùi Xuân Diệu
74 p | 38 | 6
-
Bài giảng Đại số tuyến tính: Chương 1 - TS. Nguyễn Hải Sơn
79 p | 54 | 6
-
Bài tập Chương 0, 1, 2, 3 môn Đại số tuyến tính - Nguyễn Hữu Việt Hưng
150 p | 22 | 5
-
Bài giảng Đại số tuyến tính: Chương 2.1 - TS. Nguyễn Hải Sơn
38 p | 32 | 4
-
Bài giảng Đại số tuyến tính: Chương 2.3 - TS. Nguyễn Hải Sơn
31 p | 44 | 3
-
Bài giảng Đại số tuyến tính: Chương 2.4 - TS. Nguyễn Hải Sơn
24 p | 33 | 3
-
Bài tập Đại số tuyến tính - Chương 4
5 p | 153 | 3
-
Bài giảng Đại số tuyến tính - Chương 4: Không gian véc tơ
61 p | 11 | 3
-
Bài giảng Đại số tuyến tính: Chương 2 - TS. Đặng Văn Vinh (2020)
30 p | 12 | 3
-
Bài giảng Đại số tuyến tính: Chương 2.2 - TS. Nguyễn Hải Sơn
35 p | 51 | 3
-
Bài tập Đại số tuyến tính - Chương 3
5 p | 147 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn