Chương 2: Phương trình lượng giác cơ bản
lượt xem 317
download
Tài liệu ôn thi đại học môn toán tham khảo về Phương trình lượng giác cơ bản báo tuổi trẻ online. Tài liệu hay và bổ ích dành cho học sinh hệ trung học phổ thông ôn thi tốt nghiệp và ôn thi đại học - cao đẳng tham khảo ôn tập củng cố kiến thức.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Chương 2: Phương trình lượng giác cơ bản
- Chöông 2: PHÖÔNG TRÌNH LÖÔÏ N G GIAÙ C CÔ BAÛ N ⎡ u = v + k2π sin u = sin v ⇔ ⎢ ⎣ u = π − v + k2π cos u = cos v ⇔ u = ± v + k2π ⎧ π ⎪u ≠ + kπ tgu = tgv ⇔ ⎨ 2 ( k, k ' ∈ Z ) ⎪u = v + k ' π ⎩ ⎧u ≠ kπ cot gu = cot gv ⇔ ⎨ ⎩u = v + k ' π π Ñaë c bieä t : sin u = 0 ⇔ u = kπ cos u = 0 ⇔ u = + kπ 2 π sin u = 1 ⇔ u = + k2π ( k ∈ Z) cos u = 1 ⇔ u = k2π ( k ∈ Z ) 2 π sin u = −1 ⇔ u = − + k2π cos u = −1 ⇔ u = π + k2π 2 Chuù yù : sin u ≠ 0 ⇔ cos u ≠ ±1 cos u ≠ 0 ⇔ sin u ≠ ±1 Baø i 28 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2002) Tìm x ∈ [ 0,14 ] nghieä m ñuù ng phöông trình cos 3x − 4 cos 2x + 3 cos x − 4 = 0 ( * ) Ta coù (*) : ⇔ ( 4 cos3 x − 3 cos x ) − 4 ( 2 cos2 x − 1) + 3 cos x − 4 = 0 ⇔ 4 cos3 x − 8 cos2 x = 0 ⇔ 4 cos2 x ( cos x − 2 ) = 0 ⇔ cos x = 0 hay cos x = 2 ( loaïi vì cos x ≤ 1) π ⇔ x= + kπ ( k ∈ Z ) 2 π Ta coù : x ∈ [ 0,14] ⇔ 0 ≤ + kπ ≤ 14 2 π π 1 14 1 ⇔ − ≤ kπ ≤ 14 − ⇔ −0, 5 = − ≤ k ≤ − ≈ 3, 9 2 2 2 π 2 ⎧ π 3π 5π 7π ⎫ Maø k ∈ Z neâ n k ∈ {0,1, 2, 3} . Do ñoù : x ∈ ⎨ , , , ⎬ ⎩2 2 2 2 ⎭ Baø i 29 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2004) Giaû i phöông trình : ( 2 cos x − 1)( 2 sin x + cos x ) = sin 2x − sin x ( *)
- Ta coù (*) ⇔ ( 2 cos x − 1)( 2 sin x + cos x ) = sin x ( 2 cos x − 1) ⇔ ( 2 cos x − 1) ⎡( 2 sin x + cos x ) − sin x ⎤ = 0 ⎣ ⎦ ⇔ ( 2 cos x − 1)( sin x + cos x ) = 0 1 ⇔ cos x = ∨ sin x = − cos x 2 π ⎛ π⎞ ⇔ cos x = cos ∨ tgx = −1 = tg ⎜ − ⎟ 3 ⎝ 4⎠ π π ⇔ x = ± + k2π ∨ x = − + kπ, ( k ∈ Z ) 3 4 Baø i 30 : Giaû i phöông trình cos x + cos 2x + cos 3x + cos 4x = 0 (*) Ta coù (*) ⇔ ( cos x + cos 4x ) + ( cos 2x + cos 3x ) = 0 5x 3x 5x x ⇔ 2 cos .cos + 2 cos .cos = 0 2 2 2 2 5x ⎛ 3x x⎞ ⇔ 2 cos ⎜ cos + cos ⎟ = 0 2 ⎝ 2 2⎠ 5x x ⇔ 4 cos cos x cos = 0 2 2 5x x ⇔ cos = 0 ∨ cos x = 0 ∨ cos = 0 2 2 5x π π x π ⇔ = + kπ ∨ x = + kπ ∨ = + kπ 2 2 2 2 2 π 2kπ π ⇔ x= + ∨ x = + kπ ∨ x = π + 2π, ( k ∈ Z ) 5 5 2 Baø i 31: Giaûi phöông trình sin 2 x + sin 2 3x = cos2 2x + cos2 4x ( * ) 1 1 1 1 Ta coù (*) ⇔ (1 − cos 2x ) + (1 − cos 6x ) = (1 + cos 4x ) + (1 + cos 8x ) 2 2 2 2 ⇔ − ( cos 2x + cos 6x ) = cos 4x + cos 8x ⇔ −2 cos 4x cos 2x = 2 cos 6x cos 2x ⇔ 2 cos 2x ( cos 6x + cos 4x ) = 0 ⇔ 4 cos 2x cos 5x cos x = 0 ⇔ cos 2x = 0 ∨ cos 5x = 0 ∨ cos x = 0 π π π ⇔ 2x = + kπ ∨ 5x + kπ ∨ x = + kπ, k ∈ 2 2 2 π kπ π kπ π ⇔ x= + ∨x= + ∨ x = + kπ , k ∈ 4 2 10 5 2 Baø i 32 : Cho phöông trình ⎛π x⎞ 7 sin x.cos 4x − sin 2 2x = 4 sin 2 ⎜ − ⎟ − ( *) ⎝4 2⎠ 2 Tìm caù c nghieä m cuû a phöông trình thoû a : x − 1 < 3
- 1 ⎡ π ⎤ 7 Ta coù : (*)⇔ sin x.cos 4x − (1 − cos 4x ) = 2 ⎢1 − cos ⎛ − x ⎞ ⎥ − ⎜ ⎟ 2 ⎣ ⎝2 ⎠⎦ 2 1 1 3 ⇔ sin x cos 4x − + cos 4x = − − 2sin x 2 2 2 1 ⇔ sin x cos 4x + cos 4x + 1 + 2sin x = 0 2 ⎛ 1⎞ ⎛ 1⎞ ⇔ cos 4x ⎜ sin x + ⎟ + 2 ⎜ sin x + ⎟ = 0 ⎝ 2⎠ ⎝ 2⎠ ⎛ 1⎞ ⇔ ( cos 4x + 2) ⎜ sin x + ⎟ = 0 ⎝ 2⎠ ⎡cos 4x = −2 ( loaïi ) ⎡ π ⎢ ⎢ x = − 6 + k 2π ⇔ ⎢sin x = − 1 = sin ⎛ − π ⎞ ⇔ ⎢ ⎢ ⎜ ⎟ ⎢ x = 7π + 2hπ ⎣ 2 ⎝ 6⎠ ⎢ ⎣ 6 Ta coù : x − 1 < 3 ⇔ −3 < x − 1 < 3 ⇔ −2 < x < 4 π Vaä y : −2 < − + k2π < 4 6 π π 1 1 2 1 ⇔ − 2 < 2kπ < 4 + ⇔ −
- 3 ⇔ sin 4x = sin3 4x 4 ⇔ 3sin 4x − 4 sin3 4x = 0 ⇔ sin12x = 0 kπ ⇔ 12x = kπ ⇔ x= ( k ∈ Z) 12 Baø i 34 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B, naê m 2002) Giaû i phöông trình : sin 2 3x − cos2 4x = sin 2 5x − cos2 6a ( * ) Ta coù : (*)⇔ 1 1 1 1 (1 − cos 6x ) − (1 + cos 8x ) = (1 − cos10x ) − (1 + cos12x ) 2 2 2 2 ⇔ cos 6x + cos 8x = cos10x + cos12x ⇔ 2 cos7x cos x = 2 cos11x cos x ⇔ 2 cos x ( cos 7x − cos11x ) = 0 ⇔ cos x = 0 ∨ cos7x = cos11x π ⇔ x = + kπ ∨ 7x = ±11x + k 2π 2 π kπ kπ ⇔ x = + kπ ∨ x = − ∨x= ,k ∈ 2 2 9 Baø i 35 : Giaû i phöông trình ( sin x + sin 3x ) + sin 2x = ( cos x + cos 3x ) + cos 2x ⇔ 2sin 2x cos x + sin 2x = 2 cos 2x cos x + cos 2x ⇔ sin 2x ( 2 cos x + 1) = cos 2x ( 2 cos x + 1) ⇔ ( 2 cos x + 1) ( sin 2x − cos 2x ) = 0 1 2π ⇔ cos x = −= cos ∨ sin 2x = cos 2x 2 3 2π π ⇔ x=± + k2π ∨ tg2x = 1 = tg 3 4 2π π π ⇔ x=± + k2π ∨ x = + k , ( k ∈ Z ) 3 8 2 Baø i 36: Giaû i phöông trình cos 10x + 2 cos2 4x + 6 cos 3x. cos x = cos x + 8 cos x. cos3 3x ( * ) Ta coù : (*)⇔ cos10x + (1 + cos 8x ) = cos x + 2 cos x ( 4 cos3 3x − 3 cos 3x ) ⇔ ( cos10x + cos 8x ) + 1 = cos x + 2 cos x.cos 9x ⇔ 2 cos 9x cos x + 1 = cos x + 2 cos x.cos 9x ⇔ cos x = 1 ⇔ x = k2π ( k ∈ Z ) Baø i 37 : Giaû i phöông trình
- 4 sin 3 x + 3 cos3 x − 3sin x − sin 2 x cos x = 0 ( * ) Ta coù : (*) ⇔ sin x ( 4 sin 2 x − 3) − cos x ( sin 2 x − 3 cos2 x ) = 0 ⇔ sin x ( 4 sin 2 x − 3) − cos x ⎡sin 2 x − 3 (1 − sin 2 x ) ⎤ = 0 ⎣ ⎦ ⇔ ( 4 sin x − 3) ( sin x − cos x ) = 0 2 ⇔ ⎡ 2 (1 − cos 2x ) − 3⎤ ( sin x − cos x ) = 0 ⎣ ⎦ ⎡ 1 2π cos 2x = − = cos ⇔ ⎢ 2 3 ⎢ ⎣sin x = cos x ⎡ π ⎡ 2π ⎢ x = ± + kπ ⇔ ⎢2x = ± 3 + k2π ⇔ ⎢ 3 ( k ∈ Z) ⎢ ⎢ x = π + kπ ⎣ tgx = 1 ⎢ ⎣ 4 Baø i 38 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B naê m 2005) Giaû i phöông trình : sin x + cos x + 1 + sin 2x + cos 2x = 0 ( * ) Ta coù : (*) ⇔ sin x + cos x + 2sin x cos x + 2 cos2 x = 0 ⇔ sin x + cos x + 2 cos x ( sin x + cos x ) = 0 ⇔ ( sin x + cos x ) (1 + 2 cos x ) = 0 ⎡sin x = − cos x ⇔ ⎢ ⎢cos 2x = − 1 = cos 2π ⎣ 2 3 ⎡ tgx = −1 ⇔ ⎢ ⎢ x = ± 2π + k 2π ⎣ 3 ⎡ π ⎢ x = − 4 + kπ ⇔ ⎢ ( k ∈ Z) ⎢ x = ± 2π + k2π ⎢ ⎣ 3 Baø i 39 : Giaû i phöông trình ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 cos2 x = 3 ( *) Ta coù : (*) ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 (1 − sin 2 x ) − 3 = 0 ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + (1 + 2 sin x )(1 − 2 sin x ) = 0 ⇔ ( 2 sin x + 1) ⎡ 3 cos 4x + 2 sin x − 4 + (1 − 2 sin x ) ⎤ = 0 ⎣ ⎦ ⇔ 3 ( cos 4x − 1)( 2 sin x + 1) = 0 1 ⎛ π⎞ ⇔ cos 4x = 1 ∨ sin x = − = sin ⎜ − ⎟ 2 ⎝ 6⎠
- π 7π ⇔ 4x = k2π ∨ x = − + k2π ∨ x = + k2π 6 6 kπ π 7π ⇔ x= ∨ x = − + k2π ∨ x = + k2π, ( k ∈ Z) 2 6 6 Baø i 40: Giaû i phöông trình sin 6 x + cos6 x = 2 ( sin 8 x + cos8 x ) ( * ) Ta coù : (*) ⇔ sin6 x − 2sin8 x + cos6 x − 2 cos8 x = 0 ⇔ sin 6 x (1 − 2 sin 2 x ) − cos6 x ( 2 cos2 x − 1) = 0 ⇔ sin6 x cos 2x − cos6 x. cos 2x = 0 ⇔ cos 2x ( sin 6 x − cos6 x ) = 0 ⇔ cos 2x = 0 ∨ sin6 x = cos6 x ⇔ cos 2x = 0 ∨ tg 6 x = 1 π ⇔ 2x = ( 2k + 1) ∨ tgx = ±1 2 π π ⇔ x = ( 2k + 1) ∨ x = ± + kπ 4 4 π kπ ⇔ x= + ,k ∈ 4 2 Baø i 41 : Giaû i phöông trình 1 cos x.cos 2x.cos 4x.cos 8x = ( *) 16 Ta thaá y x = kπ khoâ n g laø nghieä m cuû a (*) vì luù c ñoù cos x = ±1, cos 2x = cos 4x = cos 8x = 1 1 (*) thaøn h : ±1 = voâ nghieä m 16 Nhaâ n 2 veá cuû a (*) cho 16sin x ≠ 0 ta ñöôï c (*) ⇔ (16 sin x cos x ) cos 2x.cos 4x.cos 8x = sin x vaø sin x ≠ 0 ⇔ ( 8 sin 2x cos 2x ) cos 4x.cos 8x = sin x vaø sin x ≠ 0 ⇔ ( 4 sin 4x cos 4x ) cos 8x = sin x vaø sin x ≠ 0 ⇔ 2sin 8x cos 8x = sin x vaø sin x ≠ 0 ⇔ sin16x = sin x vaø sin x ≠ 0 k2π π kπ ⇔x = ∨x= + , ( k ∈ Z) 15 17 17 Do : x = hπ khoâ n g laø nghieä m neâ n k ≠ 15m vaø 2k + 1 ≠ 17n ( n, m ∈ Z ) Baø i 42: Giaû i phöông trình 8cos ⎛ x + π⎞ = cos 3x ( * ) 3 ⎜ ⎟ ⎝ 3⎠ π π Ñaët t = x + ⇔x=t− 3 3
- Thì cos 3x = cos ( 3t − π ) = cos ( π − 3t ) = − cos 3t Vaä y (*) thaø n h 8 cos3 t = − cos 3t ⇔ 8 cos3 t = −4 cos3 t + 3 cos t ⇔ 12 cos3 t − 3 cos t = 0 ⇔ 3 cos t ( 4 cos2 t − 1) = 0 ⇔ 3 cos t ⎡2 (1 + cos 2t ) − 1⎤ = 0 ⎣ ⎦ ⇔ cos t ( 2 cos 2t + 1) = 0 1 2π ⇔ cos t = 0 ∨ cos 2t = − = cos 2 3 π 2π ⇔ t = ( 2k + 1) ∨ 2t = ± + k2π 2 3 π π ⇔ t = + kπ ∨ t = ± + kπ 2 3 π Maø x = t − 3 π 2π Vaä y (*) ⇔ x = + k2π ∨ x = kπ ∨ x = + kπ, ( vôùik ∈ Z ) 6 3 Ghi chuù : Khi giaû i caù c phöông trình löôï n g giaù c coù chöù a tgu, cotgu, coù aå n ôû maã u , hay chöù a caê n baä c chaü n ... ta phaû i ñaë t ñieà u kieä n ñeå phöông trình xaù c ñònh. Ta seõ duø n g caù c caù c h sau ñaâ y ñeå kieå m tra ñieà u kieä n xem coù nhaä n nghieä m hay khoâ n g. + Thay caùc giaù trò x tìm ñöôï c vaø o ñieà u kieä n thöû laï i xem coù thoû a Hoaë c + Bieå u dieã n caù c ngoï n cung ñieà u kieä n vaø caù c ngoï n cung tìm ñöôïc treâ n cuø n g moä t ñöôø n g troø n löôï n g giaù c . Ta seõ loaï i boû ngoï n cung cuû a nghieä m khi coù truø n g vôù i ngoï n cung cuû a ñieà u kieä n . Hoaë c + So vôi caù c ñieà u kieä n trong quaù trình giaûi phöông trình. Baø i 43 : Giaû i phöông trình tg 2 x − tgx.tg3x = 2 ( * ) ⎧cos x ≠ 0 π hπ Ñieà u kieä n ⎨ ⇔ cos3x ≠ 0 ⇔ x ≠ + ⎩cos 3x = 4 cos x − 3 cos x ≠ 0 3 6 3 Luù c ñoù ta coù (*) ⇔ tgx ( tgx − tg3x ) = 2 sin x ⎛ sin x sin 3x ⎞ ⇔ ⎜ − ⎟=2 cos x ⎝ cos x cos 3x ⎠ ⇔ sin x ( sin x cos 3x − cos x sin 3x ) = 2 cos2 x cos 3x ⇔ sin x sin ( −2x ) = 2 cos2 x. cos 3x ⇔ −2 sin2 x cos x = 2 cos2 x cos 3x ⇔ − sin2 x = cos x cos 3x (do cos x ≠ 0 ) 1 1 ⇔ − (1 − cos 2x ) = ( cos 4x + cos 2x ) 2 2 ⇔ cos 4x = −1 ⇔ 4x = π + k2π
- π kπ ⇔x = + ( k ∈ Z) 4 2 so vôù i ñieà u kieä n π kπ ⎛ 3π 3kπ ⎞ 2 Caù c h 1 : Khi x = + thì cos 3x = cos ⎜ + ⎟=± ≠ 0 ( nhaän ) 4 2 ⎝ 4 2 ⎠ 2 Caù c h 2 : Bieå u dieã n caù c ngoï n cung ñieà u kieä n vaø ngoï n cung nghieä m ta thaá y khoâ n g coù ngoï n cung naø o truø n g nhau. Do ñoù : π kπ (*) ⇔ x = + 4 2 Löu yù caù c h 2 raá t maá t thôøi gian Caù c h 3 : 3π 3kπ π Neá u 3x = + = + hπ 4 2 2 Thì 3 + 6k = 2 + 4h ⇔ 1 = 4h − 6k 1 ⇔ = 2h − 3k (voâ lyù vì k, h ∈ Z ) 2 Baø i 44: Giaûi phöông trình 11 tg 2 x + cot g 2 x + cot g 2 2x = ( *) 3 ⎧cos x ≠ 0 ⎪ Ñieà u kieä n ⎨sin x ≠ 0 ⇔ sin 2x ≠ 0 ⎪sin 2x ≠ 0 ⎩ Do ñoù : ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ 11 (*) ⇔ ⎜ − 1⎟ + ⎜ − 1⎟ + ⎜ − 1⎟ = ⎝ cos x ⎠ ⎝ sin x ⎠ ⎝ sin 2x 3 2 2 2 ⎠ 1 1 1 20 ⇔ + + = cos x sin x 4 sin x cos x 2 2 2 2 3 4 sin x + 4 cos x + 1 20 2 2 ⇔ = 4 sin2 x cos2 x 3 5 20 ⇔ = sin2 2x 3 3 ⇔ sin2 2x = (nhaä n do sin2x ≠ 0 ) 4 1 3 ⇔ (1 − cos 4x ) = 2 4 1 2π ⇔ cos 4x = − = cos 2 3 2π ⇔ 4x = ± + k2π 3 π kπ ⇔x = ± + ( k ∈ Z) 6 2
- 2 Chuù yù : Coù theå deã daø n g chöù n g minh : tgx + cot gx = sin 2x ⎛ 1 ⎞ 11 Vaä y (*) ⇔ ( tgx + cot gx ) − 2 + ⎜ 2 − 1⎟ = ⎝ sin x 3 2 ⎠ 5 20 ⇔ = sin 2x 2 3 Baø i 45 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2003) Giaû i phöông trình ⎛x π⎞ x sin 2 ⎜ − ⎟ tg 2 x − cos2 = 0 ( *) ⎝2 4⎠ 2 Ñieà u kieä n : cos x ≠ 0 ⇔ sin x ≠ ±1 luù c ñoù : 1⎡ ⎛ π ⎞ ⎤ sin 2 x 1 (*) ⇔ ⎢1 − cos ⎜ x − ⎟ ⎥ − [1 + cos x ] = 0 2⎣ ⎝ 2 ⎠ ⎦ cos2 x 2 (1 − sin x ) (1 − cos2 x ) ⇔ − (1 + cos x ) = 0 1 − sin 2 x 1 − cos2 x ⇔ − (1 + cos x ) = 0 1 + sin x ⎡ 1 − cos x ⎤ ⇔ (1 + cos x ) ⎢ − 1⎥ = 0 ⎣ 1 + sin x ⎦ ⇔ (1 + cos x ) ( − cos x − sin x ) = 0 ⎡cos x = −1 ( nhaändo cos x ≠ 0 ) ⇔ ⎢ ⎣ tgx = −1 ⎡ x = π + k2π ⇔ ⎢ ⎢ x = − π + kπ ⎣ 4 Baø i 46 : Giaû i phöông trình sin 2x ( cot gx + tg2x ) = 4 cos2 x ( * ) ⎧cos x ≠ ±1 ⎧sin x ≠ 0 ⎧sin x ≠ 0 ⎪ Ñieà u kieä n : ⎨ ⇔ ⎨ ⇔ ⎨ 2 ⎩cos 2x ≠ 0 ⎩2 cos x − 1 ≠ 0 2 ⎪cos x ≠ ± ⎩ 2 cos x sin 2x Ta coù : cot gx + tg2x = + sin x cos 2x cos 2x cos x + sin 2x sin x = sin x cos 2x cos x = sin x cos 2x ⎛ cos x ⎞ Luù c ñoù : (*) ⇔ 2 sin x cos x ⎜ ⎟ = 4 cos x 2 ⎝ sin x cos 2x ⎠
- 2 cos2 x ⇔ = 4 cos2 x ( Do sin x ≠ 0 ) cos 2x ⎡ ⎛ 2 ⎞ ⎡cos x = 0 ⎢cos x = 0 ⎜ Nhaän do cos x ≠ ⎜ vaø ≠ ±1 ⎟ ⎟ 2 ⇔ ⎢ 1 ⇔ ⎢ ⎝ ⎠ ⎢ =2 ⎢ 1 π ⎣ cos 2x ⎢cos 2x = = cos , ( nhaän do sin x ≠ 0) ⎣ 2 3 ⎡ π ⎢ x = 2 + kπ ⇔ ⎢ ( k ∈ Z) ⎢ x = ± π + kπ ⎢ ⎣ 6 Baø i 47 : Giaû i phöông trình: cot g 2 x − tg 2 x = 16 (1 + cos 4x ) cos 2x cos2 x sin 2 x Ta coù : cot g 2 x − tg 2 x = − sin2 x cos2 x cos4 x − sin4 x 4 cos 2x = = sin2 x cos2 x sin2 2x ⎧sin 2x ≠ 0 Ñieà u kieä n : ⎨ ⇔ sin 4x ≠ 0 ⎩cos 2x ≠ 0 4 Luù c ñoù (*) ⇔ = 16 (1 + cos 4x ) sin2 2x ⇔ 1 = 4 (1 + cos 4x ) sin2 2x ⇔ 1 = 2 (1 + cos 4x ) (1 − cos 4x ) ( ) ⇔ 1 = 2 1 − cos2 4x = 2 sin 2 4x 1 ⇔ sin2 4x = ( nhaän do sin 4x ≠ 0) 2 1 1 ⇔ (1 − cos 8x ) = 2 2 π kπ ⇔ cos 8x = 0 ⇔ x = + ,k ∈ 16 8 7 ⎛ π⎞ ⎛π ⎞ Baø i 48: Giaûi phöông trình: sin 4 x + cos4 x = cot g ⎜ x + ⎟ cot g ⎜ − x ⎟ ( *) 8 ⎝ 3⎠ ⎝6 ⎠ ⎧ ⎛ π⎞ ⎧ ⎛ π⎞ ⎪sin ⎜ x + 3 ⎟ ≠ 0 ⎪sin ⎜ x + ⎟≠0 3⎠ ⎪ ⎝ ⎠ ⎪ ⎝ ⎛ 2π ⎞ Ñieà u kieä n ⎨ ⇔ ⎨ ⇔ sin ⎜ 2x + ⎟≠0 ⎪sin ⎛ π − x ⎞ ≠ 0 ⎪cos ⎛ x + π⎞ ⎝ 3 ⎠ ⎪ ⎜ ⎟ ⎪ ⎜ ⎟≠0 ⎩ ⎝6 ⎠ ⎩ ⎝ 3⎠
- 1 3 ⇔ − sin 2x + cos 2x ≠ 0 2 2 ⇔ tg2x ≠ 3 1 ( ) 2 Ta coù : sin4 x + cos4 x = sin2 x + cos2 x − 2sin2 x.cos2 x = 1 − sin2 2x 2 ⎛ π⎞ ⎛π ⎞ ⎛ π⎞ ⎛π ⎞ Vaø : cot g ⎜ x + ⎟ .cot g ⎜ − x ⎟ = cot g ⎜ x + ⎟ .tg ⎜ + x ⎟ = 1 ⎝ 3⎠ ⎝6 ⎠ ⎝ 3⎠ ⎝3 ⎠ 1 7 Luù c ñoù : (*) ⇔ 1 − sin2 2x = 2 8 1 1 ⇔ − (1 − cos 4x ) = − 4 8 1 ⇔ cos 4x = 2 π π kπ ⇔ 4x = ± + k2π ⇔ x = ± + 3 12 2 3 (nhaä n do tg2x = ± ≠ 3) 3 1 Baø i 49: Giaû i phöông trình 2tgx + cot g2x = 2 sin 2x + ( *) sin 2x ⎧cos 2x ≠ 0 Ñieà u kieä n : ⎨ ⇔ sin 2x ≠ 0 ⇔ cos 2x ≠ ±1 ⎩sin 2x ≠ 0 2 sin x cos 2x 1 Luù c ñoù : (*) ⇔ + = 2 sin 2x + cos x sin 2x sin 2x ⇔ 4 sin x + cos 2x = 2 sin 2x + 1 2 2 ( ) ⇔ 4 sin2 x + 1 − 2 sin 2 x = 8 sin2 x cos2 x + 1 ( ⇔ 2 sin2 x 1 − 4 cos2 x = 0 ) ⇔ 2 sin2 x ⎡1 − 2 (1 + cos 2x ) ⎤ = 0 ⎣ ⎦ ⎡sin x = 0 ( loaïi do sin 2x ≠ 0 ⇒ sin x ≠ 0 ) ⇔⎢ ⎢cos 2x = − 1 = cos 2π ( nhaän do cos 2x ≠ ±1) ⎢ ⎣ 2 3 2π ⇔ 2x = ± + k2π ( k ∈ Z ) 3 π ⇔ x = ± + kπ, k ∈ 3 3 ( sin x + tgx ) Baø i 51: Giaû i phöông trình: − 2 (1 + cos x ) = 0 ( *) tgx − sin x
- sin x Ñieà u kieä n : tgx − sin x ≠ 0 ⇔ − sin x ≠ 0 cos x ⎧sin x ≠ 0 sin x (1 − cos x ) ⎪ ⇔ ≠ 0 ⇔ ⎨cos x ≠ 0 ⇔ sin 2x ≠ 0 cos x ⎪cos x ≠ 1 ⎩ 3 ( sin x + tgx ) .cot gx Luù c ñoù (*)⇔ − 2 (1 + cos x ) = 0 ( tgx − sin x ) .cot gx 3 ( cos x + 1) ⇔ − 2 (1 + cos x ) = 0 (1 − cos x ) 3 ⇔ − 2 = 0 ( do sin x ≠ 0 neân cos x + 1 ≠ 0) 1 − cos x ⇔ 1 + 2 cos x = 0 1 ⇔ cos x = − (nhaä n so vôù i ñieà u kieä n ) 2 2π ⇔ x=± + k2π, k ∈ 3 Baø i 52 : Giaû i phöông trình 2 2 (1 − cos x ) + (1 + cos x ) − tg 2 x sin x = 1 1 + sin x + tg 2 x * ( ) ( ) 4 (1 − sin x ) 2 ⎧cos x ≠ 0 Ñieà u kieä n : ⎨ ⇔ cos x ≠ 0 ⎩sin x ≠ 1 2 (1 + cos2 x ) sin 3 x 1 sin 2 x Luù c ñoù (*)⇔ − = (1 + sin x ) + 4 (1 − sin x ) 1 − sin 2 x 2 1 − sin 2 x ⇔ (1 + cos2 x ) (1 + sin x ) − 2 sin 3 x = (1 + sin x ) (1 − sin 2 x ) + 2 sin 2 x ⇔ (1 + sinx ) (1 + cos2 x ) = (1 + sin x ) cos2 x + 2 sin 2 x (1 + sin x ) ⎡1 + sin x = 0 ⇔ ⎢ ⎣1 + cos x = cos x + 2 sin x 2 2 2 ⎡sin x = −1 ( loaïi do cos x ≠ 0 ) ⇔ ⎢ ⇔ cos2x = 0 ⎣1 = 1 − cos 2x π ⇔ 2x = + kπ 2 π π ⇔ x = + k (nhaä n do cosx ≠ 0) 4 2 Baø i 53 : Giaû i phöông trình cos 3x.tg5x = sin 7x ( * ) Ñieà u kieä n cos 5x ≠ 0 sin 5x Luù c ñoù : (*) ⇔ cos 3x. = sin 7x cos 5x
- ⇔ sin 5x.cos 3x = sin 7x.cos 5x 1 1 ⇔ [sin 8x + sin 2x ] = [sin12x + sin 2x ] 2 2 ⇔ sin 8x = sin12x ⇔ 12x = 8x + k2π ∨ 12x = π − 8x + k2π kπ π kπ ⇔x = ∨ x= + 2 20 10 So laï i vôù i ñieà u kieä n kπ 5kπ kπ x= thì cos 5x = cos = cos (loaï i neá u k leû ) 2 2 2 π kπ ⎛ π kπ ⎞ x= + thì cos 5x = cos ⎜ + ⎟ ≠ 0 nhaän 20 10 ⎝4 2 ⎠ π kπ Do ñoù : (*)⇔ x = hπ ∨ x = + , vôù i k, h ∈ 20 10 Baø i 54 : Giaû i phöông trình sin4 x + cos4 x 1 = ( tgx + cot g2x ) ( *) sin 2x 2 Ñieà u kieä n : sin 2x ≠ 0 Ta coù : sin 4 x + cos4 x = ( sin 2 x + cos2 x ) − 2 sin 2 x cos2 x 2 1 =1− sin2 2x 2 sin x cos 2x tgx + cot g2x = + cos x sin 2x sin 2x sin x + cos x cos 2x = cos x sin 2x cos ( 2x − x ) 1 = = cos x sin 2x sin 2x 1 1 − sin 2 2x 2 1 Do ñoù : (*) ⇔ = sin 2x 2 sin 2x 1 1 ⇔ 1 − sin 2 2x = 2 2 ⇔ sin 2x = 1 ( nhaän do sin 2x ≠ 0 ) 2 ⇔ cos2 2x = 0 π ⇔ 2x = + kπ, k ∈ 2 π kπ ⇔x = + , k ∈ 4 2 Baø i 55 : Giaû i phöông trình tg 2 x.cot g 2 2x.cot g3x = tg 2 x − cot g 2 2x + cot g3x ( * ) Ñieà u kieä n : cos x ≠ 0 ∧ sin 2x ≠ 0 ∧ sin 3x ≠ 0
- ⇔ sin 2x ≠ 0 ∧ sin 3x ≠ 0 Luùc ñoù (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x ⎡⎛ 1 − cos 2x ⎞ ⎛ 1 + cos 4x ⎞ ⎤ 1 − cos 2x 1 + cos 4x ⇔ cot g3x ⎢⎜ ⎟⎜ ⎟ − 1⎥ = − ⎣⎝ 1 + cos 2x ⎠ ⎝ 1 − cos 4x ⎠ ⎦ 1 + cos 2x 1 − cos 4x ⇔ cot g3x ⎡(1 − cos 2x )(1 + cos 4x ) − (1 + cos 2x )(1 − cos 4x ) ⎤ ⎣ ⎦ = (1 − cos 2x )(1 − cos 4x ) − (1 + cos 4x )(1 + cos 2x ) ⇔ cot g3x [ 2 cos 4x − 2 cos 2x ] = −2 ( cos 4x + cos 2x ) cos 3x ⇔ [ −4 sin 3x sin x] = −4 cos 3x cos x sin 3x ⇔ cos 3x sin x = cos 3x cos x ( do sin 3x ≠ 0) ⇔ cos 3x = 0 ∨ sin x = cos x π ⇔ 3x = + kπ ∨ tgx = 1 2 π kπ π ⇔x= + ∨ x = + lπ ( k, l ∈ Z ) 6 3 4 So vôù i ñieà u kieä n : sin 2x.sin 3x ≠ 0 π kπ ⎛ π 2kπ ⎞ ⎛π ⎞ * Khi x = + thì sin ⎜ + ⎟ .sin ⎜ + kπ ⎟ ≠ 0 6 3 ⎝3 3 ⎠ ⎝2 ⎠ ⎛ 1 + 2k ⎞ ⇔ sin ⎜ ⎟π ≠ 0 ⎝ 3 ⎠ Luoâ n ñuù n g ∀ k thoûa 2k + 1 ≠ 3m ( m ∈ Z ) π ⎛π ⎞ ⎛ 3π ⎞ 2 * Khi x = + lπ thì sin ⎜ + 2lπ ⎟ sin ⎜ + 3lπ ⎟ = ± ≠0 4 ⎝2 ⎠ ⎝ 4 ⎠ 2 luoâ n ñuù n g ⎡ π kπ ⎢ x = 6 + 3 , k ∈ Z ∧ 2k ≠ 3m − 1 ( m ∈ ) Do ñoù : (*) ⇔ ⎢ ⎢ x = π + lπ, l ∈ ⎢ ⎣ 4 Caù c h khaù c: (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x tg 2 x − cot g 2 2x tg 2 2x.tg 2 x − 1 ⇔ cot g3x = = tg 2 x cot g 2 2x − 1 tg 2 x − tg 2 2x (1 + tg2x.tgx ) (1 − tg2x.tgx ) ⇔ cot g3x = (tg2x − tgx) ( tg2x + tgx) ⇔ cot g3x = cot gx. cotg3x ⇔ cos 3x = 0 ∨ sin x = cos x BAØI TAÄP
- ⎛π ⎞ 1. Tìm caù c nghieä m treâ n ⎜ , 3π ⎟ cuû a phöông trình: ⎝3 ⎠ ⎛ 5π ⎞ ⎛ 7π ⎞ sin ⎜ 2x + ⎟ − 3 cos ⎜ x − ⎟ = 1 + 2 sin x ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ π⎞ 2. Tìm caù c nghieä m x treâ n ⎜ 0, ⎟ cuû a phöông trình ⎝ 2⎠ sin 4x − cos 6x = sin (10, 5π + 10x ) 2 2 3. Giaû i caù c phöông trình sau: ( a/ sin 3 x + cos3 x = 2 sin5 x + cos5 x ) sin x + sin 2x + sin 3x b/ = 3 cos x + cos 2x + cos 3x 1 + cos x c/ tg 2 x = 1 − sin x d/ tg2x − tg3x − tg5x = tg2x.tg3x.tg5x 4 e/ cos x = cos2 x 3 ⎛ π⎞ 1 1 f/ 2 2 sin ⎜ x + ⎟ = + ⎝ 4 ⎠ sin x cos x 2 i/ 2tgx + cot g2x = 3 + sin 2x 2 h/ 3tg3x + cot g2x = 2tgx + sin 4x 2 2 2 k/ sin x + sin 2x + sin 3x = 2 sin 2x l/ + 2 cos x = 0 1 + sin x m/ 25 − 4x 2 ( 3sin 2πx + 8 sin πx ) = 0 sin x.cot g5x n/ =1 cos 9x 2 o/ 3tg6x − = 2tg2x − cot g4x sin 8x ( p/ 2 sin 3x 1 − 4 sin 2 x = 1 ) 1 + cos x q/ tg 2 x = 1 − sin x 2 r/ cos3 x cos 3x + sin 3 x sin 3x = 4 ⎛x⎞ ⎛x⎞ 5 s/ sin4 ⎜ ⎟ + cos4 ⎜ ⎟ = ⎝ 3⎠ ⎝ 3⎠ 8 t/ cos x − 4 sin x − 3 cos x sin2 x + sin x = 0 3 3 x x u/ sin4 + cos4 = 1 − 2sin x 2 2
- ⎛ π⎞ ⎛ π⎞ v/ sin ⎜ 3x − ⎟ = sin 2x.sin ⎜ x + ⎟ ⎝ 4⎠ ⎝ 4⎠ 4 w/ tg x + 1 = ( 2 − sin x ) sin 3x 2 cos4 x ⎛ x ⎞ y/ tgx + cos x − cos2 x = sin x ⎜ 1 + tg tgx ⎟ ⎝ 2 ⎠ 4. Cho phöông trình: ( 2 sin x − 1)( 2 cos 2x + 2 sin x + m ) = 3 − 4 cos2 x (1) a/ Giaû i phöông trình khi m = 1 b/ Tìm m ñeå (1) coù ñuù n g 2 nghieä m treâ n [ 0, π ] ( ÑS: m = 0 ∨ m < −1 ∨ m > 3 ) 5. Cho phöông trình: 4 cos5 x sin x − 4 sin5 x.cos x = sin2 4x + m (1) Bieá t raè n g x = π laø moä t nghieä m cuû a (1). Haõ y giaû i phöông trình trong tröôø n g hôï p ñoù . Th.S Phạm Hồng Danh TT luyện thi Đại học CLC Vĩnh Viễn
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chuyên đề: Phương trình lượng giác
70 p | 729 | 312
-
toán nâng cao tự luận và trắc nghiệm lượng giác 11: phần 2
128 p | 259 | 76
-
Bài giảng Phương trình lượng giác cơ bản - Đại số 11 - GV. Trần Thiên
21 p | 442 | 40
-
Giáo án bài Phương trình lượng giác cơ bản - Đại số 11 - GV. Trần Thiên
19 p | 767 | 34
-
Toán lượng giác - Chương 2: Phương trình lượng giác cơ bản
16 p | 167 | 33
-
Giáo án Toán đại số 11: Phương trình lượng giác cơ bản
17 p | 278 | 28
-
Bài giảng Đại số 11 chương 1 bài 2: Phương trình lượng giác cơ bản
23 p | 155 | 17
-
Toán 11 – Phương trình lượng giác cơ bản
11 p | 196 | 17
-
Giáo án toán 11 – Phương trình lượng giác cơ bản
11 p | 180 | 11
-
Giáo án Toán 11: Chương 1 - Phương trình lượng giác cơ bản (1)
8 p | 228 | 11
-
Giáo án Toán 11: Chương 1 - Phương trình lượng giác cơ bản (8)
26 p | 123 | 7
-
Giáo án Toán 11: Phương trình lượng giác cơ bản (5)
8 p | 159 | 5
-
Bài giảng Toán đại số 11: Chương 1
7 p | 106 | 4
-
Hướng dẫn giải bài 1,2,3 SGK trang 28 Giải tích lớp 11
5 p | 111 | 4
-
Chương 1 – Bài 2 Phương trình lượng giác cơ bản - đại số 11
4 p | 155 | 3
-
Bài 2 Phương trình lượng giác cơ bản – giáo án toán 11
20 p | 192 | 3
-
Toán 11- Chương 1 – Bài 2 Phương trình lượng giác cơ bản
13 p | 181 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn