Toán lượng giác - Chương 2: Phương trình lượng giác cơ bản
lượt xem 33
download
Tài liệu tham khảo Toán lượng giác - Chương 2: Phương trình lượng giác cơ bản giúp các bạn học sinh có thêm tư liệu ôn tập, luyện tập để nắm vững được những kiến thức cơ bản về môn Toán.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Toán lượng giác - Chương 2: Phương trình lượng giác cơ bản
- Chöông 2 : PHÖÔNG TRÌNH LÖÔÏNG GIAÙC CÔ BAÛN ⎡ u = v + k2π sin u = sin v ⇔ ⎢ ⎣ u = π − v + k2π cos u = cos v ⇔ u = ± v + k2π ⎧ π ⎪u ≠ + kπ tgu = tgv ⇔ ⎨ 2 ( k, k ' ∈ Z ) ⎪u = v + k ' π ⎩ ⎧u ≠ kπ cot gu = cot gv ⇔ ⎨ ⎩u = v + k ' π π Ñaëc bieä t : sin u = 0 ⇔ u = kπ cos u = 0 ⇔ u = + kπ 2 π sin u = 1 ⇔ u = + k2π ( k ∈ Z ) cos u = 1 ⇔ u = k2π ( k ∈ Z ) 2 π sin u = −1 ⇔ u = − + k2π cos u = −1 ⇔ u = π + k2π 2 Chuù yù : sin u ≠ 0 ⇔ cos u ≠ ±1 cos u ≠ 0 ⇔ sin u ≠ ±1 Baø i 28 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2002) Tìm x ∈ [ 0,14 ] nghieäm ñuùn g phöông trình cos 3x − 4 cos 2x + 3 cos x − 4 = 0 ( * ) Ta coù (*) : ⇔ ( 4 cos3 x − 3 cos x ) − 4 ( 2 cos2 x − 1) + 3 cos x − 4 = 0 ⇔ 4 cos3 x − 8 cos2 x = 0 ⇔ 4 cos2 x ( cos x − 2 ) = 0 ⇔ cos x = 0 hay cos x = 2 ( loaï i vì cos x ≤ 1) π ⇔ x= + kπ ( k ∈ Z ) 2 π Ta coù : x ∈ [ 0,14] ⇔ 0 ≤ + kπ ≤ 14 2 π π 1 14 1 ⇔ − ≤ kπ ≤ 14 − ⇔ −0, 5 = − ≤ k ≤ − ≈ 3, 9 2 2 2 π 2 ⎧ π 3π 5π 7π ⎫ Maø k ∈ Z neâ n k ∈ {0,1, 2, 3} . Do ñoù : x ∈ ⎨ , , , ⎬ ⎩2 2 2 2 ⎭ Baø i 29 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2004) Giaû i phöông trình : ( 2 cos x − 1)( 2 sin x + cos x ) = sin 2x − sin x ( *) Ta coù (*) ⇔ ( 2 cos x − 1)( 2 sin x + cos x ) = sin x ( 2 cos x − 1)
- ⇔ ( 2 cos x − 1) ⎡( 2 sin x + cos x ) − sin x ⎤ = 0 ⎣ ⎦ ⇔ ( 2 cos x − 1)( sin x + cos x ) = 0 1 ⇔ cos x = ∨ sin x = − cos x 2 π ⎛ π⎞ ⇔ cos x = cos ∨ tgx = −1 = tg ⎜ − ⎟ 3 ⎝ 4⎠ π π ⇔ x = ± + k2π ∨ x = − + kπ, ( k ∈ Z ) 3 4 Baø i 30 : Giaû i phöông trình cos x + cos 2x + cos 3x + cos 4x = 0 (*) Ta coù (*) ⇔ ( cos x + cos 4x ) + ( cos 2x + cos 3x ) = 0 5x 3x 5x x ⇔ 2 cos .cos + 2 cos .cos = 0 2 2 2 2 5x ⎛ 3x x⎞ ⇔ 2 cos ⎜ cos + cos ⎟ = 0 2 ⎝ 2 2⎠ 5x x ⇔ 4 cos cos x cos = 0 2 2 5x x ⇔ cos = 0 ∨ cos x = 0 ∨ cos = 0 2 2 5x π π x π ⇔ = + kπ ∨ x = + kπ ∨ = + kπ 2 2 2 2 2 π 2kπ π ⇔ x= + ∨ x = + kπ ∨ x = π + 2π, ( k ∈ Z ) 5 5 2 Baø i 31: Giaû i phöông trình sin 2 x + sin 2 3x = cos2 2x + cos2 4x ( * ) 1 1 1 1 Ta coù (*) ⇔ (1 − cos 2x ) + (1 − cos 6x ) = (1 + cos 4x ) + (1 + cos 8x ) 2 2 2 2 ⇔ − ( cos 2x + cos 6x ) = cos 4x + cos 8x ⇔ −2 cos 4x cos 2x = 2 cos 6x cos 2x ⇔ 2 cos 2x ( cos 6x + cos 4x ) = 0 ⇔ 4 cos 2x cos 5x cos x = 0 ⇔ cos 2x = 0 ∨ cos 5x = 0 ∨ cos x = 0 π π π ⇔ 2x = + kπ ∨ 5x + kπ ∨ x = + kπ, k ∈ 2 2 2 π kπ π kπ π ⇔ x= + ∨x= + ∨ x = + kπ , k ∈ 4 2 10 5 2 Baø i 32 : Cho phöông trình ⎛π x⎞ 7 sin x.cos 4x − sin2 2x = 4 sin 2 ⎜ − ⎟ − ( *) ⎝4 2⎠ 2 Tìm caù c nghieä m cuûa phöông trình thoûa : x − 1 < 3
- 1 ⎡ ⎛π ⎞⎤ 7 Ta coù : (*) ⇔ sin x.cos 4x − (1 − cos 4x ) = 2 ⎢1 − cos ⎜ − x ⎟ ⎥ − 2 ⎣ ⎝2 ⎠⎦ 2 1 1 3 ⇔ sin x cos 4x − + cos 4x = − − 2sin x 2 2 2 1 ⇔ sin x cos 4x + cos 4x + 1 + 2sin x = 0 2 ⎛ 1⎞ ⎛ 1⎞ ⇔ cos 4x ⎜ sin x + ⎟ + 2 ⎜ sin x + ⎟ = 0 ⎝ 2⎠ ⎝ 2⎠ ⎛ 1⎞ ⇔ ( cos 4x + 2) ⎜ sin x + ⎟ = 0 ⎝ 2⎠ ⎡cos 4x = −2 ( loaï i ) ⎡ π ⎢ ⎢ x = − 6 + k 2π ⇔ ⎢sin x = − 1 = sin ⎛ − π ⎞ ⇔ ⎢ ⎢ ⎜ ⎟ ⎢ x = 7π + 2hπ ⎣ 2 ⎝ 6⎠ ⎢ ⎣ 6 Ta coù : x − 1 < 3 ⇔ −3 < x − 1 < 3 ⇔ −2 < x < 4 π Vaäy : −2 < − + k2π < 4 6 π π 1 1 2 1 ⇔ − 2 < 2kπ < 4 + ⇔ −
- 3 ⇔ sin 4x = sin3 4x 4 ⇔ 3sin 4x − 4 sin3 4x = 0 ⇔ sin12x = 0 kπ ⇔ 12x = kπ ⇔ x= ( k ∈ Z) 12 Baø i 34 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B, naê m 2002) Giaû i phöông trình : sin 2 3x − cos2 4x = sin 2 5x − cos2 6a ( * ) Ta coù : (*) ⇔ 1 1 1 1 (1 − cos 6x ) − (1 + cos 8x ) = (1 − cos10x ) − (1 + cos12x ) 2 2 2 2 ⇔ cos 6x + cos 8x = cos10x + cos12x ⇔ 2 cos7x cos x = 2 cos11x cos x ⇔ 2 cos x ( cos 7x − cos11x ) = 0 ⇔ cos x = 0 ∨ cos7x = cos11x π ⇔ x = + kπ ∨ 7x = ±11x + k 2π 2 π kπ kπ ⇔ x = + kπ ∨ x = − ∨x= ,k ∈ 2 2 9 Baø i 35 : Giaû i phöông trình ( sin x + sin 3x ) + sin 2x = ( cos x + cos 3x ) + cos 2x ⇔ 2sin 2x cos x + sin 2x = 2 cos 2x cos x + cos 2x ⇔ sin 2x ( 2 cos x + 1) = cos 2x ( 2 cos x + 1) ⇔ ( 2 cos x + 1) ( sin 2x − cos 2x ) = 0 1 2π ⇔ cos x = −= cos ∨ sin 2x = cos 2x 2 3 2π π ⇔ x=± + k2π ∨ tg2x = 1 = tg 3 4 2π π π ⇔ x=± + k2π ∨ x = + k , ( k ∈ Z ) 3 8 2 Baø i 36: Giaû i phöông trình cos 10x + 2 cos2 4x + 6 cos 3x. cos x = cos x + 8 cos x. cos3 3x ( * ) Ta coù : (*) ⇔ cos10x + (1 + cos 8x ) = cos x + 2 cos x ( 4 cos3 3x − 3 cos 3x ) ⇔ ( cos10x + cos 8x ) + 1 = cos x + 2 cos x.cos 9x ⇔ 2 cos 9x cos x + 1 = cos x + 2 cos x.cos 9x ⇔ cos x = 1 ⇔ x = k2π ( k ∈ Z ) Baø i 37 : Giaû i phöông trình
- 4 sin 3 x + 3 cos3 x − 3sin x − sin 2 x cos x = 0 ( * ) Ta coù : (*) ⇔ sin x ( 4 sin 2 x − 3) − cos x ( sin 2 x − 3 cos2 x ) = 0 ⇔ sin x ( 4 sin 2 x − 3) − cos x ⎡sin 2 x − 3 (1 − sin 2 x ) ⎤ = 0 ⎣ ⎦ ⇔ ( 4 sin x − 3) ( sin x − cos x ) = 0 2 ⇔ ⎡ 2 (1 − cos 2x ) − 3⎤ ( sin x − cos x ) = 0 ⎣ ⎦ ⎡ 1 2π cos 2x = − = cos ⇔ ⎢ 2 3 ⎢ ⎣sin x = cos x ⎡ π ⎡ 2π ⎢ x = ± + kπ ⇔ ⎢2x = ± 3 + k2π ⇔ ⎢ 3 ( k ∈ Z) ⎢ ⎢ x = π + kπ ⎣ tgx = 1 ⎢ ⎣ 4 Baø i 38 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B naê m 2005) Giaû i phöông trình : sin x + cos x + 1 + sin 2x + cos 2x = 0 ( * ) Ta coù : (*) ⇔ sin x + cos x + 2sin x cos x + 2 cos2 x = 0 ⇔ sin x + cos x + 2 cos x ( sin x + cos x ) = 0 ⇔ ( sin x + cos x ) (1 + 2 cos x ) = 0 ⎡sin x = − cos x ⇔ ⎢ ⎢cos 2x = − 1 = cos 2π ⎣ 2 3 ⎡ tgx = −1 ⇔ ⎢ ⎢ x = ± 2π + k 2π ⎣ 3 ⎡ π ⎢ x = − 4 + kπ ⇔ ⎢ ( k ∈ Z) ⎢x = ± 2π + k2π ⎢ ⎣ 3 Baø i 39 : Giaû i phöông trình ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 cos2 x = 3 ( *) Ta coù : (*) ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + 4 (1 − sin 2 x ) − 3 = 0 ⇔ ( 2 sin x + 1)( 3 cos 4x + 2 sin x − 4 ) + (1 + 2 sin x )(1 − 2 sin x ) = 0 ⇔ ( 2 sin x + 1) ⎡ 3 cos 4x + 2 sin x − 4 + (1 − 2 sin x ) ⎤ = 0 ⎣ ⎦ ⇔ 3 ( cos 4x − 1)( 2 sin x + 1) = 0 1 ⎛ π⎞ ⇔ cos 4x = 1 ∨ sin x = − = sin ⎜ − ⎟ 2 ⎝ 6⎠
- π 7π ⇔ 4x = k2π ∨ x = − + k2π ∨ x = + k2π 6 6 kπ π 7π ⇔ x= ∨ x = − + k2π ∨ x = + k2π, ( k ∈ Z) 2 6 6 Baø i 40: Giaû i phöông trình sin 6 x + cos6 x = 2 ( sin 8 x + cos8 x ) ( * ) Ta coù : (*) ⇔ sin6 x − 2sin8 x + cos6 x − 2 cos8 x = 0 ⇔ sin 6 x (1 − 2 sin 2 x ) − cos6 x ( 2 cos2 x − 1) = 0 ⇔ sin6 x cos 2x − cos6 x. cos 2x = 0 ⇔ cos 2x ( sin 6 x − cos6 x ) = 0 ⇔ cos 2x = 0 ∨ sin6 x = cos6 x ⇔ cos 2x = 0 ∨ tg 6 x = 1 π ⇔ 2x = ( 2k + 1) ∨ tgx = ±1 2 π π ⇔ x = ( 2k + 1) ∨ x = ± + kπ 4 4 π kπ ⇔ x= + ,k ∈ 4 2 Baø i 41 : Giaû i phöông trình 1 cos x.cos 2x.cos 4x.cos 8x = ( *) 16 Ta thaá y x = kπ khoâ n g laø nghieä m cuûa (*) vì luùc ñoù cos x = ±1, cos 2x = cos 4x = cos 8x = 1 1 (*) thaø n h : ±1 = voâ nghieä m 16 Nhaâ n 2 veá cuûa (*) cho 16sin x ≠ 0 ta ñöôï c (*) ⇔ (16 sin x cos x ) cos 2x.cos 4x.cos 8x = sin x vaø sin x ≠ 0 ⇔ ( 8 sin 2x cos 2x ) cos 4x.cos 8x = sin x vaø sin x ≠ 0 ⇔ ( 4 sin 4x cos 4x ) cos 8x = sin x vaø sin x ≠ 0 ⇔ 2sin 8x cos 8x = sin x vaø sin x ≠ 0 ⇔ sin16x = sin x vaø sin x ≠ 0 k2π π kπ ⇔x = ∨x= + , ( k ∈ Z) 15 17 17 Do : x = hπ khoâ n g laø nghieäm neâ n k ≠ 15m vaø 2k + 1 ≠ 17n ( n, m ∈ Z ) Baø i 42: Giaû i phöông trình 8cos ⎛ x + π⎞ = cos 3x ( * ) 3 ⎜ ⎟ ⎝ 3⎠ π π Ñaë t t = x + ⇔x=t− 3 3
- Thì cos 3x = cos ( 3t − π ) = cos ( π − 3t ) = − cos 3t Vaäy (*) thaø n h 8 cos3 t = − cos 3t ⇔ 8 cos3 t = −4 cos3 t + 3 cos t ⇔ 12 cos3 t − 3 cos t = 0 ⇔ 3 cos t ( 4 cos2 t − 1) = 0 ⇔ 3 cos t ⎡ 2 (1 + cos 2t ) − 1⎤ = 0 ⎣ ⎦ ⇔ cos t ( 2 cos 2t + 1) = 0 1 2π ⇔ cos t = 0 ∨ cos 2t = − = cos 2 3 π 2π ⇔ t = ( 2k + 1) ∨ 2t = ± + k2π 2 3 π π ⇔ t = + kπ ∨ t = ± + kπ 2 3 π Maø x = t − 3 π 2π Vaäy (*) ⇔ x = + k2π ∨ x = kπ ∨ x = + kπ, ( vôù ik ∈ Z ) 6 3 Ghi chuù : Khi giaû i caùc phöông trình löôï n g giaù c coù chöùa tgu, cotgu, coù aå n ôû maã u , hay chöùa caê n baä c chaü n ... ta phaû i ñaë t ñieà u kieä n ñeå phöông trình xaùc ñònh. Ta seõ duø n g caùc caù c h sau ñaây ñeå kieåm tra ñieàu kieän xem coù nhaä n nghieäm hay khoâ n g. + Thay caùc giaù trò x tìm ñöôï c vaøo ñieàu kieä n thöû laï i xem coù thoû a Hoaëc + Bieå u dieã n caùc ngoï n cung ñieàu kieä n vaø caùc ngoï n cung tìm ñöôï c treâ n cuø n g moä t ñöôø n g troø n löôï n g giaù c . Ta seõ loaï i boû ngoï n cung cuûa nghieäm khi coù truø n g vôù i ngoï n cung cuû a ñieà u kieän . Hoaëc + So vôi caùc ñieàu kieän trong quaù trình giaû i phöông trình. Baø i 43 : Giaû i phöông trình tg 2 x − tgx.tg3x = 2 ( * ) ⎧cos x ≠ 0 π hπ Ñieà u kieän ⎨ ⇔ cos3x ≠ 0 ⇔ x ≠ + ⎩ cos 3x = 4 cos3 x − 3 cos x ≠ 0 6 3 Luùc ñoù ta coù (*) ⇔ tgx ( tgx − tg3x ) = 2 sin x ⎛ sin x sin 3x ⎞ ⇔ ⎜ − ⎟=2 cos x ⎝ cos x cos 3x ⎠ ⇔ sin x ( sin x cos 3x − cos x sin 3x ) = 2 cos2 x cos 3x ⇔ sin x sin ( −2x ) = 2 cos2 x. cos 3x ⇔ −2 sin2 x cos x = 2 cos2 x cos 3x ⇔ − sin2 x = cos x cos 3x (do cos x ≠ 0 ) 1 1 ⇔ − (1 − cos 2x ) = ( cos 4x + cos 2x ) 2 2 ⇔ cos 4x = −1 ⇔ 4x = π + k2π
- π kπ ⇔x = + ( k ∈ Z) 4 2 so vôù i ñieàu kieä n π kπ ⎛ 3π 3kπ ⎞ 2 Caùc h 1 : Khi x = + thì cos 3x = cos ⎜ + ⎟=± ≠ 0 ( nhaä n ) 4 2 ⎝ 4 2 ⎠ 2 Caùc h 2 : Bieå u dieã n caùc ngoï n cung ñieàu kieä n vaø ngoï n cung nghieäm ta thaá y khoâ n g coù ngoï n cung naø o truø n g nhau. Do ñoù : π kπ (*) ⇔ x = + 4 2 Löu yù caù c h 2 raá t maá t thôø i gian Caùc h 3 : 3π 3kπ π Neá u 3x = + = + hπ 4 2 2 Thì 3 + 6k = 2 + 4h ⇔ 1 = 4h − 6k 1 ⇔ = 2h − 3k (voâ lyù vì k, h ∈ Z ) 2 Baø i 44: Giaû i phöông trình 11 tg 2 x + cot g 2 x + cot g 2 2x =( *) 3 ⎧cos x ≠ 0 ⎪ Ñieà u kieän ⎨sin x ≠ 0 ⇔ sin 2x ≠ 0 ⎪sin 2x ≠ 0 ⎩ Do ñoù : ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ 11 (*) ⇔ ⎜ − 1⎟ + ⎜ − 1⎟ + ⎜ − 1⎟ = ⎝ cos x ⎠ ⎝ sin x ⎠ ⎝ sin 2x 3 2 2 2 ⎠ 1 1 1 20 ⇔ + + = cos x sin x 4 sin x cos x 2 2 2 2 3 4 sin x + 4 cos x + 1 20 2 2 ⇔ = 4 sin2 x cos2 x 3 5 20 ⇔ = sin 2x 2 3 3 ⇔ sin2 2x = (nhaän do sin2x ≠ 0 ) 4 1 3 ⇔ (1 − cos 4x ) = 2 4 1 2π ⇔ cos 4x = − = cos 2 3 2π ⇔ 4x = ± + k2π 3 π kπ ⇔x = ± + ( k ∈ Z) 6 2
- 2 Chuù yù : Coù theå deã daøn g chöù n g minh : tgx + cot gx = sin 2x ⎛ 1 ⎞ 11 Vaäy (*) ⇔ ( tgx + cot gx ) − 2 + ⎜ 2 − 1⎟ = ⎝ sin x 3 2 ⎠ 5 20 ⇔ = sin 2x 2 3 Baø i 45 : (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2003) Giaû i phöông trình ⎛x π⎞ x sin 2 ⎜ − ⎟ tg 2 x − cos2 = 0 ( *) ⎝2 4⎠ 2 Ñieà u kieän : cos x ≠ 0 ⇔ sin x ≠ ±1 luù c ñoù : 1⎡ ⎛ π ⎞ ⎤ sin 2 x 1 (*) ⇔ ⎢1 − cos ⎜ x − ⎟ ⎥ − [1 + cos x ] = 0 2⎣ ⎝ 2 ⎠ ⎦ cos2 x 2 (1 − sin x ) (1 − cos2 x ) ⇔ − (1 + cos x ) = 0 1 − sin 2 x 1 − cos2 x ⇔ − (1 + cos x ) = 0 1 + sin x ⎡ 1 − cos x ⎤ ⇔ (1 + cos x ) ⎢ − 1⎥ = 0 ⎣ 1 + sin x ⎦ ⇔ (1 + cos x ) ( − cos x − sin x ) = 0 ⎡cos x = −1 ( nhaä ndo cos x ≠ 0 ) ⇔ ⎢ ⎣ tgx = −1 ⎡ x = π + k2π ⇔ ⎢ ⎢ x = − π + kπ ⎣ 4 Baø i 46 : Giaû i phöông trình sin 2x ( cot gx + tg2x ) = 4 cos2 x ( * ) ⎧cos x ≠ ±1 ⎧sin x ≠ 0 ⎧sin x ≠ 0 ⎪ Ñieà u kieän : ⎨ ⇔ ⎨ ⇔ ⎨ 2 ⎩cos 2x ≠ 0 ⎩2 cos x − 1 ≠ 0 2 ⎪cos x ≠ ± ⎩ 2 cos x sin 2x Ta coù : cot gx + tg2x = + sin x cos 2x cos 2x cos x + sin 2x sin x = sin x cos 2x cos x = sin x cos 2x ⎛ cos x ⎞ Luùc ñoù : (*) ⇔ 2 sin x cos x ⎜ ⎟ = 4 cos x 2 ⎝ sin x cos 2x ⎠
- 2 cos2 x ⇔ = 4 cos2 x ( Do sin x ≠ 0 ) cos 2x ⎡ ⎛ 2 ⎞ ⎡cos x = 0 ⎢ cos x = 0 ⎜ Nhaä n do cos x ≠ ⎜ vaø ≠ ±1 ⎟ ⎟ 2 ⇔ ⎢ 1 ⇔ ⎢ ⎝ ⎠ ⎢ =2 ⎢ 1 π ⎣ cos 2x ⎢cos 2x = = cos , ( nhaä n do sin x ≠ 0) ⎣ 2 3 ⎡ π ⎢ x = 2 + kπ ⇔ ⎢ ( k ∈ Z) ⎢ x = ± π + kπ ⎢ ⎣ 6 Baø i 47 : Giaû i phöông trình: cot g 2 x − tg 2 x = 16 (1 + cos 4x ) cos 2x cos2 x sin2 x Ta coù : cot g 2 x − tg 2 x = − sin2 x cos2 x cos4 x − sin4 x 4 cos 2x = = sin2 x cos2 x sin2 2x ⎧sin 2x ≠ 0 Ñieà u kieän : ⎨ ⇔ sin 4x ≠ 0 ⎩cos 2x ≠ 0 4 Luù c ñoù (*) ⇔ = 16 (1 + cos 4x ) sin2 2x ⇔ 1 = 4 (1 + cos 4x ) sin2 2x ⇔ 1 = 2 (1 + cos 4x ) (1 − cos 4x ) ( ) ⇔ 1 = 2 1 − cos2 4x = 2 sin 2 4x 1 ⇔ sin2 4x = ( nhaän do sin 4x ≠ 0) 2 1 1 ⇔ (1 − cos 8x ) = 2 2 π kπ ⇔ cos 8x = 0 ⇔ x = + ,k ∈ 16 8 7 ⎛ π⎞ ⎛π ⎞ Baø i 48: Giaû i phöông trình: sin 4 x + cos4 x = cot g ⎜ x + ⎟ cot g ⎜ − x ⎟ ( *) 8 ⎝ 3⎠ ⎝6 ⎠ ⎧ ⎛ π⎞ ⎧ ⎛ π⎞ ⎪sin ⎜ x + 3 ⎟ ≠ 0 ⎪sin ⎜ x + ⎟≠0 3⎠ ⎪ ⎝ ⎠ ⎪ ⎝ ⎛ 2π ⎞ Ñieà u kieän ⎨ ⇔ ⎨ ⇔ sin ⎜ 2x + ⎟≠0 ⎪sin ⎛ π − x ⎞ ≠ 0 ⎪cos ⎛ x + π⎞ ⎝ 3 ⎠ ⎪ ⎜ ⎟ ⎪ ⎜ ⎟≠0 ⎩ ⎝6 ⎠ ⎩ ⎝ 3⎠
- 1 3 ⇔ − sin 2x + cos 2x ≠ 0 2 2 ⇔ tg2x ≠ 3 1 ( ) 2 Ta coù : sin4 x + cos4 x = sin2 x + cos2 x − 2sin2 x.cos2 x = 1 − sin2 2x 2 ⎛ π⎞ ⎛π ⎞ ⎛ π⎞ ⎛π ⎞ Vaø : cot g ⎜ x + ⎟ .cot g ⎜ − x ⎟ = cot g ⎜ x + ⎟ .tg ⎜ + x ⎟ = 1 ⎝ 3⎠ ⎝6 ⎠ ⎝ 3⎠ ⎝ 3 ⎠ 1 7 Luù c ñoù : (*) ⇔ 1 − sin2 2x = 2 8 1 1 ⇔ − (1 − cos 4x ) = − 4 8 1 ⇔ cos 4x = 2 π π kπ ⇔ 4x = ± + k2π ⇔ x = ± + 3 12 2 3 (nhaän do tg2x = ± ≠ 3) 3 1 Baø i 49: Giaû i phöông trình 2tgx + cot g2x = 2 sin 2x + ( *) sin 2x ⎧cos 2x ≠ 0 Ñieà u kieän : ⎨ ⇔ sin 2x ≠ 0 ⇔ cos 2x ≠ ±1 ⎩sin 2x ≠ 0 2 sin x cos 2x 1 Luù c ñoù : (*) ⇔ + = 2 sin 2x + cos x sin 2x sin 2x ⇔ 4 sin x + cos 2x = 2 sin 2x + 1 2 2 ( ) ⇔ 4 sin2 x + 1 − 2 sin2 x = 8 sin2 x cos2 x + 1 ( ⇔ 2 sin2 x 1 − 4 cos2 x = 0 ) ⇔ 2 sin2 x ⎡1 − 2 (1 + cos 2x ) ⎤ = 0 ⎣ ⎦ ⎡sin x = 0 ( loaï i do sin 2x ≠ 0 ⇒ sin x ≠ 0 ) ⇔⎢ ⎢cos 2x = − 1 = cos 2π ( nhaä n do cos 2x ≠ ±1) ⎢ ⎣ 2 3 2π ⇔ 2x = ± + k2π ( k ∈ Z ) 3 π ⇔ x = ± + kπ, k ∈ 3 3 ( sin x + tgx ) Baø i 51: Giaû i phöông trình: − 2 (1 + cos x ) = 0 ( *) tgx − sin x
- sin x Ñieà u kieän : tgx − sin x ≠ 0 ⇔ − sin x ≠ 0 cos x ⎧sin x ≠ 0 sin x (1 − cos x ) ⎪ ⇔ ≠ 0 ⇔ ⎨cos x ≠ 0 ⇔ sin 2x ≠ 0 cos x ⎪cos x ≠ 1 ⎩ 3 ( sin x + tgx ) .cot gx Luùc ñoù (*) ⇔ − 2 (1 + cos x ) = 0 ( tgx − sin x ) .cot gx 3 ( cos x + 1) ⇔ − 2 (1 + cos x ) = 0 (1 − cos x ) 3 ⇔ − 2 = 0 ( do sin x ≠ 0 neâ n cos x + 1 ≠ 0) 1 − cos x ⇔ 1 + 2 cos x = 0 1 ⇔ cos x = − (nhaä n so vôù i ñieà u kieä n ) 2 2π ⇔ x=± + k2π, k ∈ 3 Baø i 52 : Giaû i phöông trình 2 2 (1 − cos x ) + (1 + cos x ) 1 − tg 2 x sin x = (1 + sin x ) + tg 2 x ( *) 4 (1 − sin x ) 2 ⎧cos x ≠ 0 Ñieà u kieän : ⎨ ⇔ cos x ≠ 0 ⎩sin x ≠ 1 2 (1 + cos2 x ) sin 3 x 1 sin 2 x Luùc ñoù (*) ⇔ − = (1 + sin x ) + 4 (1 − sin x ) 1 − sin 2 x 2 1 − sin 2 x ⇔ (1 + cos2 x ) (1 + sin x ) − 2 sin 3 x = (1 + sin x ) (1 − sin 2 x ) + 2 sin 2 x ⇔ (1 + sinx ) (1 + cos2 x ) = (1 + sin x ) cos2 x + 2 sin 2 x (1 + sin x ) ⎡1 + sin x = 0 ⇔ ⎢ ⎣1 + cos x = cos x + 2 sin x 2 2 2 ⎡sin x = −1 ( loaï i do cos x ≠ 0 ) ⇔ ⎢ ⇔ cos2x = 0 ⎣1 = 1 − cos 2x π ⇔ 2x = + kπ 2 π π ⇔ x = + k (nhaän do cosx ≠ 0) 4 2 Baø i 53 : Giaû i phöông trình cos 3x.tg5x = sin 7x ( * ) Ñieà u kieän cos 5x ≠ 0 sin 5x Luùc ñoù : (*) ⇔ cos 3x. = sin 7x cos 5x
- ⇔ sin 5x.cos 3x = sin 7x.cos 5x 1 1 ⇔ [sin 8x + sin 2x ] = [sin12x + sin 2x ] 2 2 ⇔ sin 8x = sin12x ⇔ 12x = 8x + k2π ∨ 12x = π − 8x + k2π kπ π kπ ⇔x = ∨ x= + 2 20 10 So laï i vôù i ñieà u kieä n kπ 5kπ kπ x= thì cos 5x = cos = cos (loaï i neá u k leû ) 2 2 2 π kπ ⎛ π kπ ⎞ x= + thì cos 5x = cos ⎜ + ⎟ ≠ 0 nhaä n 20 10 ⎝4 2 ⎠ π kπ Do ñoù : (*) ⇔ x = hπ ∨ x = + , vôù i k, h ∈ 20 10 Baø i 54 : Giaû i phöông trình sin4 x + cos4 x 1 = ( tgx + cot g2x ) ( *) sin 2x 2 Ñieà u kieän : sin 2x ≠ 0 Ta coù : sin 4 x + cos4 x = ( sin 2 x + cos2 x ) − 2 sin 2 x cos2 x 2 1 =1− sin2 2x 2 sin x cos 2x tgx + cot g2x = + cos x sin 2x sin 2x sin x + cos x cos 2x = cos x sin 2x cos ( 2x − x ) 1 = = cos x sin 2x sin 2x 1 1 − sin 2 2x 2 1 Do ñoù : (*) ⇔ = sin 2x 2 sin 2x 1 1 ⇔ 1 − sin 2 2x = 2 2 ⇔ sin 2x = 1 ( nhaä n do sin 2x ≠ 0 ) 2 ⇔ cos2 2x = 0 π ⇔ 2x = + kπ, k ∈ 2 π kπ ⇔x = + , k ∈ 4 2 Baø i 55 : Giaû i phöông trình tg 2 x.cot g 2 2x.cot g3x = tg 2 x − cot g 2 2x + cot g3x ( * ) Ñieà u kieän : cos x ≠ 0 ∧ sin 2x ≠ 0 ∧ sin 3x ≠ 0
- ⇔ sin 2x ≠ 0 ∧ sin 3x ≠ 0 Luù c ñoù (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x ⎡⎛ 1 − cos 2x ⎞ ⎛ 1 + cos 4x ⎞ ⎤ 1 − cos 2x 1 + cos 4x ⇔ cot g3x ⎢⎜ ⎟⎜ ⎟ − 1⎥ = − ⎣⎝ 1 + cos 2x ⎠ ⎝ 1 − cos 4x ⎠ ⎦ 1 + cos 2x 1 − cos 4x ⇔ cot g3x ⎡(1 − cos 2x )(1 + cos 4x ) − (1 + cos 2x )(1 − cos 4x ) ⎤ ⎣ ⎦ = (1 − cos 2x )(1 − cos 4x ) − (1 + cos 4x )(1 + cos 2x ) ⇔ cot g3x [ 2 cos 4x − 2 cos 2x ] = −2 ( cos 4x + cos 2x ) cos 3x ⇔ [ −4 sin 3x sin x] = −4 cos 3x cos x sin 3x ⇔ cos 3x sin x = cos 3x cos x ( do sin 3x ≠ 0) ⇔ cos 3x = 0 ∨ sin x = cos x π ⇔ 3x = + kπ ∨ tgx = 1 2 π kπ π ⇔x= + ∨ x = + lπ ( k, l ∈ Z ) 6 3 4 So vôù i ñieàu kieän : sin 2x.sin 3x ≠ 0 π kπ ⎛ π 2kπ ⎞ ⎛π ⎞ * Khi x = + thì sin ⎜ + ⎟ .sin ⎜ + kπ ⎟ ≠ 0 6 3 ⎝3 3 ⎠ ⎝2 ⎠ ⎛ 1 + 2k ⎞ ⇔ sin ⎜ ⎟π ≠ 0 ⎝ 3 ⎠ Luoân ñuù n g ∀ k thoû a 2k + 1 ≠ 3m ( m ∈ Z ) π ⎛π ⎞ ⎛ 3π ⎞ 2 * Khi x = + lπ thì sin ⎜ + 2lπ ⎟ sin ⎜ + 3lπ ⎟ = ± ≠0 4 ⎝2 ⎠ ⎝ 4 ⎠ 2 luoâ n ñuù n g ⎡ π kπ ⎢ x = 6 + 3 , k ∈ Z ∧ 2k ≠ 3m − 1 ( m ∈ ) Do ñoù : (*) ⇔ ⎢ ⎢ x = π + lπ, l ∈ ⎢ ⎣ 4 Caù c h khaù c: (*) ⇔ cotg3x ( tg 2 x cot g 2 2x − 1) = tg 2 x − cot g 2 2x tg 2 x − cot g 2 2x tg 2 2x.tg 2 x − 1 ⇔ cot g3x = = tg 2 x cot g 2 2x − 1 tg 2 x − tg 2 2x (1 + tg2x.tgx ) (1 − tg2x.tgx ) ⇔ cot g3x = (tg2x − tgx) ( tg2x + tgx) ⇔ cot g3x = cot gx. cotg3x ⇔ cos 3x = 0 ∨ sin x = cos x BAØI TAÄP
- ⎛π ⎞ 1. Tìm caù c nghieä m treâ n ⎜ , 3π ⎟ cuûa phöông trình: ⎝3 ⎠ ⎛ 5π ⎞ ⎛ 7π ⎞ sin ⎜ 2x + ⎟ − 3 cos ⎜ x − ⎟ = 1 + 2 sin x ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ π⎞ 2. Tìm caù c nghieä m x treân ⎜ 0, ⎟ cuûa phöông trình ⎝ 2⎠ sin 4x − cos 6x = sin (10, 5π + 10x ) 2 2 3. Giaû i caùc phöông trình sau: ( a/ sin 3 x + cos3 x = 2 sin5 x + cos5 x ) sin x + sin 2x + sin 3x b/ = 3 cos x + cos 2x + cos 3x 1 + cos x c/ tg 2 x = 1 − sin x d/ tg2x − tg3x − tg5x = tg2x.tg3x.tg5x 4 e/ cos x = cos2 x 3 ⎛ π⎞ 1 1 f/ 2 2 sin ⎜ x + ⎟ = + ⎝ 4 ⎠ sin x cos x 2 i/ 2tgx + cot g2x = 3 + sin 2x 2 h/ 3tg3x + cot g2x = 2tgx + sin 4x 2 2 2 k/ sin x + sin 2x + sin 3x = 2 sin 2x l/ + 2 cos x = 0 1 + sin x m/ 25 − 4x 2 ( 3sin 2πx + 8 sin πx ) = 0 sin x.cot g5x n/ =1 cos 9x 2 o/ 3tg6x − = 2tg2x − cot g4x sin 8x ( p/ 2 sin 3x 1 − 4 sin 2 x = 1 ) 1 + cos x q/ tg 2 x = 1 − sin x 2 r/ cos3 x cos 3x + sin 3 x sin 3x = 4 ⎛x⎞ ⎛x⎞ 5 s/ sin4 ⎜ ⎟ + cos4 ⎜ ⎟ = ⎝ 3⎠ ⎝ 3⎠ 8 t/ cos x − 4 sin x − 3 cos x sin2 x + sin x = 0 3 3 x x u/ sin4 + cos4 = 1 − 2sin x 2 2
- ⎛ π⎞ ⎛ π⎞ v/ sin ⎜ 3x − ⎟ = sin 2x.sin ⎜ x + ⎟ ⎝ 4⎠ ⎝ 4⎠ 4 w/ tg x + 1 = ( 2 − sin x ) sin 3x 2 cos4 x ⎛ x ⎞ y/ tgx + cos x − cos2 x = sin x ⎜ 1 + tg tgx ⎟ ⎝ 2 ⎠ 4. Cho phöông trình: ( 2 sin x − 1)( 2 cos 2x + 2 sin x + m ) = 3 − 4 cos2 x (1) a/ Giaû i phöông trình khi m = 1 b/ Tìm m ñeå (1) coù ñuùn g 2 nghieäm treâ n [ 0, π ] ( ÑS: m = 0 ∨ m < −1 ∨ m > 3 ) 5. Cho phöông trình: 4 cos5 x sin x − 4 sin5 x.cos x = sin2 4x + m (1) Bieá t raèn g x = π laø moä t nghieä m cuû a (1). Haõ y giaû i phöông trình trong tröôø n g hôï p ñoù .
CÓ THỂ BẠN MUỐN DOWNLOAD
-
chương I: Hàm số lượng giác và phương trình lượng giác
4 p | 5437 | 985
-
Chương 2: Phương trình lượng giác cơ bản
16 p | 1051 | 317
-
LƯỢNG GIÁC - CHƯƠNG 2
16 p | 277 | 125
-
Bài giảng Hình học 6 chương 2 bài 9: Tam giác
18 p | 380 | 80
-
Bài giảng Giá trị lượng giác của góc bất kì từ 0 - 180 - Hình học 10 - GV. Trần Thiên
19 p | 426 | 67
-
Đại số 11: Chương 0&1 - Trần Sĩ Tùng
20 p | 192 | 41
-
Giáo án bài Phương trình lượng giác cơ bản - Đại số 11 - GV. Trần Thiên
19 p | 768 | 34
-
Giáo án bài Giá trị lượng giác của góc bất kì từ 0 - 180 - Hình học 10 - GV. Trần Thiên
4 p | 439 | 31
-
Giáo án Toán đại số 11: Phương trình lượng giác cơ bản
17 p | 278 | 28
-
Giáo án Hình học 9 chương 1 bài 2: Tỉ số lượng giác của góc nhọn
18 p | 610 | 24
-
Toán 11 – Phương trình lượng giác cơ bản
11 p | 196 | 17
-
Giáo án toán 11 – Phương trình lượng giác cơ bản
11 p | 182 | 11
-
Giáo án Toán 11: Chương 1 - Phương trình lượng giác cơ bản (1)
8 p | 229 | 11
-
Giáo án Toán 11: Phương trình lượng giác cơ bản (5)
8 p | 159 | 5
-
Bài giảng Chương 2: Tích vô hướng của hai véc tơ và ứng dụng
14 p | 11 | 3
-
Giáo án Toán lớp 11 - Chương I, Bài 2: Giá trị lượng giác của một góc lượng giác (Sách Chân trời sáng tạo)
10 p | 12 | 2
-
Giải bài tập Bảng lượng giác SGK Toán 9 tập 1
3 p | 110 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn