Luận án Tiến sĩ Khoa học Giáo dục: Phát triển năng lực trực giác toán học cho học sinh trong dạy học toán ở trường trung học phổ thông
lượt xem 7
download
Luận án nghiên cứu thực trạng dạy học theo hướng phát triển năng lực trực giác toán học cho học sinh trong dạy học Toán ở trường THPT; tổ chức hoạt động nhận thức theo hướng phát triển năng lực trực giác toán học cho học sinh trong dạy học Toán ở trường THPT. Mời các bạn cùng tham khảo luận án để nắm chi tiết nội dung nghiên cứu.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận án Tiến sĩ Khoa học Giáo dục: Phát triển năng lực trực giác toán học cho học sinh trong dạy học toán ở trường trung học phổ thông
- BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI VÕ XUÂN MAI PHÁT TRIỂN NĂNG LỰC TRỰC GIÁC TOÁN HỌC CHO HỌC SINH TRONG DẠY HỌC TOÁN Ở TRƯỜNG TRUNG HỌC PHỔ THÔNG Chuyên ngành: Lí luận và Phương pháp dạy học bộ môn Toán Mã số: 9.14.01.11 LUẬN ÁN TIẾN SĨ KHOA HỌC GIÁO DỤC Người hướng dẫn khoa học: 1. GS.TS. ĐÀO TAM 2. TS. NGUYỄN PHƯƠNG CHI
- 2 HÀ NỘI – 2020
- 3 LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của riêng tôi, được hoàn thành dưới sự hướng dẫn của GS.TS. Đào Tam và TS. Nguyễn Phương Chi cùng sự giúp đỡ tận tình của nhiều nhà khoa học. Tất cả số liệu và kết quả nghiên cứu được nêu trong luận án là trung thực, chưa từng được ai công bố trong bất kì công trình nào khác. Tác giả luận án Võ Xuân Mai
- 4 MỞ ĐẦU 1. LÍ DO CHỌN ĐỀ TÀI 1.1. Phát triển năng lực tư duy toán học là một trong những yêu cầu cần thiết trong dạy học Toán ở trường trung học phổ thông Một trong những định hướng của Nghị quyết Hội nghị lần thứ VIII, Ban chấp hành Trung ương khóa XI (Nghị quyết số 29NQ/TW) về đổi mới căn bản, toàn diện giáo dục và đào tạo, đáp ứng yêu cầu công nghiệp hóa, hiện đại hóa trong điều kiện kinh tế thị trường định hướng xã hội chủ nghĩa và hội nhập quốc tế là “Phát triển giáo dục và đào tạo là nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài. Chuyển mạnh quá trình giáo dục từ chủ yếu trang bị kiên th ́ ưc sang phát tri ́ ển toàn diện NL và phẩm chất người học. Học đi đôi với hành; lí luận gắn với thực tiễn; giáo dục nhà trường kêt́ hợp với giáo dục gia đình va giao duc xã h ̀ ́ ̣ ội” [1], giáo dục theo định hướng phát triển NL cá nhân người học đã trở thành một mục tiêu thiết yếu của giáo dục Việt Nam trong giai đoạn đổi mới hiện nay. Trong bối cảnh đó, giáo dục môn Toán có sứ mệnh và ý nghĩa quan trọng trong quá trình phát triển tư duy nói riêng và sự phát triển toàn diện của người học nói chung. Vì vậy, vai trò của người GV cũng có những thay đổi theo hướng đảm nhận nhiều chức năng, trách nhiệm hơn , GV phải chuyển từ cách truyền thụ tri thức sang cách tổ chức các HĐ cho HS chiếm lĩnh tri thức. Qua những HĐ dạy học, người GV cần thông qua dạy tri thức để dạy cho người học cách phát hiện, ý tưởng đề xuất cách thức, giải pháp GQVĐ, dạy cách suy nghĩ, tư duy sáng tạo, rèn luyện khả năng giải thích, chứng minh, sử dụng các phương pháp lập luận để giải quyết các tình huống của đời sống thực tiễn giúp người học tự hình thành kiến thức thức, kĩ năng, phát triển năng lực và phẩm chất. Vấn đề phát triển tư duy cho HS đã trở thành một trong những nhiệm vụ quan trọng của dạy học môn Toán trong nhà trường. Theo Chương trình giáo dục phổ thông môn Toán của Bộ Giáo dục và Đào tạo năm 2018 [2] đã xác định việc hình thành và phát triển NLTH cho HS là một trong những mục tiêu cần đạt qua dạy học môn Toán, mà trong đó có NL GQVĐ và NL tư duy, lập luận toán học. Đặc biệt,
- 5 trong Kỷ yếu Hội thảo khoa học phát triển NL nghề nghiệp GV Toán phổ thông Việt Nam của Hội giảng dạy Toán phổ thông và Chương trình phát triển Giáo dục trung học [4], tác giả Trần Kiều cho rằng các NL cần hình thành và phát triển cho người học qua dạy học môn Toán trong trường phổ thông gồm có NL tư duy toán học, NL GQVĐ, NL mô hình hóa toán học, NL giao tiếp, NL sử dụng các công cụ, phương tiện học toán và NL tự học toán. Trong đó NL tư duy toán học và NL GQVĐ cần được chú trọng, chiếm ưu thế hơn so với các NL còn lại. Để phát triển NL tư duy toán học, ông cho rằng “đặc biệt cần lưu ý đến NL tư duy logic trong suy diễn, lập luận; đồng thời coi trọng tư duy phê phán, sáng tạo, cũng như các yếu tố dự đoán, tìm tòi, trực giác toán học, tưởng tượng không gian” [4, tr.910]. Tác giả Nguyễn Bá Kim cũng nhấn mạnh “tác dụng phát triển tư duy của môn Toán không phải chỉ hạn chế ở sự rèn luyện tư duy logic mà còn ở sự phát triển khả năng suy đoán và tưởng tượng” [19, tr.45]. Như vậy, trong quá trình dạy học Toán cùng với việc hình thành NL tư duy logic, khả năng lập luận rõ ràng cần chú trọng phát triển cho HS các NL trí tuệ, trí tưởng tượng, hình thành khả năng TGTH, khả năng tìm tòi, khám phá sáng tạo một cách cân đối, hài hòa với nhau giúp HS phát triển NL, phẩm chất một cách toàn diện. 1.2. Nhận định về vai trò của trực giác và tình hình nghiên cứu trong lĩnh vực liên quan đến trực giác Vấn đề về TG đã được nghiên cứu nhiều trên thế giới, hầu hết những tài liệu đều liên quan đến những cuộc tranh luận về ý nghĩa, vai trò đa dạng của TG, những biểu hiện đặc trưng cơ bản. Một số tác giả xem TG là nguồn gốc của đổi mới sáng tạo và là một bước đầu tiên và cần thiết cho giáo dục; có thể thấy qua các công trình của các tác giả: Wild (1938), Henri Poincaré (1958), Bruner (1960), Bunge (1962), Descartes và Spinoza (1967), Westcott (1968), Andrea DiSessa (1982). Một số nhà giáo dục cho rằng TG có thể đào tạo được và đã vận dụng TG vào quá trình giáo dục như Tall và Vinner (1980), Fischbein (1987), Tieszen (1989), Jagla (1994), Hogarth (2001), Giardino (2010), Young Hoan Cho và Seo Yon Hong (2015). Mặc dù trên thế giới đã có nhiều công trình nghiên cứu về TG và TGTH, thế nhưng ở Việt Nam vấn đề này chỉ trình bày về khái niệm trong các tác phẩm về phát triển tư duy toán học cho HS của tác giả như Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình (1981), Nguyễn Văn Lộc (1997), Phạm Gia Đức và Phạm Đức Quang (2005), Nguyễn Phú Lộc (2014). Cho đến nay vẫn chưa có công trình nào nghiên cứu đầy đủ và hệ thống về TGTH, chưa làm sáng tỏ và bước đầu vận dụng TGTH vào trong thực tiễn dạy học ở trường THPT Việt Nam.
- 6 TG có vai trò to lớn trong sáng tạo khoa học cũng như có ý nghĩa quan trọng trong dạy học Toán học. Nhà nghiên cứu người Pháp Edouard Le Roy từng nói “Nhà phát minh trước hết là một người giàu trực giác, một nhà thơ”, còn nhà toán học Henri Poincaré, người đầu tiên nêu lý thuyết về sáng tạo toán học, nhận định trong quá trình sáng tạo toán học của mình, ông cho rằng “Óc logic chỉ là cằn cỗi nếu không được tắm nhuần bằng trực giác”. Trong quá trình lịch sử, xuất hiện ngày càng nhiều những phát hiện thiên tài đột xuất, chính bản thân của các nhà thiên tài cũng công nhận TG đóng vai trò then chốt trong quá trình hình thành các phát minh khoa học. Chẳng hạn, Albert Einstein từng nói “Tôi tin vào trực giác và cảm hứng. Trí tưởng tượng quan trọng hơn kiến thức. Đối với kiến thức còn hạn chế, trong khi trí tưởng tượng bao trùm toàn bộ thế giới, kích thích tiến bộ, khai sinh ra quá trình tiến hóa. Nói đúng ra, đó là một yếu tố thực trong nghiên cứu khoa học” [14]. Theo tác giả Koliagin, một trong những thành phần cơ bản của tư duy toán học là tư duy trực giác, ông cho rằng “TG là phương pháp đặc biệt của nhận thức, đặc trưng bởi việc tìm ra chân lý một cách trực tiếp, liên quan đến TG đó là những hiện tượng như việc giải quyết vấn đề một cách bất ngờ, chớp nhoáng, không tuân thủ theo các yêu cầu logic của bài toán, kết quả tìm được bằng phương pháp này rất nhanh chóng” [80]. Trong dạy học, nếu quan tâm đến việc hình thành và phát triển TDTG cho người học có thể giúp họ biết đưa ra những phán đoán đột phá về chiến lược giải quyết cho những vấn đề không quen thuộc, tạo điều kiện cho người học biết cách phát hiện và giải quyết vấn đề, cách suy nghĩ, tư duy sáng tạo, rèn luyện khả năng giải quyết các tình huống của đời sống thực tiễn. 1.3. Thực trạng dạy học Toán ở trường trung học phổ thông còn chú trọng dạy những kiến thức mang tính quy trình, chưa quan tâm đến việc dạy học theo hướng phát triển năng lực trực giác toán học cho học sinh Trong dạy học Toán ở trường THPT hiện nay, khi HS phải đối mặt với một bài toán mới hay một tình huống không quen thuộc, GV thường dành nhiều thời gian để trang bị cho HS những kiến thức mang tính quy trình, phần lớn các em có ít cơ hội được nỗ lực tư duy, khám phá để tự tìm tòi con đường GQVĐ. Điều này dẫn đến nhiều HS có thái độ ỷ lại, trông chờ vào kiến thức GV cung cấp, HS chỉ học những kiến thức một cách hình thức, rập khuôn, chủ yếu sử dụng kiến thức đó để giải các bài toán cùng dạng, mà không biết hoặc ít vận dụng được kiến thức toán học vào GQVĐ trong cuộc sống thực tiễn. Hơn nữa, những giờ học như vậy thật sự cũng chưa
- 7 gợi được động cơ học tập, tạo niềm tin, gây hứng thú, và thái độ học tập tích cực với các em. Mặt khác, trong dạy học Toán, hầu hết cách dạy của GV và cách trình bày của phần lớn nội dung trong sách giáo khoa cho HS thấy rằng toán học chỉ có các chứng minh, suy luận diễn dịch và bài tập vận dụng. Các định lí, quy tắc, hệ quả và chứng minh của chúng thường được giới thiệu, trình bày như là các sản phẩm có sẵn. Tuy nhiên, cần chú ý rằng Toán học có thể xét theo hai phương diện. “Nếu chỉ trình bày lại những kết quả đã đạt thì Toán học là khoa học chặt chẽ với phương pháp suy diễn và tính logic nổi bật, còn nếu nhìn Toán học trong quá trình hình thành và phát triển thì phương pháp của nó vẫn có tìm tòi , suy đoán, quy nạp” [19]. Vì vậy, các tác giả Phạm Gia Đức và Phạm Đức Quang đã đề cập việc “nhấn mạnh quá đáng sẽ đi chệch khỏi con đường đúng đắn nếu coi những yếu tố kiến thiết, phương pháp quy nạp, trực giác, tưởng tượng cũng như quá trình tư duy tiền logic chỉ đóng vai trò thứ yếu”, “Phép suy diễn cần được bổ sung bằng trực quan, khát vọng KQH; cần được hạn chế và cân bằng nhờ trân trọng đến cái riêng” [15, tr.14]. Do đó, trong quá trình tiếp cận kiến thức mới, GV cần tổ chức các HĐ cho HS thấy một hình thái khác của toán học với tư tưởng độc lập, suy đoán, sáng tạo, giúp người học thấy được quá trình hình thành kiến thức, trải nghiệm với việc phát hiện ra những mệnh đề mới, nhận thấy được ý nghĩa, vẻ đẹp của tri thức toán học. TG đóng vai trò đặc biệt trong quá trình phát triển nhận thức của HS, giúp người học tích cực và sáng tạo hơn trong việc đưa ra các phán đoán, tự tìm kiếm, khám phá kiến thức mới, hình dung trước được đường lối, chiến lược GQVĐ, đưa ra quyết định trước khi bắt tay vào trình bày vấn đề một cách rõ ràng cụ thể. TG của mỗi cá nhân HS phụ thuộc vào quá trình tích lũy kiến thức, kinh nghiệm cũng như sự phát triển của tư duy và sự đào tạo, rèn luyện có hệ thống trong dạy học Toán. Do đó, nếu có khả năng TG sẽ giúp HS có thói quen suy nghĩ nhanh chóng để hình dung, khám phá, suy ngẫm và phát hiện cách thức giải quyết một vấn đề trước khi bắt đầu thực hiện các bước giải chi tiết, đưa ra những phán đoán đột phá về chiến lược giải quyết cho những vấn đề không quen thuộc, tạo điều kiện cho HS phát triển NL tư duy, lập luận và NL GQVĐ. Vì vậy, dạy học theo hướng phát triển NL TGTH là một trong những cách dạy tạo tiền đề cho HS biết cách nắm bắt được tri thức trong sự học tập có ý nghĩa, nhận thấy trước và định hướng cách GQVĐ nảy sinh, giúp phát triển các NL tư duy toán học. Như thế, cần xác định được các đặc trưng của NL TGTH và các
- 8 thành tố của NL TGTH, từ đó thiết kế, tổ chức những HĐNT thích hợp cho HS trong quá trình dạy học môn Toán ở trường THPT, đây là vấn đề nghiên cứu được đặt ra để giúp HS nâng cao được khả năng vận dụng kiến thức, khả năng GQVĐ và phát huy được tính sáng tạo, đáp ứng theo yêu cầu dạy học phát triển năng lực người học hiện nay. Chính vì những lí do trên, chúng tôi xác định việc dạy học theo hướng phát triển NL TGTH cho HS là một trong những vấn đề mới có tính cấp thiết cần được quan tâm nghiên cứu trong quá trình dạy học Toán phù hợp theo định hướng đổi mới giáo dục trong giai đoạn hiện nay. Vì vậy, chúng tôi chọn đề tài nghiên cứu là “Phát triển năng lực trực giác toán học cho học sinh trong dạy học Toán ở trường trung học phổ thông”. 2. MỤC ĐÍCH NGHIÊN CỨU Đề xuất quy trình tổ chức HĐNT theo hướng phát triển NL TGTH cho HS và cách thức tổ chức các HĐNT phát triển từng NL thành tố của NL TGTH trong dạy học Toán ở trường THPT, góp phần nâng cao hiệu quả trong dạy và học môn Toán. 3. NHIỆM VỤ NGHIÊN CỨU Để đạt được mục đích trên, đề tài có nhiệm vụ trả lời các câu hỏi sau: 3.1. Thế nào là NL TGTH của HS? NL TGTH của HS có những đặc trưng gì trong học tập môn Toán? Phát hiện những NL nào là NL thành tố của NL TGTH trong dạy học Toán? Quy trình tổ chức HĐNT cho HS trong dạy học Toán nói chung và việc dạy học Toán theo hướng phát triển NL TGTH cho HS ở trường THPT ra sao? Những cơ hội nào để phát triển NL TGTH cho HS qua dạy học Toán ở trường THPT? 3.2. Tình hình dạy học môn Toán theo hướng phát triển NL TGTH cho HS ở trường THPT hiện nay như thế nào? 3.3. Quy trình tổ chức HĐNT theo hướng phát triển NL TGTH cho HS trong dạy học Toán ở trường THPT gồm các bước nào? Cách thức tổ chức HĐNT phát triển từng NL thành tố của NL TGTH cho HS trong dạy học Toán ở trường THPT ra sao? 3.4. Quy trình đã đề xuất và các cách thức tổ chức HĐNT theo hướng phát triển từng NL thành tố của NL TGTH có tính khả thi và hiệu quả trong quá trình thực nghiệm sư phạm hay không?
- 9 4. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU 4.1. Đối tượng nghiên cứu: quá trình tổ chức dạy học theo hướng phát triển NL TGTH cho HS trong dạy học Toán ở trường THPT. 4.2. Phạm vi nghiên cứu: các nội dung dạy học trong chương trình Toán lớp 10, 11 ở trường THPT và quá trình tổ chức HĐNT các nội dung đó cho HS trong dạy học Toán. 5. GIẢ THUYẾT KHOA HỌC Nếu đề xuất được quy trình tổ chức HĐNT và cách thức phát triển từng NL thành tố của NL TGTH cho HS phù hợp với thực tiễn dạy học Toán ở trường THPT thì giúp HS vừa lĩnh hội được những tri thức toán học một cách tích cực và sáng tạo hơn, vừa hình thành phát triển NL TGTH cho HS, góp phần phát triển NL người học đáp ứng yêu cầu đổi mới trong giai đoạn hiện nay. 6. PHƯƠNG PHÁP NGHIÊN CỨU 6.1. Phương pháp nghiên cứu lí luận: Nghiên cứu các tài liệu, các công trình đã công bố có liên quan đến đề tài như NL, TGTH, các đặc trưng của TGTH, quá trình dạy học Toán theo hướng phát triển TGTH, việc tổ chức các HĐNT cho người học; nghiên cứu mục tiêu, nội dung chương trình Toán THPT ở Việt Nam. 6.2. Phương pháp quan sát, điều tra: Thiết kế phiếu điều tra khảo sát; thu thập và phân tích các dữ liệu về dạy và học môn Toán theo hướng phát triển NL TGTH cho HS; quan sát quá trình nhận thức, hoạt động của HS qua học tập; khảo sát qua bảng câu hỏi đối với GV Toán; dự giờ, phỏng vấn và trao đổi kinh nghiệm về dạy học theo hướng phát triển NL TGTH với GV Toán THPT. 6.3. Phương pháp chuyên gia: Xin ý kiến của các chuyên gia giáo dục học và giáo dục học môn Toán về vấn đề liên quan đến đề tài. 6.4. Phương pháp thực nghiệm sư phạm: Tiến hành thực nghiệm sư phạm để kiểm tra tính khả thi của cách thức tổ chức HĐNT theo hướng phát triển NL TGTH trong dạy học Toán đã đề xuất. 6.5. Phương pháp nghiên cứu trường hợp: quan sát, theo dõi quá trình phát triển HĐNT theo hướng chú trọng TGTH của một nhóm HS cụ thể trong quá trình thực nghiệm sư phạm. 7. NHỮNG ĐÓNG GÓP MỚI CỦA LUẬN ÁN 7.1. Về mặt lí luận Làm sáng tỏ được các đặc trưng và các NL thành tố của NL TGTH của HS
- 10 trong quá trình dạy học Toán ở trường THPT. Đề xuất được quy trình tổ chức HĐNT theo hướng phát triển NL TGTH cho HS qua dạy học Toán ở trường THPT. Đề xuất được các cách thức tổ chức HĐNT phát triển từng NL thành tố của NL TGTH trong dạy học Toán ở trường THPT. 7.2. Về mặt thực tiễn Đưa ra được quy trình để GV tiến hành tổ chức HĐNT theo hướng phát triển NL TGTH cho HS qua dạy học một số nội dung Toán ở trường THPT. Góp phần đổi mới phương pháp dạy học môn Toán theo hướng chú trọng phát triển NL TGTH cho HS. 8. NHỮNG VẤN ĐỀ CẦN ĐƯA RA BẢO VỆ Những đặc trưng của NL TGTH của HS và các NL thành tố của NL TGTH của HS trong học tập môn Toán ở trường THPT. Quy trình tổ chức HĐNT theo hướng phát triển NL TGTH cho HS trong quá trình dạy học Toán ở trường THPT. Cách thức tổ chức HĐNT phát triển từng NL thành tố của NL TGTH trong dạy học Toán ở trường THPT. 9. CẤU TRÚC CỦA LUẬN ÁN Ngoài phần mở đầu, kết luận, danh mục tài liệu tham khảo và phụ lục, luận án gồm bốn chương: Chương 1. Cơ sở lí luận. Chương 2. Thực trạng dạy học theo hướng phát triển NL TGTH cho HS trong dạy học Toán ở trường THPT. Chương 3. Tổ chức HĐNT theo hướng phát triển NL TGTH cho HS trong dạy học Toán ở trường THPT. Chương 4. Thực nghiệm sư phạm. Chương 1 CƠ SỞ LÍ LUẬN 1.1. Tổng quan lịch sử nghiên cứu vấn đề 1.1.1. Lịch sử nghiên cứu vấn đề trực giác, trực giác toán học 1.1.1.1. Vấn đề trực giác, trực giác toán học trên thế giới
- 11 Từ những năm 1930, vấn đề trực giác (Intuition) bắt đầu xuất hiện và được nghiên cứu trên những lĩnh vực khác nhau như triết học, tâm lí học, tôn giáo, đạo đức học, mỹ học, toán học và giáo dục học bởi nhiều tác giả nổi tiếng trên thế giới. Với nhiều ý nghĩa quan trọng, cho đến nay TG vẫn tiếp tục được sự quan tâm của nhiều nhà nghiên cứu đặc biệt là các nhà giáo dục học. Trong khi, một số tác giả cho rằng TG như là một giác quan thứ sáu hay một sức mạnh huyền bí, mang tính thiên phú hay nhờ may mắn, ngẫu hứng thì các nhà khoa học đã nghiên cứu TG như một hiện tượng thực mà có thể xác định trong phòng thí nghiệm được quan sát thông qua quét não. TG không chỉ thể hiện ở chỗ sự lóe sáng các ý tưởng mới, đóng vai trò quyết định trong việc thực hiện những khám phá, sáng tạo trong khoa học, mà hơn thế, các nhà nghiên cứu đã và đang dần dần giáo dục hóa lĩnh vực sáng tạo, cụ thể là có thể đem TG vào trong hoạt động dạy và học. Một số nhà giáo dục nổi tiếng như J. Bruner, E. Fischbein, R. L. Wilder, R. M. Hogarth, Tall và Vinner, Tieszen ... đã sử dụng TG như là một yếu tố quan trọng cần thiết trong quá trình dạy học nói chung và dạy học Toán nói riêng. Mặc dù TG được nghiên cứu trên nhiều lĩnh vực khác nhau, ở đây chúng tôi trình bày các vấn đề có liên quan đến việc dạy học hướng tới phát triển TG cho người học trong dạy học Toán dựa trên cơ sở triết học, tâm lí học, toán học và giáo dục học: + Trong lĩnh vực triết học Nhiều triết gia cũng đã đưa ra Thuyết trực giác (Intuitionism) như Kant, Hilbert và Bernays, Husserl, Godel, Parsons, Brouwer. Theo tư tưởng c ủa Husserl v ề TG trong Toán học, có sự giống nhau giữa “ý định” và TG (Intention and Intuition). Thuyết trực giác của H. Bergson với tác phẩm “An Introduction to Metaphysics” năm 1946 [60] với hai cách khác nhau để nhận thức thực tại, đó là cách phân tích và cách trực giác (the way of analysis and the way of intuition). Ông cho rằng phân tích có thể nắm bắt đối tượng bằng cách chia nhỏ các yếu tố của đối tượng, còn TG cung cấp ngay lập tức kiến thức của đối tượng trong sự toàn thể của đối tượng đó. Năm 2000, triết gia M. A. E. Dummett xuất bản cuốn sách “Elements of Intuitionism” [68], giới thiệu kỹ lưỡng về toán học trực giác (Intuitionistic mathematics) và đưa ra nhìn nhận chung về lịch sử TG, dẫn dắt thông qua các khái niệm toán học và triết học, những công việc trước đó của Brouwer cũng được
- 12 nghiên cứu lại và tính hoàn chỉnh của logic thứ tự TG cũng được làm sáng tỏ. Mối liên hệ giữa triết lí toán học và Thuyết trực giác trong Toán học (Intuitionism in Mathematics) cũng được nghiên cứu qua những công trình của nhiều triết gia như Wittgenstein, Gonzalez [73], D. C. McCarty,... v ới nh ững khía cạnh phân tích sâu sắc khác nhau đã làm sáng tỏ thêm khái niệm TGTH. + Trong lĩnh vực tâm lí học Trong tâm lí học nhận thức, các nhà tâm lí đã cống hiến cho việc nghiên cứu tiến trình nhìn thấu được bên trong sự vật, được định nghĩa là sự hiểu biết ngay lập tức được sự vật, kinh nghiệm “à há” sau khoảng thời gian giải quyết vấn đề không thành công. Trong đó, K. Hammond là một nhà tâm lí học đóng góp to lớn vào nghiên cứu sự phán đoán và đưa ra quyết định (judgment and decision making), ông đưa ra định nghĩa TG bởi sự đối lập với TDPT. Nhà tâm lí học A. L. Baylor đã đề cập đến sự phát triển TG và đưa ra ba thành phần của TG là sự nhanh chóng, mối liên hệ cảm giác và nguyên nhân, qua nhiều công trình nghiên cứu sâu sắc về TG như [56], [57], [58]. + Trong lĩnh vực toán học: nhiều nhà toán học như Poincaré, Descartes, Hadamard, Koliagin, Kônmôgôrôp, Krutexki... đã đề cập đến TGTH và cho rằng TGTH là cách thức của việc chứng minh sự hiểu biết và vấn đề toán học. Nhà toán học Poincaré nhận định rằng TGTH là nền tảng xây dựng những công trình toán học và quá trình sáng tạo toán học gồm bốn giai đoạn: Giai đoạn chuẩn bị cho công việc có ý thức: nhà toán học huy động các thông tin hữu ích của một vấn đề cần giải, giai đoạn này các yếu tố suy luận và trực giác của việc tìm kiếm lời giải cùng tồn tại. Giai đoạn tiếp theo là tư duy vô thức, mà còn gọi là “thời gian ấp ủ”. Giai đoạn bừng sáng TG, một bước nhảy vọt về chất trong tiến trình nhận thức. Giai đoạn kiểm tra giải pháp của TG đề ra. Từ đó, Poincaré nhấn mạnh giá trị của TG khi đưa ra kết luận về quá trình sáng tạo toán học từ kinh nghiệm của bản thân. Nhà toán học người Pháp J. Hadamard trong tác phẩm “An Essay on the Psychology of Invention in the Mathematical Field” (1945) [74] đã xây dựng một cuộc khảo sát hệ thống về quá trình làm việc của các nhà toán học từ đó nhận ra rằng nhiều khám phá toán học đã có trong khoảng thời gian dài ấp ủ một cách vô thức, sau đó đột ngột xuất hiện trong tâm trí. Như vậy, các nhà toán học trên đã mô
- 13 tả quá trình khám phá toán học mà trong đó TGTH xem như là một trong các giai đoạn của quá trình đó tuy nhiên họ vẫn chưa trình bày về khái niệm TGTH một cách rõ ràng. Đến năm 2009, S. Dehaene đã công bố công trình khoa học viết về nguồn gốc của TGTH, trường hợp Số học [67], trình bày khái niệm TG số học TG của những con số và sự chuyển hóa cơ bản của TG số học, chúng có liên quan đến hệ thống não bộ của con người và đề cập đến vấn đề sự kết nối giữa ngôn ngữ và phi ngôn ngữ trong Số học. + Trong lĩnh vực giáo dục học: các nhà giáo dục học quan tâm đến câu hỏi TG ảnh hưởng như thế nào đến người học trong tiến trình dạy học ở nhà trường, TG có thể đem giáo dục, đào tạo cho người học được hay không và đi tìm câu trả lời cho các vấn đề đó. Một số công trình liên quan đến TG trong quá trình dạy học như: Trong [93], R. L. Wilder nhấn mạnh “TG đóng một vai trò nền tảng và không thể thiếu được trong nghiên cứu Toán cũng như trong PPDH hiện đại” [93, tr.605]. Ông đưa ra khái niệm TGTH và phân biệt ba vai trò của TGTH, từ đó khuyến khích PPDH hiện đại cần được thay thế việc dạy HS “làm điều này, làm điều kia” bởi “điều gì nên làm tiếp theo?” định hướng cho việc sử dụng PPDH tích cực nhằm phát triển nền tảng TGTH cho HS. C. Parsons đã phân tích khái niệm về TGTH từ quan điểm của các tác giả Kant, Husserl, Godel trong công trình khoa học “Mathematical Intuition” [85] được công bố năm 1980, Parsons bắt đầu lý giải sự rõ ràng của khái niệm này. Không giống như tác giả Godel, Parsons không tập trung khái niệm TGTH trên lý thuyết tập hợp, ông trình bày TGTH vào lĩnh vực hình học sơ cấp và số học. Parsons cho rằng khái niệm TGTH của Kant và Husserl đều bị ảnh hưởng bởi nền tảng toán học của giai đoạn vận dụng lý thuyết tập hợp vào tất cả lĩnh vực toán học. Năm 1987, E. Fischbein đã xuất bản cuốn sách “Intuition in Science and Mathematics: An Educational Approach” [70] về việc xây dựng TG như một lĩnh vực nghiên cứu trong giáo dục toán học, tổ chức và đề xuất ý nghĩa giáo dục cho việc học tập và giảng dạy Toán và khoa học. Cụ thể, ông quan tâm đến khía cạnh lí luận như khái niệm TG, sự kết nối TG và các yếu tố khác, đặc điểm và phân loại TG, chỉ ra các yếu tố góp phần hình thành TG: vai trò của kinh nghiệm, các loại mô hình và các yếu tố khác. Fischbein đã có những ý tưởng cho việc hình thành một hướng tiếp cận giáo dục toán với TGTH cả về mặt tâm lí nhận thức và thực tiễn giáo dục.
- 14 Công trình “Mathematical Intuition Phenomenology and Mathematical Knowledge” [87] của R. Tieszen (1989) đã đề cập đến khái niệm TGTH, thảo luận vai trò của TG trong cơ sở của toán học. Theo cách tiếp cận riêng của ông, sử dụng sự xem xét hiện tượng để đến được với sự hiểu biết rõ ràng hơn về vai trò của TG trong kiến thức toán, phân tích những quan điểm về TG trong Toán học của các tác giả đã đưa ra Thuyết trực giác từ đó phát triển một số ý tưởng của Husserl về TG trong toán học, theo Tieszen TG được hiểu là “sự thực hiện của ý định”. V. M. Jagla đã đưa ra các khái niệm về TG, tưởng tượng, sự cần thiết kết hợp giữa TG và tưởng tượng, đặc biệt, Jagla đã tìm tòi cách thức để bồi dưỡng TG và tưởng tượng trong dạy học, từ đó nâng cao giá trị sử dụng TG và tưởng tượng của GV trong dạy học, xem xét trên một số chủ đề khuyến khích HS sử dụng quá trình TG và tưởng tượng trong cuốn sách “Teachers’ Everyday use of Imagination and Intuition: In Pursuit of the Elusive Image” [78] xuất bản năm 1994. Trong cuốn sách “Educating Intuition” [76], R. M. Hogarth đã khái niệm về TG một cách sâu sắc hơn, đó là cấu trúc gồm tiến trình, nội dung và các yếu tố liên quan. Kết luận chính của sách này chính là TG có thể đào tạo được và những cách thức để làm điều đó. Hỗ trợ cho kết luận này, ông cung cấp năm ý tưởng then chốt trong việc giáo dục TG ở mỗi con người. Năm ý tưởng đó là (1) Một tổ chức (con người) nhưng nhiều hệ thống xử lý thông tin, (2) Học tập định hình bởi kinh nghiệm, (3) Hai hệ thống cho việc học tập và thực hành, (4) TG như sự thành thạo và (5) Tiến hành phương pháp khoa học TG. B. Torff và R. J. Sternberg (2008) biên tập quyển “Understanding and teaching the Intuitive Mind: Student and Teacher Learning” [90] đã tiếp cận lí luận và sư phạm về nguồn gốc, cấu trúc, chức năng, sự phát triển của khái niệm TG, kết nối các lí luận và các nghiên cứu về mối quan hệ giáo dục, không chỉ tập trung trên TDTG cho HS mà hướng đến niềm tin dạy học TG cho GV và sự vận dụng trong lớp học, tổ chức dạy học TG bởi giáo viên – niềm tin về dạy và học ảnh hưởng trong thực tiễn giáo dục. Trong nghiên cứu “Intuition and Visualization in Mathematical problem solving” [72] của V. Giardino cũng thảo luận về khái niệm TGTH, chỉ ra mối liên hệ giữa TGTH và trực quan toán học trong HĐ GQVĐ toán học. Tác giả thừa nhận rằng TGTH phụ thuộc vào nền tảng kiến thức và kinh nghiệm của mỗi cá nhân, giúp cho người học thấy được sự tổng thể của kết luận được chứa đựng bởi phương tiện của trực quan.
- 15 Một công bố của các tác giả Y. H. Cho và S. Y. Hong (2015) “Mathematical Intuition and Storytelling for Meaningful Learning” [65] trình bày khái niệm và vai trò TGTH, đưa ra hai hướng tiếp cận dạy học dựa trên TGTH. Các tác giả đã đưa ra một số ví dụ về vấn đề trong thực tiễn để khuyến khích HS sử dụng kiến thức TGTH và kinh nghiệm để hiểu khái niệm toán học và GQVĐ toán học. 1.1.1.2. Vấn đề trực giác, trực giác toán học trong nước Tại Việt Nam, một số tác giả cũng đề cập đến khái niệm TG trong tài liệu về phát triển tư duy toán học, NLTH, chẳng hạn như tác giả Phạm Văn Hoàn, Nguyễn Văn Lộc, Phạm Gia Đức và Phạm Đức Quang, Trần Luận, Nguyễn Phú Lộc, cụ thể: Nhóm tác giả Phạm Văn Hoàn, Nguyễn Gia Cốc, Trần Thúc Trình [12] đã đề cập đến TGTH như là sự bừng sáng đột nhiên trong quá trình sáng tạo, trình bày các giai đoạn của quá trình sáng tạo theo nhà toán học Hadamard, một số NLTH ở HS với những phong cách tư duy toán học theo nhà toán học A. Ia. Khinxin và A. N. Kônmôgôrôp, tóm tắt cấu trúc các NL học toán của HS qua nghiên cứu của tác giả V. A. Krutexki. Trong [22], tác giả Nguyễn Văn Lộc đã trình bày khái niệm TG và TDTG trong quá trình phát triển tư duy toán học cho HS. Ông cũng có ý tưởng đầu tiên nghiên cứu về sự phát triển TGTH cho HS qua dạy học hình học [23]. Tác giả Trần Luận [24] đã đề cập đến TG và vai trò của TG trong quá trình nhận thức và sáng tạo toán học của HS trong dạy học Toán. Với các tác giả Phạm Gia Đức và Phạm Đức Quang trong [14] trình bày vấn đề phát triển tư duy sáng tạo trong dạy học Toán có đề cập đến TG và vai trò của TG trong việc phát triển tư duy sáng tạo cho HS. Thế nhưng trong hai công trình nghiên cứu này, khái niệm TGTH và các vấn đề liên quan đến TGTH chỉ mang tính chất giới thiệu để làm nền tảng cho vấn đề phát triển tư duy sáng tạo trong dạy học Toán. Trong tài liệu [21], tác giả Nguyễn Phú Lộc đã trình bày khái niệm TG có liên hệ với thuật ngữ “Bức tranh khái niệm” và phân loại TG, nội dung này được trích dịch từ tác phẩm của Fischbein [70] và Tall [86], tuy nhiên chưa có những phân tích sâu sắc cũng như chưa có những ví dụ minh họa việc sử dụng TGTH trong thực tiễn dạy học Toán ở trường THPT Việt Nam. 1.1.1.3. Nhận định rút ra từ các kết quả nghiên cứu về TGTH trong và ngoài nước Qua quá trình phân tích các kết quả nghiên cứu về TG trên các lĩnh vực triết
- 16 học, tâm lí học, toán học và giáo dục học trên thế giới, chúng tôi thấy rằng vấn đề về TG và TGTH như quan niệm, vai trò, ý nghĩa của nó được nghiên cứu khá sâu sắc dưới những góc độ khác nhau. Đặc biệt trong lĩnh vực giáo dục, các tác giả đã đề xuất những định hướng cho việc sử dụng TGTH vào dạy học, các công trình này đã khai thác việc dạy học hướng tới phát triển TGTH cho người học ở một số nội dung cụ thể của môn Toán như số học, hình học sơ cấp, giới hạn. Dựa trên những đặc trưng của TGTH, nhiều nhà nghiên cứu đã khẳng định TG cũng như TGTH hoàn toàn có thể đào tạo, rèn luyện và phát triển được cho con người. Điều này đã được cụ thể qua những chỉ dẫn của các nhà giáo dục học cho việc vận dụng vào quá trình dạy học với những ý tưởng tiến hành và cách thức tổ chức dạy học nhằm phát triển TG, TGTH cho người học. Thế nhưng vai trò to lớn của TGTH và những đặc trưng của TGTH trong dạy học và nghiên cứu ở Việt Nam vẫn còn chưa được khai thác và chưa có những công trình nghiên cứu hướng tới việc vận dụng TGTH vào trong thực tiễn dạy học Toán ở trường THPT. 1.1.2. Lịch sử nghiên cứu vấn đề về tổ chức hoạt động nhận thức Ở Việt Nam, nhiều tác giả đã quan tâm nghiên cứu đến vấn đề tổ chức, tích cực hóa hoạt động nhận thức của học sinh như trong các tài liệu sau: Luận án Tiến sĩ Giáo dục về “Nghiên cứu sử dụng phương tiện trực quan theo hướng tích cực hóa HĐNT của HS trong giờ học ở trường Trung học cơ sở” của Phạm Minh Tiến (1999) đã đưa ra hệ thống các biện pháp và quy trình sử dụng có hiệu quả các phương tiện trực quan theo hướng tích cực hóa HĐNT của HS học tập. Luận án Tiến sĩ của Nguyễn Mạnh Chung (2001) với đề tài “Nâng cao hiệu quả dạy học khái niệm toán học bằng các biện pháp sư phạm theo hướng tích cực hóa hoạt động nhận thức của HS (thông qua dạy học các khái niệm “hàm số” và “giới hạn” cho HS trường THPT” [10], đã đề xuất quy trình dạy học khái niệm toán học theo hướng tích cực hóa HĐNT của HS nhằm nâng cao hiệu quả dạy học khái niệm toán học ở trường THPT. Luận án Tiến sĩ của Trần Trung (2009) “Ứng dụng công nghệ thông tin và truyền thông hỗ trợ dạy học hình học theo hướng tích cực hoá hoạt động nhận thức của học sinh Dự bị Đại học dân tộc” [49] đã đề xuất những yêu cầu sư phạm đối với hệ thống Elearning, phương pháp, hình thức ứng dụng Elearning hỗ trợ dạy
- 17 học hình học ở trường Dự bị Đại học dân tộc theo hướng tích cực hóa HĐNT của HS. Trong tài liệu “Tổ chức hoạt động nhận thức trong dạy học Toán ở trường THPT” [45], các tác giả Đào Tam và Trần Trung (2010) đã chỉ ra cách thức tổ chức HĐNT trong dạy học Toán theo hướng vận dụng các lí thuyết và các PPDH tích cực qua dạy học các tình huống điển hình như dạy học khái niệm, định lí và giải bài bập toán. Như vậy vấn đề nghiên cứu về dạy học một số nội dung toán ở trường THPT theo hướng tích cực hóa HĐNT, vấn đề nghiên cứu về quy trình tổ chức HĐNT cho HS đã được quan tâm trong dạy học Toán, tuy nhiên vẫn chưa có tài liệu nào nghiên cứu cụ thể về tổ chức HĐNT nhằm phát triển TGTH cho HS qua dạy học môn Toán ở trường THPT. 1.1.3. Các kết quả tiếp thu từ việc nghiên cứu tổng quan vấn đề Tóm lại, trên cơ sở nghiên cứu tổng quan về TG, TGTH và việc tổ chức HĐNT trong dạy học Toán, chúng tôi đã nêu ra những vấn đề mà các tác giả đã nghiên cứu trên thế giới như từ vấn đề về Thuyết trực giác trong toán học, đến vấn đề về giáo dục TG, từ sự hiểu biết và giảng dạy TDTG, rồi đến TGTH trong dạy học toán. Tuy nhiên, vấn đề dạy học toán theo hướng phát triển TGTH trong nhà trường phổ thông ở Việt Nam còn chưa được khai thác, do đó chúng tôi tiếp thu các kết quả như sau: Nghiên cứu về khái niệm TGTH, các năng lực tư duy liên quan và ảnh hưởng đến sự hình thành, phát triển TGTH. Nghiên cứu sự vận dụng TGTH của HS trong quá trình dạy học, các đặc trưng của TGTH của người học trong học tập Toán. Nghiên cứu các quy trình tổ chức HĐNT cho HS qua dạy học Toán ở trường THPT. Từ các kết quả đó, chúng tôi sẽ nghiên cứu nhằm làm sáng tỏ khái niệm NL TGTH, một số đặc trưng của NL TGTH của HS trong học tập Toán và xác định một số NL thành tố của NL TGTH hướng tới xây dựng quy trình tổ chức HĐNT cho HS trong dạy học Toán theo hướng phát triển NL TGTH ở trường THPT. 1.2. Năng lực trực giác toán học của học sinh trong học tập Toán ở trường trung học phổ thông
- 18 1.2.1. Trực giác, trực giác toán học 1.2.1.1. Quan niệm về trực giác Từ TG có nguồn gốc từ tiếng Latinh “intueri” có nghĩa là “nhìn vào bên trong” hay “dự tính, liệu trước”. Để hiểu rõ khái niệm TG, chúng tôi nghiên cứu nhiều phạm trù khác nhau về TG của các tác giả trên thế giới như sau: Tác giả Bergson [60, tr.32] quy TG vào phạm trù phương pháp (method), ông cho rằng TG như là một phương tiện đặc thù của việc nắm bắt sự thật. Một số tác giả khác xem TG như là nguồn gốc của sự thật, chẳng hạn như, theo Hadamard nhận định TG như là “nguồn gốc của sự đổi mới chân chính, sáng tạo” [74], còn Descartes và Spinoza (1967) xem TG là “hình thức cao nhất của kiến thức”, hai ông cho rằng “trong thế giới của sự xuất hiện gây hiểu lầm và giải thích vô ích, TG vẫn là nguồn đáng tin cậy cuối cùng của chân lý tuyệt đối chắc chắn” [70, tr.3]. Theo Kant, “TG là năng lực (faculty) thông qua đó các đối tượng được nắm bắt một cách trực tiếp” [70, tr.3], phân biệt với NL hiểu biết mà chúng ta đạt được kiến thức khái niệm. Cùng quan niệm này, Myers cho rằng “TG là NL trực tiếp có kiến thức ngay lập tức trước khi phân tích hợp lý” [70, tr.3]. Hầu hết các tài liệu về TG của các tác giả đều quan niệm về TG theo phạm trù nhận thức như Beth và Piaget (1961), Wilder (1967), Berne (1977), Greene (1978), Tall và Vinner (1981), Arnheim (1985), Fischbein (1987), Brouwer (1990), Simon (1996), Burke và Miller (1999), Raidl và Lubart (2000)... Cụ thể, TG được quan niệm như sau: + Theo Piaget, “TG để chỉ một phạm trù nhất định của nhận thức, trực tiếp nắm bắt sự vật, đối tượng mà không có bất cứ nhu cầu biện minh hoặc diễn giải rõ ràng” [70, tr.3]. + Tác giả Wilder cho rằng “TG là nhận thức ngay tức khắc đối tượng, của một số đối tượng cụ thể, mà không cần hỗ trợ từ các giác quan hay từ lý do để giải thích cho sự nhận thức đó” [93, tr.605]. + Đối với Carl Jung, “TG là nhận thức mà đầu tiên xảy ra trong vô thức, sau đó được đem vào trong giai đoạn có ý thức” [78, tr.35]. + Theo Arnheim, “TG là một đặc tính cụ thể của nhận thức, có nghĩa là, khả năng nắm bắt trực tiếp sự hiệu quả của tương tác xảy ra trong tình huống nhận
- 19 thức. TG là một phần của mỗi hoạt động nhận thức” [78, tr.36]. + Tác giả Bruner [63] trong tác phẩm “The Process of Education” nhận định rằng “TG để chỉ hành động nắm bắt ý nghĩa hay tầm quan trọng của cấu trúc của một vấn đề mà không phụ thuộc vào bộ máy phân tích”. + Còn tác giả Burke và Miller cho rằng “TG là nhận thức mà kết luận được chủ thể đưa ra quyết định dựa trên yếu tố đầu vào của kinh nghiệm đã có và tình cảm” [62, tr.170]. + Theo Webster’s Ninth New Collegiate Dictionary (1987, tr.635) giải thích “TG là nhận thức một cách ngay tức khắc; sức mạnh hay năng lực của việc đạt được kiến thức trực tiếp mà không cần tư duy có lý trí và suy luận rõ ràng”. + Tại Việt Nam, tác giả Nguyễn Văn Lộc [22], [23], Phạm Gia Đức và Phạm Đức Quang [14], Chu Cẩm Thơ [46] có đề cập đến TG trong các tài liệu về phát triển tư duy toán học, và cũng quan niệm TG theo phạm trù nhận thức. Đối với cách hiểu theo Từ điển Tiếng Việt của Hoàng Phê, TG có nghĩa là “nhận thức trực tiếp, không phải bằng suy luận của lý trí” [32, tr.1089]. Còn theo cách giải thích của Từ điển Bách khoa Việt Nam, TG là “một quá trình cho chúng ta khả năng hiểu biết được sự việc một cách trực tiếp mà không cần lí luận phân tích, bắc cầu giữa khoảng cách phần ý thức và tiềm thức của tâm trí, cũng như giữa bản năng và lý trí”. Theo tác giả Nguyễn Văn Lộc “khái niệm TG là một yếu tố của một phương thức tư duy được gọi là TDTG, tư duy dựa trên sự tri giác toàn bộ vấn đề ngay lập tức, có khả năng thực hiện dưới dạng biến đổi đột ngột, chuyển hóa nhanh, lược bỏ các khâu bộ phận” [22, tr.32]. Tuy có nhiều quan niệm theo những phạm trù khác nhau được đề cập như trên, nhưng hầu hết các khái niệm TG đều có hai đặc trưng sau:“trực tiếp nắm bắt kiến thức một cách nhanh chóng” và “không cần đòi hỏi sự giải thích, lập luận rõ ràng”. Trong quá trình tìm hiểu và phân tích, chúng tôi lựa chọn cách tiếp cận khái niệm TG theo phạm trù nhận thức. Bởi vì, chúng tôi nhận thấy rằng giữa nhận thức và tư duy có mối quan hệ hết sức chặt chẽ, nhận thức cũng gắn liền với HĐ nhằm đạt được hiệu quả trong việc GQVĐ tạo những tác động tích cực đến quá trình nhận thức của người học hướng tới việc tổ chức HĐNT phát triển năng lực cho HS trong quá trình dạy học ở phổ thông. Do đó, chúng tôi đã thừa nhận theo hướng tiếp cận xem TG như là nhận thức của con người và mang hai đặc trưng trên. Vì
- 20 vậy, kế thừa theo quan niệm của các tác giả, cách hiểu TG của chúng tôi là: “TG là nhận thức trực tiếp nắm bắt sự vật, đối tượng một cách nhanh chóng mà không cần dựa trên phân tích và lập luận chứng minh rõ ràng”. 1.2.1.2. Phân loại trực giác Theo Fischbein [70], căn cứ trên nguồn gốc xuất hiện TG phân thành hai loại: TG sơ cấp (Primary intuitions) và TG nhị cấp (Secondary intuitions). TG sơ cấp chỉ những niềm tin nhận thức phát triển tự tại trong con người một cách tự nhiên, có nguồn gốc từ kinh nghiệm và kiến thức cá nhân được tích lũy qua cuộc sống và HĐ, trước khi và độc lập với việc dạy học có hệ thống. Loại TG này thường có tính bền vững và hiệu quả, vì vậy những gì chúng ta biết đầu tiên thường rất khó quên. Ông nhấn mạnh rằng, những kiến thức có được với những hình dạng đầu tiên chính là TG sơ cấp. Còn TG nhị cấp là loại TG không xuất hiện một cách tự nhiên hay xuất phát từ kinh nghiệm thông thường của cá nhân, mà có thể phát triển được thông qua sự tác động của giáo dục. Đây như là kết quả của việc đào tạo tri thức hệ thống. Hai loại TG này cùng tồn tại với dạng kiến thức hình thức thông qua những cấu trúc. Do đó, trình độ TG của HS (TG nhị cấp) phụ thuộc vào sự phát triển của tư duy và quá trình đào tạo có hệ thống. Ngoài ra, dựa trên các căn cứ khác nhau có thể phân loại TG như sau: + Theo Fischbein [70, tr.5764], căn cứ theo vai trò, TG được phân thành: TG khẳng định (Affirmatory intuitions), TG suy đoán (Conjectual intuitions), TG lường trước (Anticipatory intuitions) và TG kết luận (Conclusive intuitions). + Dựa trên mối quan hệ với các loại nhận thức, TG được phân loại theo: TG hoạt động (Operational intuitions) và TG định hướng nội dung (Contentoriented intuitions). + Theo Piaget, TG gồm TG kinh nghiệm (Empirical intuitions) và TG hoạt động (operational intuitions). + Còn theo Bahm, TG được chia thành TG khách quan (Objective intuitions), TG chủ quan (Subjective intuitions) và TG tổ chức (Organic intuitions). + Một cách phân loại TG khác, theo Baylor [58], phân loại TG gồm có trực giác chưa chín muồi (Immature intuition) và trực giác chín muồi (Mature intuition). 1.2.1.3. Trực giác toán học Trong các công trình nghiên cứu trên thế giới, khái niệm TGTH (Mathematical intuition) cũng liên quan đến các lĩnh vực như triết học, tâm lí học, toán học và giáo
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận án Tiến sĩ Khoa học giáo dục: Xây dựng và sử dụng E-learning vào dạy học các kiến thức Hạt nhân nguyên tử Vật lí 12 THPT theo mô hình lớp học đảo ngược
204 p | 351 | 79
-
Luận án tiến sĩ khoa học vật liệu: Nghiên cứu chế tạo tính chất quang của các chấm lượng tử CdSe với cấu trúc lõi/vỏ và định hướng ứng dụng
186 p | 307 | 57
-
Luận án tiến sĩ Khoa học giáo dục: Sử dụng phương tiện trực quan trong dạy học một số khái niệm hóa học cơ bản ở trường Trung học Cơ sở nhằm phát triển năng lực thực nghiệm cho học sinh
260 p | 275 | 54
-
Luận án Tiến sĩ Khoa học máy tính: Khai phá dữ liệu chuỗi thời gian dựa vào rút trích đặc trưng bằng phương pháp điểm giữa và kỹ thuật xén
32 p | 281 | 41
-
Luận án Tiến sĩ Khoa học giáo dục: “Công nghệ dạy học trực tuyến dựa trên phong cách học tập
172 p | 231 | 39
-
Luận án Tiến sĩ Khoa học giáo dục: Nghiên cứu thiết kế và sử dụng sách giáo khoa điện tử trong dạy học phép biến hình trên mặt phẳng theo hướng tổ chức các hoạt động khám phá
246 p | 146 | 35
-
Luận án Tiến sĩ Khoa học Giáo dục: Quản lý hoạt động tự học của lưu học sinh Nước Cộng hòa Dân chủ Nhân dân Lào tại Việt Nam
224 p | 169 | 31
-
Luận án Tiến sĩ Khoa học giáo dục: Quản lí hoạt động thực hành - thực tập của sinh viên ngành Quản lí giáo dục theo tiếp cận chuẩn đầu ra
222 p | 172 | 29
-
Luận án Tiến sĩ Khoa học Giáo dục: Quản lý đội ngũ giáo viên trường THPT tỉnh Lâm Đồng trong bối cảnh đổi mới giáo dục
216 p | 151 | 28
-
Luận án Tiến sĩ Khoa học giáo dục: Rèn luyện NL GQVĐ cho HS trong dạy học phần DTH ở trường THPT chuyên
121 p | 170 | 28
-
Luận án Tiến sĩ Khoa học giáo dục: Vận dụng quan điểm sư phạm tương tác vào dạy học Sinh học 9 trường THCS
165 p | 158 | 23
-
Tóm tắt luận án Tiến sĩ Khoa học giáo dục: Nghiên cứu đặc điểm và giá trị xã hội của thể thao giải trí ở Hà Nội
40 p | 245 | 22
-
Luận án Tiến sĩ Khoa học Giáo dục: Hình thành cho sinh viên kĩ năng đánh giá năng lực khoa học của học sinh theo quan điểm PISA trong dạy học Sinh học ở trường phổ thông
167 p | 164 | 18
-
Luận án Tiến sĩ Khoa học giáo dục: Xây dựng mô hình tổ chức xêmina định hướng phát triển năng lực trong đào tạo giáo viên Địa lí bậc đại học
170 p | 131 | 15
-
Tóm tắt Luận án Tiến sĩ Khoa học Kỹ thuật: Nghiên cứu cơ sở khoa học xây dựng Web Atlas quản lý hành chính thành phố Hà Nội
28 p | 145 | 14
-
Luận án Tiến sĩ Khoa học giáo dục: Tổ chức hoạt động khám phá khoa học nhằm phát triển vốn từ cho trẻ mẫu giáo 3 - 4 tuổi
203 p | 70 | 12
-
Luận án Tiến sĩ Khoa học giáo dục: Tổ chức hoạt động dạy học vật lí "xây dựng và sử dụng thiết bị thí nghiệm tĩnh điện" nhằm bồi dưỡng năng lực giải quyết vấn đề
224 p | 50 | 10
-
Luận án Tiến sĩ Khoa học giáo dục: Dạy học trên cơ sở vấn đề bài học STEM chủ đề các thể của chất môn Khoa học tự nhiên 6
275 p | 16 | 8
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn