Bài giảng Lý thuyết xác suất và thống kê toán: Bài 4 - ĐH Kinh tế Quốc dân
lượt xem 4
download
Bài giảng "Lý thuyết xác suất và thống kê toán - Bài 4: Biến ngẫu nhiên liên tục và quy luật phân phối xác suất" cung cấp cho người học các kiến thức: Biến ngẫu nhiên liên tục, hàm phân phối xác suất, hàm mật độ xác suất,... Mời các bạn cùng tham khảo nội dung chi tiết.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Lý thuyết xác suất và thống kê toán: Bài 4 - ĐH Kinh tế Quốc dân
- BÀI 4 – BIẾN NGẪU NHIÊN LIÊN TỤC VÀ QUY LUẬT PHÂN PHỐI XÁC SUẤT 4.1. Biến ngẫu nhiên liên tục 4.2. Hàm phân phối xác suất 4.3. Hàm mật độ xác suất 4.4. Các tham số đặc trưng 4.5. Phân phối Đều 4.6. Phân phối Chuẩn 4.7. Phân phối khác ▪ [1] Chương 2, trang 79 – 128. Chương 3, tr 167 – 196. ▪ [2] Chapter 1, pp. 177 – 223. ▪ [3] Chapter 6, pp. 265 – 297. LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 85
- 4.1. BIẾN NGẪU NHIÊN LIÊN TỤC ▪ Biến ngẫu nhiên liên tục (Continuous Random Variable) là biến ngẫu nhiên có thể nhận mọi giá trị trong một khoảng 𝑎; 𝑏 , 𝑎, 𝑏 ∈ ℝ. Ví dụ ▪ Thời gian đi từ nhà đến trường của sinh viên ▪ Lợi nhuận của nhà đầu tư cổ phiếu sau một năm ▪ Cân nặng của trẻ sơ sinh ở Việt Nam LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 86
- 4.2. HÀM PHÂN PHỐI XÁC SUẤT ▪ Hàm phân phối xác suất( hàm tích lũy xác suất - Cumulative Distribution Function) của biến ngẫu nhiên 𝑋 là: 𝐹 𝑥 = 𝑃 𝑋 < 𝑥 ,𝑥 ∈ ℝ LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 87
- Tính chất ▪ 𝑃 𝑎 < 𝑋
- Hàm mật độ xác suất • 𝑋 là biến ngẫu nhiên liên tục, hàm mật độ xác suất (Density Function) của 𝑋, ký hiệu 𝑓 𝑥 , là: 𝑓 𝑥 = 𝐹′(𝑥) LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 89
- Tính chất ▪ 𝑓 𝑥 ≥ 0 ∀𝑥 x ▪ 𝐹 𝑥 = −∞ f(t) 𝑑𝑡 +∞ ▪ −∞ 𝑓 𝑥 𝑑𝑥 = 1 𝑏 ▪ 𝑃 𝑎
- 4.4. CÁC THAM SỐ ĐẶC TRƯNG ▪ Kỳ vọng: +∞ 𝐸 𝑋 =න 𝑥. 𝑓 𝑥 𝑑𝑥 −∞ ▪ Phương sai: 𝑉 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2 +∞ 𝐸 𝑋2 = න 𝑥 2 . 𝑓 𝑥 𝑑𝑥 −∞ ▪ Độ lệch chuẩn: 𝜎= 𝑉 𝑋 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 91
- Trung vị và Mốt ▪ Trung vị Trung vị, ký hiệu 𝑚𝑑 , là giá trị chia phân phối xác suất của biến ngẫu nhiên thành hai phần bằng nhau. 𝑚𝑑 −∞ 𝑓(𝑥) 𝑑𝑥 = 0,5 ▪ Mốt Mốt, ký hiệu 𝑚𝑜 , là giá trị mà tại đó hàm mật độ xác suất 𝑓 𝑥 đạt giá trị cực đại. LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 92
- Giá trị tới hạn Giá trị tới hạn mức 𝛼 của biến ngẫu nhiên X, ký hiệu 𝑥𝛼 , là giá trị của 𝑋 thỏa mãn: 𝑃 𝑋 > 𝑥𝛼 = 𝛼 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 93
- 4.5. PHÂN PHỐI ĐỀU ▪ Biến ngẫu nhiên liên tục X có phân phối Đều (Uniform Distribution) trên khoảng 𝑎; 𝑏 nếu hàm mật độ xác suất của 𝑋 có dạng: 1 𝑥 ∈ (𝑎; 𝑏) 𝑓 𝑥 = ቐ𝑏 − 𝑎 0 𝑥 ∉ (𝑎; 𝑏) ▪ Ký hiệu: 𝑋 ∼ 𝑈 𝑎; 𝑏 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 94
- Phân phối đều 𝑎+𝑏 ▪ 𝐸 𝑋 = 2 𝑏−𝑎 2 ▪ 𝑉 𝑋 = 12 𝑑−𝑐 ▪ 𝑃 𝑐
- 4.6. QUY LUẬT CHUẨN ▪ 𝐵 (𝑛; 𝑝 = 0,5) với 𝑛 = 10; 20; 100 0.25 0.25 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0.025 0.025 0.02 0.02 0.015 0.015 0.01 0.01 0.005 0.005 0 0 1 7 131925313743495561677379859197 0 20 40 60 80 100 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 96
- Phân phối Chuẩn ▪ Biến ngẫu nhiên liên tục 𝑋 có phân phối Chuẩn (Normal Distribution) nếu hàm mật độ xác suất của 𝑋 có dạng: 𝑥−𝜇 2 1 − 𝑓 𝑥 = 𝑒 2𝜎2 𝜎 2𝜋 ▪ Đồ thị của 𝑓 𝑥 có dạng quả chuông và đối xứng qua đường thẳng 𝑥 = 𝜇 ▪ Ký hiệu: 𝑋 ∼ 𝑁 𝜇, 𝜎 2 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 97
- Các tham số 𝑋 ∼ 𝑁 𝜇, 𝜎 2 ▪ 𝐸 𝑋 =𝜇 ▪ 𝑉 𝑋 = 𝜎2 Khi tăng thì đồ thị của Khi 𝜎 tăng thì đồ thị của 𝑓(𝑥) 𝑓(𝑥) dịch sang phải thấp xuống và rộng ra LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 98
- Phân phối Chuẩn hóa ▪ Biến ngẫu nhiên liên tục 𝑍 được gọi là có phân phối Chuẩn hóa (Standardzied Normal Distribution), nếu 𝑍 có phân phối Chuẩn với 𝜇 = 0 và 𝜎 2 = 1. 𝑍 ∼ 𝑁 0; 1 ▪ Hàm mật độ xác suất của 𝑍 có dạng: 𝑧2 1 − 𝜑 𝑧 = 𝑒 2 2𝜋 ▪ Đồ thị hàm mật độ có dạng hình quả chuông đối xứng qua trục tung. LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 99
- Phân phối Chuẩn hóa ▪ Hàm phân phối 𝑥xác suất 𝑥 1 𝑧2 −2 Φ 𝑥 = න 𝜑 𝑧 𝑑𝑧 = න 𝑒 𝑑𝑧 2𝜋 −∞ −∞ ▪ Tính chất: Φ −𝑥 + Φ 𝑥 = 1 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 100
- Phân phối Chuẩn hóa ▪ Cho 𝑋 ∼ 𝑁 𝜇; 𝜎 2 𝑋−𝜇 Đặt 𝑍 = 𝜎 Khi đó: 𝑍 ∼ 𝑁 0; 1 • 𝑃 𝑍𝑎 =1−Φ 𝑎 • 𝑃 𝑍 > −𝑎 = 𝑃 𝑍 < 𝑎 = Φ 𝑎 • 𝑃 𝑎 < 𝑍 < 𝑏 = Φ 𝑏 − Φ(𝑎) ▪ Ví dụ Tính 𝑃 𝑍 > 1,96 𝑃 −2 ≤ 𝑍 ≤ 2 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 101
- Công thức tính xác suất 𝑋 ∼ 𝑁 𝜇; 𝜎 2 𝑋−𝑏 𝑏−𝜇 • 𝑃 𝑋𝑎 =1−Φ 𝜎 𝑏−𝜇 𝑎−𝜇 • 𝑃 𝑎
- Ví dụ Ví dụ 4.6: Lợi nhuận (đv: triệu) của một dự án là biến ngẫu nhiên có phân phối Chuẩn, với trung bình bằng 500, phương sai bằng 400. Tính xác suất để: a) Lợi nhuận cao hơn 540. b) Lợi nhuận thấp hơn 570. c) Lợi nhuận từ 480 đến 550. LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 103
- Xác suất biến ngẫu nhiên sai lệch so với kì vọng 𝑋 ∼ 𝑁 𝜇; 𝜎 2 𝜀 𝑃 𝑋 – < = 2Φ −1 𝜎 Ba trường hợp riêng: • Quy tắc 1-sigma: 𝑃(|𝑋 – | < 𝜎) = 0,6826 • Quy tắc 2-sigma: 𝑃 𝑋 – < 2𝜎 = 0,9544 • Quy tắc 3-sigma: 𝑃 𝑋 – < 3𝜎 = 0,9974 LÝ THUYẾT XÁC SUẤT VÀ THỐNG KÊ TOÁN – BỘ MÔN TOÁN KINH TẾ - www.mfe.neu.edu.vn 104
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Lý thuyết xác suất và thống kê toán: Dãy phép thử Bernoulli - Nguyễn Thị Hồng Nhung
16 p | 358 | 43
-
Bài giảng Lý thuyết xác suất – thống kê toán học: Chương 1 - Các khái niệm các công thức cơ bản
42 p | 234 | 21
-
Bài giảng Lý thuyết xác suất: Chương 1
32 p | 155 | 10
-
Bài giảng Lý thuyết xác suất và thống kê toán - Nguyễn Như Quân
32 p | 153 | 9
-
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 4 - Đại học Kinh tế Quốc dân
16 p | 180 | 6
-
Bài giảng Lý thuyết xác suất và thống kê toán - Chương 1: Khái niệm cơ bản của lý thuyết xác suất
69 p | 27 | 5
-
Bài giảng Lý thuyết xác suất và thống kê toán: Phần 1 - Cao Tấn Bình
35 p | 28 | 3
-
Bài giảng Lý thuyết xác suất thống kê toán - Chương 1: Biến cố - Các công thức tính xác suất
58 p | 73 | 3
-
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 3 - ĐH Kinh tế Quốc dân
18 p | 87 | 3
-
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 2 - ĐH Kinh tế Quốc dân
26 p | 74 | 2
-
Bài giảng Lý thuyết xác suất và thống kê toán - ThS. Nguyễn Thị Thùy Trang
89 p | 61 | 2
-
Bài giảng Lý thuyết xác suất và thống kê - TS. Nguyễn Như Lân
8 p | 24 | 2
-
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 1 - Lê Phương
30 p | 8 | 1
-
Bài giảng Lý thuyết xác suất: Chương 1 - Trường ĐH Sư phạm Hà Nội
64 p | 6 | 1
-
Bài giảng Lý thuyết xác suất: Chương 2 - Trường ĐH Sư phạm Hà Nội
92 p | 11 | 1
-
Bài giảng Lý thuyết xác suất: Chương 3 - Trường ĐH Sư phạm Hà Nội
94 p | 5 | 1
-
Bài giảng Lý thuyết xác suất: Chương 4 - Trường ĐH Sư phạm Hà Nội
77 p | 13 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn