Bài giảng Lý thuyết xác suất và thống kê toán: Chương 2 - Hoàng Thị Diễm Hương
lượt xem 15
download
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 2 trình bày về đại lượng ngẫu nhiên và phân loại đại lượng ngẫu nhiên; phân phối xác suất của đại lượng ngẫu nhiên; hàm của các đại lượng ngẫu nhiên; các tham số đặc trưng của đại lượng ngẫu nhiên. Tài liệu phục vụ cho các bạn chuyên ngành Toán học.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Bài giảng Lý thuyết xác suất và thống kê toán: Chương 2 - Hoàng Thị Diễm Hương
- Chương 2 ĐẠI LƯỢNG NGẪU NHIÊN VÀ PHÂN PHỐI XÁC SUẤT
- I. ĐẠI LƯỢNG NGẪU NHIÊN VÀ PHÂN LOẠI ĐẠI LƯỢNG NGẪU NHIÊN Ví dụ : Kiểm tra 3 sp. Gọi X là số sp đạt yêu cầu trong 3 sp kiểm tra. X có thể nhận Đỏ : Đạt yêu cầu các giá trị khác Xanh : Không đạt nhau tương ứng X = 3 với các biến cố khác nhau. X = 2 X = 1 X đgl đại lượng ngẫu X = 0 nhiên.
- I. ĐẠI LƯỢNG NGẪU NHIÊN VÀ PHÂN LOẠI ĐẠI LƯỢNG NGẪU NHIÊN • Khi thực hiện một phép thử, bằng một quy tắc (hay một hàm) ta có thể gán các giá trị bằng số cho các kết quả của phép thử đó. Quy tắc đó đgl một đại lượng ngẫu nhiên. • Khi thực hiện phép thử, ĐLNN sẽ nhận 1 và chỉ 1 giá trị nào đó trong tập hợp các giá trị mà nó có thể nhận. Việc 1 ĐLNN nhận 1 giá trị cụ thể là 1 biến cố. vLưu ý : Không có P(X) chung chung mà chỉ có P(X = x1), P(X = x2),…, P(a
- I. ĐẠI LƯỢNG NGẪU NHIÊN VÀ PHÂN LOẠI ĐẠI LƯỢNG NGẪU NHIÊN Phân loại ĐLNN: • ĐLNN đgl rời rạc nếu tập hợp các giá trị mà nó có thể nhận là 1 tập hữu hạn hoặc vô hạn đếm được. Cho ví d ụ? • ĐLNN đgl liên tục nếu các giá trị mà nó có thể nhận có thể lấp kín cả 1 khoảng trên trục số.
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN Một hệ thức cho phép biểu diễn mối quan hệ giữa các giá trị có thể nhận với các xác suất tương ứng đgl phân phối xác suất của ĐLNN. • Bảng phân phối xác suất. • Hàm mật độ xác suất • Hàm phân phối xác suất.
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN Bảng phân phối xác suất : X x1 x2 … xk n P p1 p2 … pi = 1 pk i = 1
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN Bảng phân phối xác suất : Ví dụ : Một hộp có 10 sản phẩm, trong đó có 6 sp loại A và 4 sp loại B. Lấy ngẫu nhiên từ hộp ra 3 sp. Gọi X là số sp loại A có trong 3 sp lấy ra. Lập bảng phân phối xác suất của X.
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN 6A 4B 3 sp X P
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN Hàm mật độ xác suất : Hàm mật độ xác suất của ĐLNN liên tục X, ký hiệu là f(x), thỏa mãn các điều kiện sau: (i) f(x) 0, ∀x ᄀ + (ii) f(x)dx = 1 b (iii) P(a
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN Hàm mật độ xác suất : Minh họa hình học : 12 P(a
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN Nhận xét : dựa vào bảng PPXS và hàm mật độ XS, ta thấy: Đối với ĐLNN rời rạc : Đối với ĐLNN liên tục :
- II. PHÂN PHỐI XÁC SUẤT CỦA ĐẠI LƯỢNG NGẪU NHIÊN Hàm phân phối xác suất : Hàm phân phối xác suất của ĐLNN X (ký hiệu F(x)) được định nghĩa bởi biểu thức: F(x) = P(X < x) Đối với ĐLNN rời rạc : F(x) = pi x i
- III. HÀM CỦA CÁC ĐẠI LƯỢNG NGẪU NHIÊN Hàm của một đại lượng ngẫu nhiên : Nếu với mỗi giá trị có thể có của ĐLNN X, qua hàm f(X) ta xác định được 1 giá trị của ĐLNN Y thì Y đgl hàm của ĐLNN X: Y = f(X). Ví dụ : Tìm phân phối xác suất của Y = X2, biết rằng X là ĐLNN rời rạc có bảng phân phối xác suất như sau: X -2 0 1 2 P 0,1 0,3 0,4 0,2
- III. HÀM CỦA CÁC ĐẠI LƯỢNG NGẪU NHIÊN Hàm của một đại lượng ngẫu nhiên : X P
- III. HÀM CỦA CÁC ĐẠI LƯỢNG NGẪU NHIÊN Hàm của hai hay nhiều đại lượng ngẫu nhiên : Nếu ứng với mỗi bộ giá trị có thể nhận của (X1, X2,…, Xn), qua hàm Z = (X1, X2,…, Xn), ta có 1 giá trị có thể nhận của ĐLNN Z thì Z đgl hàm của n ĐLNN (X1, X2,…, Xn). Ví dụ : Cho X là ĐLNN có thể nhận các giá trị 0, 1, 2; Y là ĐLNN có thể nhận các giá trị -1, 0, 3. Khi đó: X + Y
- III. HÀM CỦA CÁC ĐẠI LƯỢNG NGẪU NHIÊN Sự độc lập của các đại lượng ngẫu nhiên : Hai ĐLNN đgl độc lập với nhau nếu phân phối xác suất của ĐLNN này không phụ thuộc gì vào việc ĐLNN kia nhận giá trị bằng bao nhiêu. • Nếu X, Y độc lập với nhau thì: P[(X = a)(Y = b)] = P(X = a).P(Y = b) • Nếu Y phụ thuộc vào X thì: P[(X = a)(Y = b)] = P(X = a).P(Y = b/X = a)
- III. HÀM CỦA CÁC ĐẠI LƯỢNG NGẪU NHIÊN Sự độc lập của các đại lượng ngẫu nhiên : Ví dụ 1: X1, X2 là số sp loại A 7A 3B 6A 4B trong 3 sp lấy từ hộp 1, hộp 2. 3 sp 3 sp Ví dụ 2: Y1, Y2 là số 7A 3B 6A 4B sp loại A trong 3 sp 3 sp lấy từ hộp 3 sp 1, hộp 2.
- IV. CÁC THAM SỐ ĐẶC TRƯNG CỦA ĐẠI LƯỢNG NGẪU NHIÊN Kỳ vọng toán : E(X) Nếu X là ĐLNN rời rạc nhận các giá trị x1, x2,…, xn với các xác suất tương ứng p1, p2, …, pn thì kỳ vọng toán của X được xác định n bởi biểu thức:E(X) = x p i i i = 1 Ví dụ : Tìm kỳ vọng của ĐLNN X có bảng phân phối xác suất như sau: X -2 0 1 2 P 0,1 0,3 0,4 0,2
- IV. CÁC THAM SỐ ĐẶC TRƯNG CỦA ĐẠI LƯỢNG NGẪU NHIÊN Kỳ vọng toán : E(X) Nếu X là ĐLNN liên tục có hàm mật độ xác suất là f(x) thì kỳ vọng toán được xác định bởi: + E(X) = xf(x)dx Bản chất và ý nghĩa của kỳ vọng toán?
- IV. CÁC THAM SỐ ĐẶC TRƯNG CỦA ĐẠI LƯỢNG NGẪU NHIÊN Kỳ vọng toán : E(X) Ví dụ : Giả sử ta có 1 cái túi đựng 10 quả cam, trong đó có 2 quả nặng 200g, 5 quả nặng 250g, 3 quả nặng 300g. Gọi X là khối lượng của 1 quả cam được lấy ngẫu nhiên từ túi trên. Khi đó X là ĐLNN có bảng phân phối xác suất: X 200 250 300 P 0,2 0,5 0,3 E(X) = 200x0,2 + 250x0,5 + 300x0,3 = 255 E(X) chính là giá trị trung bình của ĐLNN X.
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài giảng Lý thuyết xác suất và thống kê toán: Dãy phép thử Bernoulli - Nguyễn Thị Hồng Nhung
16 p | 358 | 43
-
Bài giảng Lý thuyết xác suất – thống kê toán học: Chương 1 - Các khái niệm các công thức cơ bản
42 p | 234 | 21
-
Bài giảng Lý thuyết xác suất: Chương 1
32 p | 154 | 10
-
Bài giảng Lý thuyết xác suất và thống kê toán - Nguyễn Như Quân
32 p | 153 | 9
-
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 4 - Đại học Kinh tế Quốc dân
16 p | 180 | 6
-
Bài giảng Lý thuyết xác suất và thống kê toán - Chương 1: Khái niệm cơ bản của lý thuyết xác suất
69 p | 26 | 5
-
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 4 - ĐH Kinh tế Quốc dân
30 p | 53 | 4
-
Bài giảng Lý thuyết xác suất và thống kê toán: Phần 1 - Cao Tấn Bình
35 p | 28 | 3
-
Bài giảng Lý thuyết xác suất thống kê toán - Chương 1: Biến cố - Các công thức tính xác suất
58 p | 73 | 3
-
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 3 - ĐH Kinh tế Quốc dân
18 p | 86 | 3
-
Bài giảng Lý thuyết xác suất và thống kê toán: Bài 2 - ĐH Kinh tế Quốc dân
26 p | 74 | 2
-
Bài giảng Lý thuyết xác suất và thống kê toán - ThS. Nguyễn Thị Thùy Trang
89 p | 60 | 2
-
Bài giảng Lý thuyết xác suất và thống kê - TS. Nguyễn Như Lân
8 p | 24 | 2
-
Bài giảng Lý thuyết xác suất và thống kê toán: Chương 1 - Lê Phương
30 p | 8 | 1
-
Bài giảng Lý thuyết xác suất: Chương 1 - Trường ĐH Sư phạm Hà Nội
64 p | 6 | 1
-
Bài giảng Lý thuyết xác suất: Chương 2 - Trường ĐH Sư phạm Hà Nội
92 p | 11 | 1
-
Bài giảng Lý thuyết xác suất: Chương 3 - Trường ĐH Sư phạm Hà Nội
94 p | 5 | 1
-
Bài giảng Lý thuyết xác suất: Chương 4 - Trường ĐH Sư phạm Hà Nội
77 p | 12 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn