Luyện thi Đại học Toán chuyên đề: Nguyên hàm - Thầy Đặng Việt Hùngh
lượt xem 8
download
Tài liệu tham khảo môn Toán dành cho quý thầy cô và các bạn học sinh với chuyên đề: Nguyên hàm. Mời quý thầy cô và các bạn học sinh tham khảo nhằm củng cố kiến thức và ôn thi Đại học đạt kết quả cao nhất.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luyện thi Đại học Toán chuyên đề: Nguyên hàm - Thầy Đặng Việt Hùngh
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 Tài li u bài gi ng: 01. M U V NGUYÊN HÀM Th y ng Vi t Hùng I. NH C L I KHÁI NI M V VI PHÂN C A HÀM S Vi phân c a hàm s y = f(x) ư c kí hi u là dy và cho b i công th c dy = df ( x ) = y ' dx = f '( x )dx Ví d : d(x2 – 2x + 2) = (x2 – 2x + 2)′dx = (2x – 2)dx d(sinx + 2cosx) = (sinx + 2cosx)′dx = (cosx – 2sinx)dx Chú ý: T công th c vi phân trên ta d dàng thu ư c m t s k t qu sau 1 d ( 2 x ) = 2dx ⇒ dx = d ( 2 x ) 2 1 d ( 3x ) = 3dx ⇒ dx = d ( 3x ) 3 x2 1 2 2 ( ) 1 2 (1 xdx = d = d x 2 = d x 2 ± a = − d a − x 2 2 ) ( ) x3 1 3 3 ( ) 1 ( x 2 dx = d = d x3 = d x3 ± a = − d a − x3 3 ) 1 3 ( ) 1 d ( ax + b ) 1 = d ( ln ax + b ) → = d ( ln x ) dx dx = ax + b a ax + b a x sin ( ax + b ) dx = sin ( ax + b ) d ( ax + b ) = − d ( cos ( ax + b ) ) sin 2 xdx = − d ( cos2 x ) ... 1 1 1 → a a 2 cos ( ax + b ) dx = cos ( ax + b ) d ( ax + b ) = d ( sin ( ax + b ) ) cos 2 xdx = d ( sin 2 x ) ... 1 1 1 → a a 2 e ax + b 1 ax +b dx = e a 1 d ( ax + b ) = d e a (ax +b ) 1 e dx = d e ... → 2x 2 ( ) 2x dx 1 d ( ax + b ) 1 dx 1 = = d tan ( ax + b ) → = d ( tan 2 x ) ... cos ( ax + b ) a cos ( ax + b ) a 2 2 2 cos 2 x 2 dx 1 d ( ax + b ) 1 dx 1 = = − d cot ( ax + b ) → 2 = − d ( cot 2 x ) ... sin 2 ( ax + b ) a sin ( ax + b ) 2 a sin 2 x 2 II. KHÁI NI M V NGUYÊN HÀM Cho hàm s f(x) liên t c trên m t kho ng (a; b). Hàm F(x) ư c g i là nguyên hàm c a hàm s f(x) n u F’(x) = f(x) và ư c vi t là ∫ f ( x)dx . T ó ta có : ∫ f ( x)dx = F ( x) Nh n xét: V i C là m t h ng s nào ó thì ta luôn có (F(x) + C)’ = F’(x) nên t ng quát hóa ta vi t ∫ f ( x)dx = F ( x) + C , khi ó F(x) + C ư c g i là m t h nguyên hàm c a hàm s f(x). V i m t giá tr c th c a C thì ta ư c m t nguyên hàm c a hàm s ã cho. Ví d : Hàm s f(x) = 2x có nguyên hàm là F(x) = x2 + C, vì (x2 + C)’ = 2x Hàm s f(x) = sinx có nguyên hàm là F(x) = –cosx + C, vì (–cosx + C)’ = sinx III. CÁC TÍNH CH T CƠ B N C A NGUYÊN HÀM Cho các hàm s f(x) và g(x) liên t c và t n t i các nguyên hàm tương ng F(x) và G(x), khi ó ta có các tính ch t sau: a) Tính ch t 1: ( ∫ f ( x)dx )′ = f ( x) H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 Ch ng minh: Do F(x) là nguyên hàm c a hàm s f(x) nên hi n nhiên ta có ( ∫ f ( x)dx )′ = ( F ( x) )′ = f ( x) ⇒ pcm. b) Tính ch t 2: ( ∫ [ f ( x) + g ( x)] dx ) = ∫ f ( x)dx + ∫ g ( x)dx Ch ng minh: Theo tính ch t 1 ta có, ( ∫ f ( x)dx + ∫ g ( x)dx )′ = ( ∫ f ( x)dx )′ + ( ∫ g ( x)dx )′ = f ( x) + g ( x) Theo nh nghĩa nguyên hàm thì v ph i chính là nguyên hàm c a f(x) + g(x). T ( ∫ [ f ( x) + g ( x)] dx ) = ∫ f ( x)dx + ∫ g ( x)dx ó ta có c) Tính ch t 3: ( ∫ k . f ( x)dx ) = k ∫ f ( x)dx, ∀k ≠ 0 Ch ng minh: ′ ( ) Tương t như tính ch t 2, ta xét k ∫ f ( x)dx = k . f ( x) ∫ k . f ( x)dx = k ∫ f ( x)dx ⇒ pcm. → d) Tính ch t 4: ∫ f ( x)dx = ∫ f (t )dt = ∫ f (u )du.. Tính ch t trên ư c g i là tính b t bi n c a nguyên hàm, t c là nguyên hàm c a m t hàm s ch ph thu c vào hàm, mà không ph thu c vào bi n. IV. CÁC CÔNG TH C NGUYÊN HÀM Công th c 1: ∫ dx = x + C Ch ng minh: Th t v y, do ( x + C )′ = 1 ⇒ ∫ dx = x + C Chú ý: M r ng v i hàm s h p u = u ( x) , ta ư c ∫ du = u + C x n +1 Công th c 2: ∫ x n dx = +C n +1 Ch ng minh: x n +1 ′ x n +1 Th t v y, do + C = x n ⇒ ∫ x n dx = +C n +1 n +1 Chú ý: u n +1 + M r ng v i hàm s h p u = u ( x) , ta ư c ∫ u n du = +C n +1 1 dx dx du +V i n=− ⇒∫ = 2∫ = 2 x + C ← ∫ → =2 u +C 2 x 2 x u dx 1 du 1 + V i n = −2 ⇒ ∫ 2 = − + C ← ∫ 2 = − + C → x x u u Ví d : x3 a) ∫ x 2 dx = + C 3 x5 b) ∫ ( x 4 + 2 x ) dx = ∫ x 4 dx + ∫ 2 xdx = + x 2 + C 5 1 1 3 x − x2 x3 − 2 x2 x 3 x2 x2 c) ∫ x dx = ∫ dx − ∫ xdx = ∫ x 3 dx − = x 2 1 − + C = 33 x − + C 2 2 3 ( 2 x + 1) + C 5 1 d) I = ∫ ( 2 x + 1) dx = ∫ ( 2 x + 1) d ( 2 x + 1) I = u n du → 4 4 2 5 H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 (1 − 3x ) + C 2011 1 e) I = ∫ (1 − 3x ) dx = − ∫ (1 − 3 x ) d (1 − 3 x ) I = − u n du → 2010 2010 3 2011 1 d ( 2 x + 1) u 2 du dx 1 1 1 f) I = ∫ = ∫ I = − . → +C =− +C ( 2 x + 1) 2 2 ( 2 x + 1) 2 2 2x + 1 2 ( 2 x + 1) 3 3 1 1 2 3 g) I = ∫ 4 x + 5dx = 4 x + 5d ( 4 x + 5 ) ⇒ I = . ( 4 x + 5 ) 2 + C = ( 4 x + 5 ) 2 + C 4∫ 4 3 8 dx Công th c 3: ∫ = ln x + C x Ch ng minh: Th t v y, do ( ln x + C )′ = ⇒ ∫ = ln x + C 1 dx x x Chú ý: du + M r ng v i hàm s h p u = u ( x) , ta ư c ∫u = ln u + C dx 1 ∫ 2x + k 2 = ln 2 x + k + C dx 1 d ( ax + b ) 1 + ∫ ax + b a ∫ ax + b = = ln ax + b + C → a dx = − 1 ln k − 2 x + C ∫ k − 2 x 2 Ví d : 1 1 1 dx x 4 a) ∫ x3 + + dx = ∫ x3 dx + ∫ dx + ∫ = + 2 x + ln x + C x x x x 4 1 d ( 3x + 2 ) u du dx 1 b) I = ∫ = ∫ I = ln 3x + 2 + C → 3x + 2 3 3x + 2 3 2x2 + x + 3 3 dx 3 d ( 2 x + 1) 3 c) ∫ dx = ∫ 2 x + dx = ∫ 2 xdx + 3∫ = x2 + ∫ = x 2 + ln 2 x + 1 + C 2x + 1 2x + 1 2x + 1 2 2x + 1 2 Công th c 4: ∫ sinxdx = − cos x + C Ch ng minh: Th t v y, do ( − cos x + C )′ = sin x ⇒ ∫ sinxdx = − cos x + C Chú ý: + M r ng v i hàm s h p u = u ( x) , ta ư c ∫ sinudu = − cos u + C 1 1 1 + ∫ sin ( ax + b ) dx = ∫ sin ( ax + b ) d ( ax + b ) = − a cos ( ax + b ) + C ∫ sin 2 xdx = − 2 cos2 x + C → a Ví d : 1 dx 3 1 d ( 2 x − 1) a) ∫ x x + s inx + dx = ∫ x xdx + ∫ sinxdx + ∫ = ∫ x 2 dx − cos x + ∫ = 2x −1 2x −1 2 2x −1 5 2x 2 1 = − cos x + ln 2 x − 1 + C 5 2 3 dx 1 3 d ( 4 x − 3) 1 3 b) ∫ sin 2 x + dx = ∫ sin 2 xdx +3∫ = ∫ sin 2 xd ( 2 x ) + ∫ = − cos2 x + ln 4 x − 3 + C 4x − 3 4x − 3 2 4 4x − 3 2 4 x c) ∫ sin + sinx + sin 3 x dx 2 x 1 x 1 1 Ta có d = dx ⇒ dx = 2d ; d ( 2 x ) = 2dx ⇒ dx = d ( 2 x ) ; d ( 3x ) = 3dx ⇒ dx = d ( 3x ) 2 2 2 2 3 T ó: x x x x 1 1 ∫ sin 2 + sinx + sin 3x dx = ∫ sin 2 dx + ∫ sin 2 xdx + ∫ sin 3xdx = 2∫ sin 2 d 2 + 2 ∫ sin 2 xd ( 2 x ) + 3 ∫ sin 3xd ( 3x ) H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 x 1 1 = −2cos − cos2 x − cos3x + C 2 2 3 Công th c 5: ∫ cos xdx = sin x + C Ch ng minh: Th t v y, do ( sinx + C )′ = cos x ⇒ ∫ cosxdx = sinx + C Chú ý: + M r ng v i hàm s h p u = u ( x) , ta ư c ∫ cosudu = sin u + C 1 1 1 + ∫ cos ( ax + b ) dx = ∫ cos ( ax + b ) d ( ax + b ) = a sin ( ax + b ) + C ∫ cos2 xdx = 2 sin 2 x + C → a Ví d : 4x − 1 5 a) ∫ cos x − sin x + dx = ∫ cos xdx − ∫ sin xdx + ∫ 4 − dx = sinx + cos x + 4 x − 5ln x + 1 + C x +1 x +1 1 x2 b) ∫ ( cos 2 x + sin x − x ) dx = ∫ cos2 xdx + ∫ sinxdx − ∫ xdx = sin 2 x − cos x − + C 2 2 1 − cos2 x 1 1 1 1 1 1 c) ∫ sin 2 xdx = ∫ dx = ∫ − cos2 x dx = x − ∫ cos2 xd ( 2 x ) = x − sin 2 x + C 2 2 2 2 4 2 4 dx Công th c 6: ∫ = tan x + C cos 2 x Ch ng minh: Th t v y, do ( tan x + C )′ = 1 dx 2 ⇒∫ = tan x + C cos x cos 2 x Chú ý: du + M r ng v i hàm s h p u = u ( x) , ta ư c ∫ cos u = tan u + C 2 dx 1 d ( ax + b ) 1 dx 1 + ∫ cos ( ax + b ) = a ∫ cos ( ax + b ) = a tan ( ax + b ) + C ∫ cos 2 2 → 2 = tan 2 x + C 2x 2 Ví d : 1 dx 1 a) ∫ 2 + cos x − sin 2 x dx = ∫ 2 + ∫ cos xdx − ∫ sin 2 xdx = tan x + sin x + cos 2 x + C cos x cos x 2 1 2 dx dx 1 d ( 2 x − 1) 2 d (5 − 4x) b) I = ∫ + dx = ∫ + 2∫ = ∫ − ∫ cos ( 2 x − 1) 5 − 4 x cos ( 2 x − 1) 5 − 4 x 2 cos ( 2 x − 1) 4 2 2 2 5 − 4x du 1 1 = → cos2 u tan ( 2 x − 1) − ln 5 − 4 x + C 2 2 1 d (3 − 2x ) du dx 1 c) I = ∫ =− ∫ I = − tan ( 3 − 2 x ) + C cos 2 u → cos ( 3 − 2 x ) 2 2 cos ( 3 − 2 x ) 2 2 dx Công th c 7: ∫ = − cot x + C sin 2 x Ch ng minh: Th t v y, do ( − cot x + C )′ = 1 dx ⇒ ∫ 2 = − cot x + C sin 2 x sin x Chú ý: du + M r ng v i hàm s h p u = u ( x) , ta ư c ∫ sin u = − cot u + C 2 dx 1 d ( ax + b ) 1 dx 1 + ∫ sin ( ax + b ) = a ∫ sin ( ax + b ) = − a cot ( ax + b ) + C ∫ sin 2 2 → 2 2x = − cot 2 x + C 2 Ví d : H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 1 dx 1 x6 a) ∫ cos 2 x − 2 + 2 x5 dx = ∫ cos 2 xdx − ∫ 2 + ∫ 2 x 5 dx = sin 2 x + cot x + + C sin x sin x 2 3 1 d (1 − 3 x ) du dx 1 1 b) I = ∫ 2 =− ∫ 2 I = − − cot (1 − 3 x ) + C = cot (1 − 3x ) + C sin 2 u → sin (1 − 3x ) 3 sin (1 − 3 x ) 3 3 x d du x = 2 ∫ I = −2 cot + C dx 2 c) I = ∫ sin 2 u → x x 2 sin 2 sin 2 2 2 Công th c 8: ∫ e x dx = e x + C Ch ng minh: Th t v y, do ( e x + C )′ = e x ⇒ ∫ e x dx = e x + C Chú ý: + M r ng v i hàm s h p u = u ( x) , ta ư c ∫ eu du = eu + C 2 x+ k 1 2 x+k 1 ax + b 1 ax + b ∫ e dx = 2 e +C + ∫ e dx = ∫ e d ( ax + b ) = e ax + b + C → a a e k − 2 x dx = − 1 e k − 2 x + C ∫ 2 Ví d : 1 4 dx 4 1 1 d ( 3x ) a) ∫ e −2 x +1 − 2 + dx = ∫ e −2 x +1 dx − ∫ 2 + ∫ dx = − ∫ e −2 x +1d ( −2 x + 1) − ∫ 2 + 4.2 x sin 3x x sin 3 x x 2 3 sin 3 x 1 1 = − e −2 x +1 + cot 3x + 8 x + C 2 3 ∫ ( 4e + cos (1 − 3x ) ) dx = 4 ∫ e3 x + 2 dx + ∫ cos (1 − 3 x ) dx = 4 3x+2 1 ∫ e d ( 3x + 2) − 3 ∫ cos (1 − 3x ) d (1 − 3x ) 3 x+2 b) 3 4 1 = e3 x + 2 − sin (1 − 3 x ) + C 3 3 ax Công th c 9: ∫ a x dx = +C ln a Ch ng minh: ax ′ a x ln a ax Th t v y, do +C = = a x ⇒ ∫ a x dx = +C ln a ln a ln a Chú ý: + M r ng v i hàm s h p u = u ( x) , ta ư c ∫ a u du = a u + C 1 kx + m 1 kx + m + ∫ a kx + m dx = k ∫ a d ( kx + m ) = k a + C Ví d : 23 x 32 x a) I = ∫ ( 23 x + 32 x ) dx = ∫ 23 x dx + ∫ 32 x dx = 1 3x 1 2 d ( 3x ) + ∫ 32 x d ( 2 x ) I = 3∫ a u du → + +C 2 3ln 2 2ln 3 21− 2 x 3 4 x + 3 ∫ (2 − e 4 x + 3 ) dx = ∫ 21− 2 x dx − ∫ 3e 4 x + 3 dx = − ∫ 21− 2 x d (1 − 2 x ) − ∫ e 4 x + 3 d ( 4 x + 3) = − 1− 2 x 1 3 b) + e +C 2 4 2ln 2 4 H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 B ng nguyên hàm c a m t s hàm s thư ng g p • ∫ 0dx = C ax • ∫ a x dx = + C (0 < a ≠ 1) ln a • ∫ dx = x + C • ∫ cos xdx = sin x + C α +1 x • ∫ xα dx = + C, (α ≠ −1) • ∫ sin xdx = − cos x + C α +1 1 1 • ∫ x dx = ln x + C • ∫ dx = tan x + C cos2 x • ∫ e x dx = e x + C 1 • ∫ dx = − cot x + C sin2 x 1 1 ax + b • ∫ cos(ax + b)dx = sin(ax + b) + C (a ≠ 0) • ∫ eax + b dx = e + C , (a ≠ 0) a a 1 1 1 • ∫ sin(ax + b)dx = − cos(ax + b) + C (a ≠ 0) • ∫ ax + bdx = a ln ax + b + C a LUY N T P T NG H P Ví d 1. Ch ng minh F(x) là m t nguyên hàm c a hàm s f(x) bi t r ng F ( x) = (4 x − 5)e x F ( x) = tan 4 x + 3 x − 5 a) b) f ( x) = (4 x − 1)e f ( x) = 4 tan x + 4 tan x + 3 x 5 3 x2 + 4 x2 − x 2 + 1 F ( x) = ln 2 F ( x) = ln x +3 x2 + x 2 + 1 c) d) f ( x) = −2 x f ( x) = 2 2( x 2 − 1) ( x + 4)( x 2 + 3) 2 x4 + 1 Ví d 2. Tìm các nguyên hàm sau 1 1) ∫ x 2 – 3 x + dx = .......................................................................... x 2 x4 + 3 2) ∫ dx = .................................................................................. x2 x −1 3) ∫ x2 dx = ................................................................................... ( x 2 − 1)2 4) ∫ dx = .............................................................................. x2 5) ∫ ( ) x + 3 x + 4 x dx = ...................................................................................... 1 2 6) ∫ − 3 dx = ............................................................................... x x x 7) ∫ 2sin 2 dx = ............................................................. 2 H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 8) ∫ tan 2 xdx = ............................................................................ 9) ∫ cos 2 xdx = ................................................................ 1 10) ∫ dx = ......................................................................................... sin x.cos 2 x 2 cos 2 x 11) ∫ dx = .................................................................................................................................... sin 2 x.cos 2 x 12) ∫ 2sin 3 x cos 2 xdx = ............................................................................................ 13) ∫ e x ( e x – 1) dx = ............................................................................. e− x 14) ∫ e x 2 + dx =....................................................................................... cos 2 x 2x 15) ∫ e3 x +1 + dx = ...................................................................................................................... x −1 Ví d 3. Tìm nguyên hàm F(x) c a hàm s f(x) tho i u ki n cho trư c: a) f ( x ) = x 3 − 4 x + 5; F (1) = 3 b) f ( x ) = 3 − 5 cos x; F (π) = 2 3 − 5x 2 x2 + 1 3 c) f ( x ) = ; F ( e) = 1 d) f ( x ) = ; F (1) = x x 2 x3 − 1 1 e) f ( x ) = ; F (−2) = 0 f) f ( x ) = x x + ; F (1) = −2 x2 x π 3x 4 − 2 x 3 + 5 g) f ( x ) = sin 2 x.cos x; F ' = 0 h) f ( x ) = ; F (1) = 2 3 x2 x3 + 3x3 + 3x − 7 x π π i) f ( x ) = ; F (0) = 8 k) f ( x) = sin 2 ; F = ( x + 1)2 2 2 4 BÀI T P LUY N T P Bài 1. Cho hàm s g(x). Tìm nguyên hàm F(x) c a hàm s f(x) tho i u ki n cho trư c: π a) g( x ) = x cos x + x 2 ; f ( x ) = x sin x; F =3 2 b) g( x ) = x sin x + x 2 ; f ( x ) = x cos x; F (π) = 0 c) g( x ) = x ln x + x 2 ; f ( x ) = ln x; F (2) = −2 Bài 2. Tìm i u ki n c a tham s hàm s F(x) là m t nguyên hàm c a hàm s f(x): F ( x ) = ln x 2 − mx + 5 F ( x ) = mx 3 + (3m + 2) x 2 − 4 x + 3 a) 2 . Tìm m. b) 2x + 3 . Tìm m. f ( x ) = 3 x + 10 x − 4 f (x) = 2 x + 3x + 5 Bài 3. Tìm i u ki n c a tham s hàm s F(x) là m t nguyên hàm c a hàm s f(x): H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 F ( x ) = (ax 2 + bx + c) x 2 − 4 x F ( x ) = (ax 2 + bx + c)e x a) . Tìm a, b, c. b) . Tìm a, b, c. f ( x ) = ( x − 3)e x f ( x ) = ( x − 2) x 2 − 4 x Bài 4. Tìm i u ki n c a tham s hàm s F(x) là m t nguyên hàm c a hàm s f(x): F ( x ) = (ax 2 + bx + c)e−2 x F ( x ) = (ax 2 + bx + c)e − x a) 2 −2 x . Tìm a, b, c. b) 2 −x . Tìm a, b, c. f ( x ) = −(2 x − 8x + 7)e f ( x ) = ( x − 3 x + 2)e Bài 5. Tìm i u ki n c a tham s hàm s F(x) là m t nguyên hàm c a hàm s f(x): b c a) F ( x ) = (a + 1)sin x + 2 sin 2 x + 3 sin 3 x . Tìm a, b, c. f ( x ) = cos x F ( x ) = (ax 2 + bx + c) 2 x − 3 b) 20 x 2 − 30 x + 7 . Tìm a, b, c. f (x) = 2x − 3 Bài 6. Tính các nguyên hàm sau: 1) I1 = ∫(x 5 + 2 x dx ) ∫ 1 2) I 2 = 7 − 3 3 x 5 dx x 3) I 3 = ∫( 5 x 2 − 4 x3 + 2 x3 dx ) 1 2 x 1 2 x4 + 3 4) I 4 = ∫ 5 x − 4 x 3 + 2 dx x 5) I 5 = ∫ x + dx x 6) I 6 = ∫ x2 dx Bài 7. Tính các nguyên hàm sau: ( ) (x + 4) 2 2 x −1 2 8) I 8 = ∫ ( 2 x − 1) dx 2 7) I 7 = ∫ dx 3 9) I 9 = ∫ dx x x2 3 x 4 + 2 x3 − x 2 + 1 x2 − x x − x 1 1 10) I10 = ∫ dx 11) I11 = ∫ dx 12) I12 = ∫ − 3 dx x2 x x x Bài 8. Tính các nguyên hàm sau: ( ) 2 1 3 1 2 2 x − 3 3x 13) I13 = ∫ x − dx x 14) I14 = ∫ x + 3 dx x 15) I15 = ∫ x dx x +1 16) I16 = ∫ ( x − 24 x )( x − x ) dx 17) I17 = ∫ 1 (2 x − 3)5 dx 18) I18 = ∫ ( x − 3) 4 dx Bài 9. Tính các nguyên hàm sau: x π x x ∫ 19) I19 = sin + dx 2 7 3 ∫ 20) I 20 = sin 2 x + sin dx 21) I 21 = ∫ sin + x dx 2 π x +1 2 x x ∫ 22) I 22 = sin 3x + − sin 4 dx 23) I 23 = ∫ cos dx 2 2 24) I 24 = ∫ sin 2 dx 2 Bài 10. Tính các nguyên hàm sau: 28) I 28 = ∫ ( tan 2 x + 2 x ) dx dx dx 26) I 26 = ∫ 27) I 27 = ∫ cos 2 4 x cos ( 2 x − 1) 2 dx 29) I 29 = ∫ tan 4 x dx 30) I 30 = ∫ cot 2 x dx 31) I 31 = ∫ sin ( 2 x + 3) 2 Bài 11. Tính các nguyên hàm sau: dx 1 1 32) I 32 = ∫ 33) I 33 = ∫ x 2 + 2 + cot 2 x dx 34) I 34 = ∫ x 2 + dx 1 − cos 6 x x 3x + 2 1 x+2 2x −1 35) I 35 = ∫ sin 2 x − dx 36) I 36 = ∫ dx 37) I 37 = ∫ dx 2 − 5x x−3 4x + 3 H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
- Khóa h c LT H môn Toán – Th y ng Vi t Hùng (0985.074.831) Facebook: LyHung95 Bài 12. Tính các nguyên hàm sau: x x 2 + x + 11 2x2 − x + 5 38) I 38 = ∫ dx 39) I 39 = ∫ dx 40) I 40 = ∫ dx 6 − 5x x+3 x −1 3x 3 + 2 x 2 + x + 1 4 x3 + 4 x 2 − 1 4 x2 + 6x + 1 41) I 41 = ∫ dx 42) I 42 = ∫ dx 43) I 43 = ∫ dx x+2 2x + 1 2x + 1 Bài 13. Tính các nguyên hàm sau: 44) I 44 = ∫ e−2x +3dx 45) I 45 = ∫ cos(1 − x) + e3 x −1 dx 46) I 46 = ∫ x.e − x +1dx 2 −x 49) I 49 = ∫ ( 21− 2 x − e 4 x + 3 ) dx 2 e 47) I 47 = ∫ e− x + 2 dx 48) I 48 = ∫ e x 2 + dx sin (3 x + 1) 2 cos x Bài 14. Tính các nguyên hàm sau: 1 2x 50) I 50 = ∫ 2x dx 51) I 51 = ∫ 7x dx ∫ 52) I 52 = 32 x +1 dx H c offline: Ngõ 72 Tôn Th t Tùng ( i di n H Y Hà N i) H c online: www.moon.vn
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luyện thi Đại học Toán chuyên đề: Khoảng cách trong không gian - Thầy Đặng Việt Hùng
16 p | 810 | 355
-
Luyện thi Đại học Toán chuyên đề: Các phép biến đổi lượng giác - Thầy Đặng Việt Hùng
11 p | 512 | 140
-
Luyện thi Đại học Toán chuyên đề: Tiếp tuyến của đồ thị hàm số - Thầy Đặng Việt Hùng
15 p | 346 | 98
-
Luyện thi Đại học Toán chuyên đề: Thể tích hình chóp - Thầy Đặng Việt Hùng
19 p | 275 | 83
-
Luyện thi Đại học Toán hình học
16 p | 247 | 73
-
Luyện thi Đại học Toán chuyên đề: Bất phương trình Logarit - Thầy Đặng Việt Hùng
14 p | 328 | 70
-
Luyện thi Đại học Toán chuyên đề: Nguyên hàm lượng giác - Thầy Đặng Việt Hùng
19 p | 634 | 63
-
Luyện thi Đại học Toán chuyên đề: Hệ phương trình mũ và Logarit - Thầy Đặng Việt Hùng
11 p | 287 | 58
-
Luyện thi Đại học Toán chuyên đề: Phương trình mũ và Logarit - Thầy Đặng Việt Hùng
17 p | 363 | 46
-
Luyện thi Đại học Toán chuyên đề: Phương pháp đổi biến số tìm nguyên hàm - Thầy Đặng Việt Hùng
7 p | 195 | 35
-
Chuyên đề luyện thi đại học Toán lớp 10, 11, 12
16 p | 143 | 29
-
Luyện thi Đại học Toán chuyên đề: Công thức Logarit - Thầy Đặng Việt Hùng
9 p | 142 | 26
-
Luyện thi Đại học Toán chuyên đề: Nguyên hàm của hàm hữu tỉ - Thầy Đặng Việt Hùng
14 p | 162 | 22
-
Luyện thi Đại học Toán chuyên đề: Khảo sát đồ thị hàm số - Thầy Đặng Việt Hùng
16 p | 109 | 21
-
Luyện thi Đại học Toán chuyên đề: Cực trị hàm bậc ba - Thầy Đặng Việt Hùng
11 p | 133 | 20
-
Luyện thi Đại học Toán chuyên đề: Bất phương trình mũ - Thầy Đặng Việt Hùng
9 p | 140 | 19
-
Luyện thi Đại học Toán chuyên đề: Khoảng cách trong hàm số - Thầy Đặng Việt Hùng
12 p | 120 | 17
-
Luyện thi Đại học Toán chuyên đề: Tương giao hàm bậc ba - Thầy Đặng Việt Hùng
9 p | 62 | 8
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn