Toán lượng giác - Chương 1: Công thức lượng giác
lượt xem 15
download
Nhằm giúp các bạn học sinh có tài liệu ôn tập những kiến thức, kĩ năng cơ bản, và biết cách vận dụng giải các bài tập một cách nhanh nhất và chính xác. Hãy tham khảo Chương 1: Công thức lượng giác.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Toán lượng giác - Chương 1: Công thức lượng giác
- CHÖÔNG 1: COÂNG THÖÙC LÖÔÏNG GIAÙC I. Ñònh nghóa Treân maët phaúng Oxy cho ñöôøng troøn löôïng giaùc taâm O baùn kính R=1 vaø ñieåm M treân ñöôøng troøn löôïng giaùc maø sñ AM = β vôùi 0 ≤ β ≤ 2π Ñaët α = β + k2π,k ∈ Z Ta ñònh nghóa: sin α = OK cos α = OH sin α tgα = vôùi cos α ≠ 0 cos α cos α cot gα = vôùi sin α ≠ 0 sin α II. Baûng giaù trò löôïng giaùc cuûa moät soá cung (hay goùc) ñaëc bieät Goùc α ( ) 0 0o π ( ) 30o π ( ) 45o π ( ) 60o π ( ) 90o Giaù trò 6 4 3 2 sin α 0 1 2 3 1 2 2 2 cos α 1 3 2 1 0 2 2 2 tgα 0 3 1 3 || 3 cot gα || 3 1 3 0 3 III. Heä thöùc cô baûn sin 2 α + cos2 α = 1 1 π 1 + tg2α = vôùi α ≠ + kπ ( k ∈ Z ) cos α 2 2 1 t + cot g2 = vôùi α ≠ kπ ( k ∈ Z ) sin 2 α IV. Cung lieân keát (Caùch nhôù: cos ñoái, sin buø, tang sai π ; phuï cheùo) a. Ñoái nhau: α vaø −α sin ( −α ) = − sin α cos ( −α ) = cos α tg ( −α ) = −tg ( α ) cot g ( −α ) = − cot g ( α )
- b. Buø nhau: α vaø π − α sin ( π − α ) = sin α cos ( π − α ) = − cos α tg ( π − α ) = − tgα cot g ( π − α ) = − cot gα c. Sai nhau π : α vaø π + α sin ( π + α ) = − sin α cos ( π + α ) = −cosα tg ( π + α ) = t gα cot g ( π + α ) = cot gα π d. Phuï nhau: α vaø −α 2 ⎛π ⎞ sin ⎜ − α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞ cos ⎜ − α ⎟ = sin α ⎝2 ⎠ ⎛π ⎞ tg ⎜ − α ⎟ = cot gα ⎝2 ⎠ ⎛π ⎞ cot g ⎜ − α ⎟ = tgα ⎝2 ⎠ π π e.Sai nhau : α vaø + α 2 2 ⎛π ⎞ sin ⎜ + α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞ cos ⎜ + α ⎟ = − sin α ⎝2 ⎠ ⎛π ⎞ tg ⎜ + α ⎟ = − cot gα ⎝2 ⎠ ⎛π ⎞ cot g ⎜ + α ⎟ = − tgα ⎝2 ⎠
- f. sin ( x + kπ ) = ( −1) sin x, k ∈ Z k cos ( x + kπ ) = ( −1) cos x, k ∈ Z k tg ( x + kπ ) = tgx, k ∈ Z cot g ( x + kπ ) = cot gx V. Coâng thöùc coäng sin ( a ± b ) = sin a cos b ± sin b cosa cos ( a ± b ) = cosa cos b ∓ sin asin b tga ± tgb tg ( a ± b ) = 1 ∓ tgatgb VI. Coâng thöùc nhaân ñoâi sin 2a = 2sin a cosa cos2a = cos2 a − sin 2 a = 1 − 2sin 2 a = 2 cos2 a − 1 2tga tg2a = 1 − tg2a cot g2a − 1 cot g2a = 2 cot ga VII. Coâng thöùc nhaân ba: sin3a = 3sin a − 4sin3 a cos3a = 4 cos3 a − 3cosa VIII. Coâng thöùc haï baäc: 1 sin 2 a = (1 − cos2a ) 2 1 cos2 a = (1 + cos2a ) 2 1 − cos2a tg2a = 1 + cos2a IX. Coâng thöùc chia ñoâi a Ñaët t = tg (vôùi a ≠ π + k2 π ) 2
- 2t sin a = 1 + t2 1 − t2 cosa = 1 + t2 2t tga = 1 − t2 X. Coâng thöùc bieán ñoåi toång thaønh tích a+b a−b cosa + cos b = 2 cos cos 2 2 a+b a−b cosa − cos b = −2sin sin 2 2 a+b a−b sin a + sin b = 2 cos sin 2 2 a+ b a−b sin a − sin b = 2 cos sin 2 2 sin ( a ± b ) tga ± tgb = cosa cos b sin ( b ± a ) cot ga ± cot gb = sin a.sin b XI. Coâng thöùc bieån ñoåi tích thaønh toång 1 cosa.cos b = ⎡ cos ( a + b ) + cos ( a − b ) ⎤ 2⎣ ⎦ −1 sin a.sin b = ⎡ cos ( a + b ) − cos ( a − b ) ⎤ 2 ⎣ ⎦ 1 sin a.cos b = ⎡sin ( a + b ) + sin ( a − b ) ⎤ 2⎣ ⎦ sin 4 a + cos4 a − 1 2 Baøi 1: Chöùng minh = sin 6 a + cos6 a − 1 3 Ta coù: sin 4 a + cos4 a − 1 = ( sin 2 a + cos2 a ) − 2sin 2 a cos2 a − 1 = −2sin 2 a cos2 a 2 Vaø: sin 6 a + cos6 a − 1 = ( sin 2 a + cos2 a )( sin 4 a − sin 2 a cos2 a + cos4 a ) − 1 = sin 4 a + cos4 a − sin 2 a cos2 a − 1 = (1 − 2sin 2 a cos2 a ) − sin 2 a cos2 a − 1 = −3sin 2 a cos2 a
- sin 4 a + cos4 a − 1 −2sin 2 a cos2 a 2 Do ñoù: = = sin 6 a + cos6 a − 1 −3sin 2 a cos2 a 3 1 + cos x ⎡ (1 − cos x ) ⎤ 2 Baøi 2: Ruùt goïn bieåu thöùc A = = ⎢1 + ⎥ sin x ⎢ ⎣ sin 2 x ⎥ ⎦ 1 π Tính giaù trò A neáu cos x = − vaø < x < π 2 2 1 + cos x ⎛ sin 2 x + 1 − 2 cos x + cos2 x ⎞ Ta coù: A = ⎜ ⎟ sin x ⎝ sin 2 x ⎠ 1 + cos x 2 (1 − cos x ) ⇔A= . sin x sin 2 x 2 (1 − cos2 x ) 2sin 2 x 2 ⇔A= = = (vôùi sin x ≠ 0 ) sin x 3 sin x sin x 3 1 3 Ta coù: sin 2 x = 1 − cos2 x = 1 − = 4 4 π Do: < x < π neân sin x > 0 2 3 Vaäy sin x = 2 2 4 4 3 Do ñoù A = = = sin x 3 3 Baøi 3: Chöùng minh caùc bieåu thöùc sau ñaây khoâng phuï thuoäc x: a. A = 2 cos4 x − sin 4 x + sin2 x cos2 x + 3sin 2 x 2 cot gx + 1 b. B = + tgx − 1 cot gx − 1 a. Ta coù: A = 2 cos4 x − sin 4 x + sin2 x cos2 x + 3sin2 x ⇔ A = 2 cos4 x − (1 − cos2 x ) + (1 − cos2 x ) cos2 x + 3 (1 − cos2 x ) 2 ⇔ A = 2 cos4 x − (1 − 2 cos2 x + cos4 x ) + cos2 x − cos4 x + 3 − 3cos2 x ⇔ A = 2 (khoâng phuï thuoäc x) b. Vôùi ñieàu kieän sin x.cosx ≠ 0,tgx ≠ 1 2 cot gx + 1 Ta coù: B = + tgx − 1 cot gx − 1
- 1 +1 2 tgx 2 1 + tgx ⇔ B= + = + tgx − 1 1 − 1 tgx − 1 1 − tgx tgx 2 − (1 − tgx ) 1 − tgx ⇔ B= = = −1 (khoâng phuï thuoäc vaøo x) tgx − 1 tgx − 1 Baøi 4: Chöùng minh 1 + cosa ⎡ (1 − cosa ) ⎤ cos2 b − sin 2 c 2 ⎢1 − 2 ⎥+ 2 2 − cot g2 b cot g2 c = cot ga − 1 2sin a ⎢ sin a ⎥ sin bsin c ⎣ ⎦ Ta coù: cos2 b − sin 2 c * − cot g2 b.cot g2 c sin b.sin c 2 2 cotg2 b 1 = − 2 − cot g2 b cot g2 c sin c sin b 2 ( ) ( ) = cot g2 b 1 + cot g2 c − 1 + cot g2 b − cot g 2 b cot g2 c = −1 (1) 1 + cosa ⎡ (1 − cosa ) ⎤ 2 * ⎢1 − ⎥ 2sin a ⎢ sin 2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ (1 − cosa ) ⎤ 2 = ⎢1 − ⎥ 2sin a ⎢ 1 − cos2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ 1 − cosa ⎤ = 1− 2sin a ⎢ 1 + cosa ⎥ ⎣ ⎦ 1 + cosa 2 cosa = . = cot ga (2) 2sin a 1 + cosa Laáy (1) + (2) ta ñöôïc ñieàu phaûi chöùng minh xong. Baøi 5: Cho ΔABC tuøy yù vôùi ba goùc ñeàu laø nhoïn. Tìm giaù trò nhoû nhaát cuûa P = tgA.tgB.tgC Ta coù: A + B = π − C Neân: tg ( A + B) = − tgC tgA + tgB ⇔ = − tgC 1 − tgA.tgB ⇔ tgA + tgB = −tgC + tgA.tgB.tgC Vaäy: P = tgA.tgB.tgC = tgA + tgB + tgC
- AÙp duïng baát ñaúng thöùc Cauchy cho ba soá döông tgA,tgB,tgC ta ñöôïc tgA + tgB + tgC ≥ 3 3 tgA.tgB.tgC ⇔ P ≥ 33 P ⇔ 3 P2 ≥ 3 ⇔P≥3 3 ⎧ tgA = tgB = tgC ⎪ π Daáu “=” xaûy ra ⇔ ⎨ π ⇔ A = B=C= ⎪ 0 < A,B,C < 2 3 ⎩ π Do ñoù: MinP = 3 3 ⇔ A = B = C = 3 Baøi 6 : Tìm giaù trò lôùn nhaát vaø nhoû nhaát cuûa a/ y = 2 sin 8 x + cos4 2x b/ y = 4 sin x − cos x 4 ⎛ 1 − cos 2x ⎞ a/ Ta coù : y = 2 ⎜ ⎟ + cos 2x 4 ⎝ 2 ⎠ Ñaët t = cos 2x vôùi −1 ≤ t ≤ 1 thì 1 4 y = (1 − t ) + t 4 8 1 3 => y ' = − (1 − t ) + 4t 3 2 (1 − t ) = 8t 3 3 Ta coù : y ' = 0 ⇔ 1 − t = 2t 1 ⇔t= 3 1 ⎛1⎞ Ta coù y(1) = 1; y(-1) = 3; y ⎜ ⎟ = 27 ⎝ 3⎠ 1 Do ñoù : Max y = 3 vaø Miny = x∈ x∈ 27 b/ Do ñieàu kieän : sin x ≥ 0 vaø cos x ≥ 0 neân mieàn xaùc ñònh ⎡ π ⎤ D = ⎢ k2π, + k2π ⎥ vôùi k ∈ ⎣ 2 ⎦ Ñaët t = cos x vôùi 0 ≤ t ≤ 1 thì t = cos x = 1 − sin x 4 2 2 Neân sin x = 1 − t4 Vaäy y = 1 − t − t treân D ' = [ 0,1] 8 4 −t 3 Thì y ' = − 1 < 0 ∀t ∈ [ 0; 1) 2. (1 − t 8 ) 4 7 Neân y giaûm treân [ 0, 1 ]. Vaäy : max y = y ( 0 ) = 1, min y = y (1) = −1 x∈ D x∈ D
- Baøi 7: Cho haøm soá y = sin4 x + cos4 x − 2m sin x cos x Tìm giaù trò m ñeå y xaùc ñònh vôùi moïi x Xeùt f (x) = sin 4 x + cos4 x − 2m sin x cos x f ( x ) = ( sin 2 x + cos2 x ) − m sin 2x − 2 sin 2 x cos2 x 2 1 f ( x) = 1 − sin2 2x − m sin 2x 2 Ñaët : t = sin 2x vôùi t ∈ [ −1, 1] y xaùc ñònh ∀x ⇔ f ( x ) ≥ 0∀x ∈ R 1 2 ⇔ 1− t − mt ≥ 0 ∀t ∈ [ −1,1] 2 ⇔ g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ [ −1,1] Do Δ ' = m2 + 2 > 0 ∀m neân g(t) coù 2 nghieäm phaân bieät t1, t2 Luùc ñoù t t1 t2 g(t) + 0 - 0 Do ñoù : yeâu caàu baøi toaùn ⇔ t1 ≤ −1 < 1 ≤ t 2 ⎧1g ( −1) ≤ 0 ⎪ ⎧−2m − 1 ≤ 0 ⇔⎨ ⇔ ⎨ ⎪1g (1) ≤ 0 ⎩ ⎩2m − 1 ≤ 0 ⎧ −1 ⎪m ≥ 2 ⎪ 1 1 ⇔⎨ ⇔− ≤m≤ ⎪m ≤ 1 2 2 ⎪ ⎩ 2 Caùch khaùc : g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ [ −1, 1] ⇔ max g (t ) ≤ 0 ⇔ max { g (−1), g (1)} ≤ 0 t ∈[ −1,1 ] ⎧ −1 ⎪m ≥ 2 ⎪ ⇔ max {−2m − 1),− 2m + 1)} ≤ 0 ⇔ ⎨ ⎪m ≤ 1 ⎪ ⎩ 2 1 1 ⇔− ≤m≤ 2 2 π 3π 5π 7π 3 Baøi 8 : Chöùng minh A = sin4 + sin4 + sin4 + sin4 = 16 16 16 16 2 7π ⎛π π ⎞ π Ta coù : sin = sin ⎜ − ⎟ = cos 16 ⎝ 2 16 ⎠ 16 5π ⎛ π 5π ⎞ 3π sin = cos ⎜ − ⎟ = cos 16 ⎝ 2 16 ⎠ 16
- Maët khaùc : sin 4 α + cos4 α = ( sin 2 α + cos2 α ) − 2 sin 2 α cos2 α 2 = 1 − 2sin2 α cos2 α 1 = 1 − sin2 2α 2 π 7π 3π 5π Do ñoù : A = sin4 + sin4 + sin4 + sin4 16 16 16 16 ⎛ π π ⎞ ⎛ 4 3π 3π ⎞ = ⎜ sin 4 + cos4 ⎟ + ⎜ sin + cos4 ⎟ ⎝ 16 16 ⎠ ⎝ 16 16 ⎠ ⎛ 1 π⎞ ⎛ 1 3π ⎞ = ⎜ 1 − sin 2 ⎟ + ⎜ 1 − sin 2 ⎟ ⎝ 2 8⎠ ⎝ 2 8 ⎠ 1⎛ π 3π ⎞ = 2 − ⎜ sin 2 + sin 2 ⎟ 2⎝ 8 8 ⎠ 1⎛ π π⎞ ⎛ 3π π⎞ = 2 − ⎜ sin 2 + cos2 ⎟ ⎜ do sin = cos ⎟ 2⎝ 8 8⎠ ⎝ 8 8⎠ 1 3 = 2− = 2 2 Baøi 9 : Chöùng minh : 16 sin 10o .sin 30o .sin 50o .sin 70o = 1 A cos 10o 1 Ta coù : A = = (16sin10ocos10o)sin30o.sin50o.sin70o cos 10 o cos 10 o 1 ⎛1⎞ o ( ⇔ A= 8 sin 20o ) ⎜ ⎟ cos 40o . cos 20o cos 10 ⎝2⎠ 1 o ( ⇔ A= 4 sin 200 cos 20o ) . cos 40o cos10 1 o ( ⇔ A= 2 sin 40o ) cos 40o cos10 1 cos 10o ⇔ A= sin 80o = =1 cos10o cos 10o A B B C C A Baøi 10 : Cho ΔABC . Chöùng minh : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 A+B π C Ta coù : = − 2 2 2 A+B C Vaäy : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg .tg tg 2 2 2 ⎡ A B⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2
- A C B C A B ⇔ tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 π π π π Baøi 11 : Chöùng minh : 8 + 4tg + 2tg + tg = cot g ( *) 8 16 32 32 π π π π Ta coù : (*) ⇔ 8 = cot g − tg − 2tg − 4tg 32 32 16 8 cos a sin a cos a − sin a 2 2 Maø : cot ga − tga = − = sin a cos a sin a cos a cos 2a = = 2 cot g2a 1 sin 2a 2 Do ñoù : ⎡ π π⎤ π π (*) ⇔ ⎢ cot g − tg ⎥ − 2tg − 4tg = 8 ⎣ 32 32 ⎦ 16 8 ⎡ π π⎤ π ⇔ ⎢ 2 cot g − 2tg ⎥ − 4tg = 8 ⎣ 16 16 ⎦ 8 π π ⇔ 4 cot g − 4tg = 8 8 8 π ⇔ 8 cot g = 8 (hieån nhieân ñuùng) 4 Baøi :12 : Chöùng minh : ⎛ 2π ⎞ ⎛ 2π ⎞ 3 a/ cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ = ⎝ 3 ⎠ ⎝ 3 ⎠ 2 1 1 1 1 b/ + + + = cot gx − cot g16x sin 2x sin 4x sin 8x sin16x ⎛ 2π ⎞ ⎛ 2π ⎞ a/ Ta coù : cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ 1 1⎡ ⎛ 4π ⎞ ⎤ 1 ⎡ ⎛ 4π ⎞⎤ = (1 + cos 2x ) + ⎢1 + cos ⎜ 2x + ⎟ ⎥ + ⎢1 + cos ⎜ − 2x ⎟ ⎥ 2 2⎣ ⎝ 3 ⎠⎦ 2 ⎣ ⎝ 3 ⎠⎦ 3 1⎡ ⎛ 4π ⎞ ⎛ 4π ⎞⎤ = 2 + ⎢cos 2x + cos ⎜ 2x + 3 ⎟ + cos ⎜ 3 − 2x ⎟ ⎥ 2⎣ ⎝ ⎠ ⎝ ⎠⎦ 3 1⎡ 4π ⎤ = + 2 ⎢cos 2x + 2 cos 2x cos 3 ⎥ 2⎣ ⎦ 3 1⎡ ⎛ 1 ⎞⎤ = + ⎢ cos 2x + 2 cos 2x ⎜ − ⎟ ⎥ 2 2⎣ ⎝ 2 ⎠⎦ 3 = 2 cos a cos b sin b cos a − sin a cos b b/ Ta coù : cot ga − cot gb = − = sin a sin b sin a sin b
- sin ( b − a ) = sin a sin b sin ( 2x − x ) 1 Do ñoù : cot gx − cot g2x = = (1 ) sin x sin 2x sin 2x sin ( 4x − 2x ) 1 cot g2x − cot g4x = = ( 2) sin 2x sin 4x sin 4x sin ( 8x − 4x ) 1 cot g4x − cot g8x = = ( 3) sin 4x sin 8x sin 8x sin (16x − 8x ) 1 cot g8x − cot g16x = = (4) sin16x sin 8x sin16x Laáy (1) + (2) + (3) + (4) ta ñöôïc 1 1 1 1 cot gx − cot g16x = + + + sin 2x sin 4x sin 8x sin16x Baøi 13 : Chöùng minh : 8sin3 180 + 8sin2 180 = 1 Ta coù: sin180 = cos720 ⇔ sin180 = 2cos2360 - 1 ⇔ sin180 = 2(1 – 2sin2180)2 – 1 ⇔ sin180 = 2(1 – 4sin2180+4sin4180)-1 ⇔ 8sin4180 – 8sin2180 – sin180 + 1 = 0 (1 ) ⇔ (sin180 – 1)(8sin3180 + 8sin2180 – 1) = 0 ⇔ 8sin3180 + 8sin2180 – 1 = 0 (do 0 < sin180 < 1) Caùch khaùc : Chia 2 veá cuûa (1) cho ( sin180 – 1 ) ta coù ( 1 ) ⇔ 8sin2180 ( sin180 + 1 ) – 1 = 0 Baøi 14 : Chöùng minh : 1 a/ sin4 x + cos4 x = ( 3 + cos 4x ) 4 1 b/ sin 6x + cos 6x = ( 5 + 3cos 4x ) 8 1 c/ sin8 x + cos8 x = ( 35 + 28 cos 4x + cos 8x ) 64 a/ Ta coù: sin 4 x + cos4 x = ( sin 2 x + cos2 x ) − 2 sin 2 x cos2 x 2 2 =1− sin2 2x 4 1 = 1 − (1 − cos 4 x ) 4 3 1 = + cos 4x 4 4 b/ Ta coù : sin6x + cos6x = ( sin 2 x + cos2 x )( sin 4 x − sin 2 x cos2 x + cos4 x )
- 1 = ( sin4 x + cos4 x ) − sin2 2x 4 ⎛3 1 ⎞ 1 = ⎜ + cos 4x ⎟ − (1 − cos 4x ) ( do keát quaû caâu a ) ⎝4 4 ⎠ 8 3 5 = cos 4x + 8 8 c/ Ta coù : sin 8 x + cos8 x = ( sin 4 x + cos4 x ) − 2 sin 4 x cos4 x 2 1 2 ( 3 + cos 4x ) − sin4 2x 2 = 16 16 2 1 1 ⎡1 ⎤ = 16 ( 9 + 6 cos 4x + cos 4x ) − 8 ⎢ 2 (1 − cos 4x )⎥ 2 ⎣ ⎦ 9 3 1 1 = + cos 4x + (1 + cos 8x ) − (1 − 2 cos 4x + cos2 4x ) 16 8 32 32 9 3 1 1 1 = + cos 4x + cos 8x + cos 4x − (1 + cos 8x ) 16 8 32 16 64 35 7 1 = + cos 4x + cos 8x 64 16 64 Baøi 15 : Chöùng minh : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x Caùch 1: Ta coù : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x = ( 3sin x − 4 sin 3 x ) sin 3 x + ( 4 cos3 x − 3 cos x ) cos3 x = 3sin4 x − 4 sin6 x + 4 cos6 x − 3cos4 x = 3 ( sin 4 x − cos4 x ) − 4 ( sin 6 x − cos6 x ) = 3 ( sin 2 x − cos2 x )( sin 2 x + cos2 x ) −4 ( sin 2 x − cos2 x )( sin 4 x + sin 2 x cos2 x + cos4 x ) = −3 cos 2x + 4 cos 2x ⎡1 − sin 2 x cos2 x ⎤ ⎣ ⎦ ⎛ 1 ⎞ = −3 cos 2x + 4 cos 2x ⎜ 1 − sin 2 2x ⎟ ⎝ 4 ⎠ ⎡ ⎛ 1 ⎞⎤ = cos 2x ⎢ −3 + 4 ⎜ 1 − sin 2 2x ⎟ ⎥ ⎣ ⎝ 4 ⎠⎦ = cos 2x (1 − sin 2 2x ) = cos3 2x Caùch 2 : Ta coù : sin 3x.sin3 x + cos 3x.cos3 x ⎛ 3sin x − sin 3x ⎞ ⎛ 3 cos x + cos 3x ⎞ = sin 3x ⎜ ⎟ + cos 3x ⎜ ⎟ ⎝ 4 ⎠ ⎝ 4 ⎠ 3 1 = ( sin 3x sin x + cos 3x cos x ) + ( cos2 3x − sin2 3x ) 4 4
- 3 1 = cos ( 3x − x ) + cos 6x 4 4 1 = ( 3cos 2x + cos 3.2x ) 4 1 = ( 3cos 2x + 4 cos3 2x − 3cos 2x ) ( boû doøng naøy cuõng ñöôïc) 4 = cos3 2x 3 +1 Baøi 16 : Chöùng minh : cos12o + cos18o − 4 cos15o.cos 21o cos 24 o = − 2 Ta coù : cos12 + cos18 − 4 cos15 ( cos 21 cos 24 ) o o o o o = 2 cos15o cos 3o − 2 cos15o ( cos 45o + cos 3o ) = 2 cos15o cos 3o − 2 cos15o cos 45o − 2 cos15o cos 3o = −2 cos15o cos 45o = − ( cos 60o + cos 30o ) 3 +1 =− 2 Baøi 17 : Tính P = sin2 50o + sin2 70 − cos 50o cos70o 1 1 1 Ta coù : P = (1 − cos100o ) + (1 − cos140o ) − ( cos120o + cos 20o ) 2 2 2 1 1⎛ 1 ⎞ P = 1 − ( cos100o + cos140o ) − ⎜ − + cos 20o ⎟ 2 2⎝ 2 ⎠ 1 1 P = 1 − ( cos120o cos 20o ) + − cos 20o 4 2 5 1 1 5 P = + cos 20o − cos 20o = 4 2 2 4 8 3 Baøi 18 : Chöùng minh : tg30o + tg40o + tg50o + tg60o = cos 20o 3 sin ( a + b ) AÙp duïng : tga + tgb = cos a cos b Ta coù : ( tg50 + tg40 ) + ( tg30o + tg60o ) o o sin 90o sin 90o = + cos 50o cos 40o cos 30o cos 60o 1 1 = + sin 40 cos 40 o o 1 cos 30o 2 2 2 = + sin 80o cos 30o ⎛ 1 1 ⎞ = 2⎜ + ⎟ ⎝ cos10 cos 30o ⎠ o
- ⎛ cos 30o + cos10o ⎞ = 2⎜ o ⎟ ⎝ cos10 cos 30 ⎠ o cos 20p cos10o =4 cos10o cos 30o 8 3 = cos 20o 3 Baøi 19 : Cho ΔABC , Chöùng minh : A B C a/ sin A + sin B + sin C = 4 cos cos cos 2 2 2 A B C b/ socA + cos B + cos C = 1 + 4 sin sin sin 2 2 2 c/ sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C d/ cos2 A + cos2 B + cos2 C = −2 cos A cos B cos C e/ tgA + tgB + tgC = tgA.tgB.tgC f/ cot gA.cot gB + cot gB.cot gC + cot gC.cot gA = 1 A B C A B C g/ cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 A+B A−B a/ Ta coù : sin A + sin B + sin C = 2sin cos + sin ( A + B ) 2 2 A + B⎛ A−B A + B⎞ = 2 sin ⎜ cos + cos ⎟ 2 ⎝ 2 2 ⎠ C A B ⎛ A + B π C⎞ = 4 cos cos cos ⎜ do = − ⎟ 2 2 2 ⎝ 2 2 2⎠ A+B A−B b/ Ta coù : cos A + cos B + cos C = 2 cos cos − cos ( A + B ) 2 2 A+B A−B ⎛ A+B ⎞ = 2 cos cos − ⎜ 2 cos2 − 1⎟ 2 2 ⎝ 2 ⎠ A+B⎡ A−B A + B⎤ = 2 cos ⎢cos 2 − cos 2 ⎥ + 1 2 ⎣ ⎦ A+B A ⎛ B⎞ = −4 cos sin sin ⎜ − ⎟ + 1 2 2 ⎝ 2⎠ C A B = 4 sin sin sin + 1 2 2 2 c/ sin 2A sin 2B + sin 2C = 2 sin ( A + B ) cos ( A − B ) + 2 sin C cos C = 2 sin C cos(A − B) + 2 sin C cos C = 2sin C[cos(A − B) − cos(A + B) ] = −4 sin Csin A sin( − B) = 4 sin C sin A sin B d/ cos2 A + cos2 B + cos2 C 1 = 1 + ( cos 2A + cos 2B ) + cos2 C 2
- = 1 + cos ( A + B ) cos ( A − B ) + cos2 C = 1 − cos C ⎡cos ( A − B ) − cos C ⎤ do ( cos ( A + B ) = − cos C ) ⎣ ⎦ = 1 − cos C ⎡cos ( A − B ) + cos ( A + B ) ⎤ ⎣ ⎦ = 1 − 2 cos C.cos A.cos B e/ Do a + b = π − C neân ta coù tg ( A + B ) = −tgC tgA + tgB ⇔ = −tgC 1 − tgAtgB ⇔ tgA + tgB = −tgC + tgAtgBtgC ⇔ tgA + tgB + tgC = tgAtgBtgC f/ Ta coù : cotg(A+B) = - cotgC 1 − tgAtgB ⇔ = − cot gC tgA + tgB cot gA cot gB − 1 ⇔ = − cot gC (nhaân töû vaø maãu cho cotgA.cotgB) cot gB + cot gA ⇔ cot gA cot gB − 1 = − cot gC cot gB − cot gA cot gC ⇔ cot gA cot gB + cot gB cot gC + cot gA cot gC = 1 A+B C g/ Ta coù : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = cot g C A B 2 1 − tg tg 2 2 A B cot g + cot g ⇔ 2 2 = cot g C (nhaân töû vaø maãu cho cotg A .cotg B ) A B 2 2 2 cot g .cot g − 1 2 2 A B A B C C ⇔ cot g + cot g = cot g cot g cot g − cot g 2 2 2 2 2 2 A B C A B C ⇔ cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 Baøi 20 : Cho ΔABC . Chöùng minh : cos2A + cos2B + cos 2C + 4cosAcosBcosC + 1 = 0 Ta coù : (cos2A + cos2B) + (cos2C + 1) = 2 cos (A + B)cos(A - B) + 2cos2C = - 2cosCcos(A - B) + 2cos2C = - 2cosC[cos(A – B) + cos(A + B)] = - 4cosAcosBcosC Do ñoù : cos2A + cos2B + cos2C + 1 + 4cosAcosBcosC = 0
- Baøi 21 : Cho ΔABC . Chöùng minh : 3A 3B 3C cos3A + cos3B + cos3C = 1 - 4 sin sin sin 2 2 2 Ta coù : (cos3A + cos3B) + cos3C 3 3 3C = 2 cos (A + B) cos (A − B) + 1 − 2sin2 2 2 2 3 3 3C Maø : A + B = π − C neân ( A + B ) = π − 2 2 2 3 ⎛ 3π 3C ⎞ => cos ( A + B ) = cos ⎜ − ⎟ 2 ⎝ 2 2 ⎠ ⎛ π 3C ⎞ = − cos ⎜ − ⎟ ⎝2 2 ⎠ 3C = − sin 2 Do ñoù : cos3A + cos3B + cos3C 3C 3 ( A − B) 3C = −2 sin cos − 2sin 2 +1 2 2 2 3C ⎡ 3 ( A − B) 3C ⎤ = −2 sin ⎢cos + sin ⎥ +1 2 ⎣ 2 2 ⎦ 3C ⎡ 3 ( A − B) 3 ⎤ = −2 sin ⎢cos − cos ( A + B ) ⎥ + 1 2 ⎣ 2 2 ⎦ 3C 3A −3B = 4 sin sin sin( ) +1 2 2 2 3C 3A 3B = −4 sin sin sin +1 2 2 2 Baøi 22 : A, B, C laø ba goùc cuûa moät tam giaùc. Chöùng minh : sin A + sin B − sin C A B C = tg tg cot g cos A + cos B − cos C + 1 2 2 2 A+B A−B C C 2 sin cos − 2 sin cos sin A + sin B − sin C 2 2 2 2 Ta coù : = cos A + cos B − cos C + 1 A+B A−B 2 C 2 cos cos + 2 sin 2 2 2 C⎡ A−B C⎤ A−B A+B 2 cos ⎢cos − sin ⎥ cos − cos 2⎣ 2 2⎦ C 2 2 = = cot g . C⎡ A−B C⎤ 2 cos A − B + cos A + B 2 sin ⎢cos + sin ⎥ 2⎣ 2 2⎦ 2 2 A ⎛ B⎞ −2 sin .sin ⎜ − ⎟ C 2 ⎝ 2⎠ = cot g . 2 A B 2 cos .cos 2 2
- C A B = cot g .tg .tg 2 2 2 Baøi 23 : Cho ΔABC . Chöùng minh : A B C B C A C A B sin cos cos + sin cos cos + sin cos cos 2 2 2 2 2 2 2 2 2 A B C A B B C A C = sin sin sin + tg tg + tg tg + tg tg ( *) 2 2 2 2 2 2 2 2 2 A+B π C ⎛ A B⎞ C Ta coù : = − vaäy tg ⎜ + ⎟ = cot g 2 2 2 ⎝ 2 2⎠ 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg tg tg 2 2 2 ⎡ A B⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2 A C B C A B ⇔ tg tg + tg tg + tg tg = 1 (1) 2 2 2 2 2 2 A B C B C A C A B Do ñoù : (*) sin cos cos + sin cos cos + sin cos cos 2 2 2 2 2 2 2 2 2 A B C = sin sin sin + 1 (do (1)) 2 2 2 A⎡ B C B C⎤ A⎡ B C C B⎤ ⇔ sin ⎢cos cos − sin sin ⎥ + cos ⎢sin cos + sin cos ⎥ = 1 2⎣ 2 2 2 2⎦ 2⎣ 2 2 2 2⎦ A B+C A B+C ⇔ sin cos + cos sin =1 2 2 2 2 A+B+C π ⇔ sin = 1 ⇔ sin = 1 ( hieån nhieân ñuùng) 2 2 A B C 3 + cos A + cos B + cos C Baøi 24 : Chöùng minh : tg + tg + tg = ( *) 2 2 2 sin A + sin B + sin C Ta coù : A+B A−B ⎡ C⎤ cos A + cos B + cos C + 3 = 2 cos cos + ⎢1 − 2 sin 2 ⎥ + 3 2 2 ⎣ 2⎦ C A−B C = 2sin cos + 4 − 2sin2 2 2 2 C⎡ A−B C⎤ = 2 sin ⎢cos − sin ⎥ + 4 2⎣ 2 2⎦ C⎡ A−B A + B⎤ = 2 sin ⎢cos − cos +4 2⎣ 2 2 ⎥ ⎦ C A B = 4 sin sin .sin + 4 (1) 2 2 2
- A+B A−B sin A + sin B + sin C = 2sin cos + sin C 2 2 C A−B C C = 2 cos cos + 2sin cos 2 2 2 2 C⎡ A−B A + B⎤ = 2 cos ⎢ cos + cos 2⎣ 2 2 ⎥⎦ C A B = 4 cos cos cos (2) 2 2 2 Töø (1) vaø (2) ta coù : A B C A B C sin sin sin sin sin sin + 1 (*) ⇔ 2 + 2 + 2 = 2 2 2 A B C A B C cos cos cos cos cos cos 2 2 2 2 2 2 A⎡ B C⎤ B⎡ A C⎤ C⎡ A B⎤ ⇔ sin ⎢cos cos ⎥ + sin ⎢cos cos ⎥ + sin ⎢cos cos ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ A B C = sin sin sin + 1 2 2 2 A⎡ B C B C⎤ A⎡ B C C B⎤ ⇔ sin ⎢cos cos − sin sin ⎥ + cos ⎢sin cos + sin cos ⎥ = 1 2⎣ 2 2 2 2⎦ 2⎣ 2 2 2 2⎦ A B+C A B+C ⇔ sin .cos + cos sin =1 2 2 2 2 ⎡A + B + C⎤ ⇔ sin ⎢ ⎥ =1 ⎣ 2 ⎦ π ⇔ sin = 1 ( hieån nhieân ñuùng) 2 A B C sin sin sin Baøi 25 : Cho ΔABC . Chöùng minh: 2 + 2 + 2 =2 B C C A A B cos cos cos cos cos cos 2 2 2 2 2 2 Caùch 1 : A B A A B B sin sin sin cos + sin cos Ta coù : 2 + 2 = 2 2 2 2 B C C A A B C cos cos cos cos cos cos cos 2 2 2 2 2 2 2 A+B A−B sin cos 1 sin A + sin B 2 2 = = 2 cos A cos B cos C A cos cos cos B C 2 2 2 2 2 2 C A−B ⎛ A − B⎞ cos .cos cos ⎜ ⎟ = 2 2 = ⎝ 2 ⎠ A B C A B cos .cos .cos cos cos 2 2 2 2 2
- ⎛ A − B⎞ C A−B A+B cos ⎜ ⎟ sin cos + cos Do ñoù : Veá traùi = ⎝ 2 ⎠+ 2 = 2 2 A B A B A B cos cos cos cos cos cos 2 2 2 2 2 2 A B 2 cos cos = 2 2 =2 A B cos cos 2 2 Caùch 2 : B+C A+C A+B cos cos cos Ta coù veá traùi = 2 + 2 + 2 B C C A A B cos cos cos cos cos cos 2 2 2 2 2 2 B C B C A C A C cos cos − sin sin cos cos − sin sin = 2 2 2 2 + 2 2 2 2 B C C A cos cos cos cos 2 2 2 2 A B A B cos cos − sin sin + 2 2 2 2 A B cos cos 2 2 ⎡ B C A C A B⎤ = 3 − ⎢ tg tg + tg tg + tg tg ⎥ ⎣ 2 2 2 2 2 2⎦ A B B C A B Maø : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 (ñaõ chöùng minh taïi baøi 10 ) Do ñoù : Veá traùi = 3 – 1 = 2 A B C Baøi 26 : Cho ΔABC . Coù cot g , cot g , cot g theo töù töï taïo caáp soá coäng. 2 2 2 A C Chöùng minh cot g .cot g = 3 2 2 A B C Ta coù : cot g , cot g , cot g laø caáp soá coäng 2 2 2 A C B ⇔ cot g + cot g = 2 cot g 2 2 2 A+C B sin 2 cos ⇔ 2 = 2 A C B sin sin sin 2 2 2
- B B cos 2 cos ⇔ 2 = 2 A C B sin sin sin 2 2 2 1 2 B ⇔ = (do 0 0 ) A C A+C 2 sin sin cos 2 2 2 A C A C cos cos − sin sin ⇔ 2 2 2 2 = 2 ⇔ cot g A cot g C = 3 A C 2 2 sin .sin 2 2 Baøi 27 : Cho ΔABC . Chöùng minh : 1 1 1 1⎡ A B C A B C⎤ + + = ⎢ tg + tg + tg + cot g + cot g + cot g ⎥ sin A sin B sin C 2 ⎣ 2 2 2 2 2 2⎦ A B C A B C Ta coù : cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 (Xem chöùng minh baøi 19g ) sin α cos α 2 Maët khaùc : tgα + cot gα = + = cos α sin α sin 2α 1⎡ A B C A B C⎤ Do ñoù : ⎢ tg + tg + tg + cotg + cotg + cotg ⎥ 2⎣ 2 2 2 2 2 2⎦ 1⎡ A B C⎤ 1 ⎡ A B C⎤ = ⎢ tg + tg + tg ⎥ + ⎢ cotg + cotg + cotg ⎥ 2⎣ 2 2 2⎦ 2 ⎣ 2 2 2⎦ 1⎡ A A⎤ 1 ⎡ B B⎤ 1 ⎡ C C⎤ = ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 1 1 1 = + + sin A sin B sin C BAØI TAÄP 1. Chöùng minh : π 2π 1 a/ cos − cos = 5 5 2 cos15 + sin15 o o b/ = 3 cos15o − sin15o 2π 4π 6π 1 c/ cos + cos + cos =− 7 7 7 2 d/ sin 2x sin 6x + cos 2x.cos 6x = cos3 4x 3 3 e/ tg20o.tg40o.tg60o.tg80o = 3 π 2π 5π π 8 3 π f/ tg + tg + tg + tg = cos 6 9 18 3 3 9 π 2π 3π 4π 5π 6π 7π 1 g/ cos .cos .cos .cos .cos .cos .cos = 15 15 15 15 15 15 15 27
CÓ THỂ BẠN MUỐN DOWNLOAD
-
ÔN THI ĐẠI HỌC MÔN ĐẠI SỐ - PHƯƠNG TRÌNH LƯỢNG GIÁC CHỨA CĂN VÀ CHỨA GIÁ TRỊ TUYỆT ĐỐI
13 p | 2731 | 1063
-
Chuyên đề: Lượng giác
14 p | 1244 | 331
-
Lượng giác thần tốc
2 p | 590 | 185
-
Giáo án đại số lớp 10: Tiết 83: CÔNG THỨC LƯỢNG GIÁC (tiết 1)
13 p | 650 | 89
-
Toán học lớp 11: Ôn tập công thức lượng giác (phần 1) - Thầy Đặng Việt Hùng
5 p | 492 | 89
-
200 phương trình lượng giác
5 p | 522 | 88
-
Chuyên đề LƯỢNG GIÁC Phần 1
17 p | 253 | 81
-
Luyện thi ĐH môn Toán: Nguyên hàm lượng giác - Phần 1
4 p | 990 | 67
-
Toán học lớp 11: Một số kĩ thuật giải phương trình lượng giác (phần 1) - Thầy Đặng Việt Hùng
2 p | 170 | 40
-
Luyện thi ĐH môn Toán: Ôn tập công thức lượng giác (Phần 1) - Thầy Đặng Việt Hùng
5 p | 154 | 26
-
Luyện thi ĐH môn Toán: Phương trình lượng giác cơ bản (Phần 1) - Thầy Đặng Việt Hùng
2 p | 150 | 25
-
Hệ thức lượng giác cơ bản
3 p | 307 | 20
-
Tổng hợp các kiến thức lượng giác
7 p | 154 | 13
-
Chuyên đề lượng giác - Hoa Hoàng Tuyên
3 p | 204 | 11
-
Giải bài tập Luyện tập tỉ số lượng giác của góc nhọn SGK Toán 9 tập 1
6 p | 194 | 6
-
Giải bài tập Luyện tập bảng lượng giác SGK Toán 9 tập 1
5 p | 100 | 4
-
Bài giảng Hình học lớp 11: Hàm số lượng giác và phương trình lượng giác (Tiết 1) - Trường THPT Bình Chánh
11 p | 7 | 4
-
Giáo án Toán lớp 11 - Hoạt động thực hành và trải nghiệm, Bài 1: Tìm hiểu hàm số lượng giác bằng phần mềm Geogebra (Sách Chân trời sáng tạo)
10 p | 12 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn